VoIl Apple Ilc Technical Reference
Manual

Includes ROM Listings for Memory Expandable lic

> &24.95 FPT
USA

Apple® Technical Library Titles
for the Apple Ile and Ilc

The Official Publications from
Apple Computer, Inc.

Apple IIe and Apple Ilc programmers, developers,
and enthusiasts will find a wealth of information

in the Apple Technical Library, an ongoing series of
comprehensive reference manuals. The first volumes
in the Library contained detailed information about
the Apple ITe and Apple IIc computers. They describe
the hardware, firmware, the ProDOS 8 operating sys-
tem, and the Applesoft BASIC programming lan-
guage found in Apple Ile and Iic computers.

These books, written and produced by Apple
Computer, Inc., provide definitive references for
those interested in getting the most out of their
Apple Ile or Ilc.

Apple Technical Library Titles for the Apple Ile
and Ilc include:

Apple Ile Technical Reference

Apple Ikc Technical Reference

Applesoft Tutorial

Applesoft BASIC Programimer’s Reference
Manual

ProDOS 8 Technical Reference

BASIC Programming with ProDOS

Apple Numerics Manual

ImageWriter II Technical Reference
Manual

'@

Apple, IT Apple Ilc Technical
Reference Manual

VAV

Addison-Wesley Publishing Company, Inc.

Reading, Massachusetts Menlo Park, California Don Mills, Ontario
Wokingham, England Amsterdam Bonn Sydney Singapore Tokyo
Madrid Bogotd Santiago San Juan

& APPLE COMPUTER, INC.

Copyright © 1984, 1986 by
Apple Computer, Inc.

All rights reserved. No part of
this publication may be
reproduced, stored in a
retrieval system, or
transmitted, in any form or by
any means, electronic,
mechanical, photocopying,
recording, or otherwise,
without prior written permission
of Apple Computer, Inc.
Printed in the United States of
America.

Apple, the Apple logo,
ProDOS, and LaserWriter are
registered trademarks of Apple
Computer, Inc.

Macintosh is a trademark of
Apple Computer, Inc.

Microsoft is a registered trade-
mark of Microsoft Corporation.

POSTSCRIPT is a trademark of
Adobe Systems Incorporated.

I'TC Garamond, ITC Avant
Garde Gothic, and ITC Zapf
Dingbats are registered
trademarks of International
Typeface Corporation.

Simultaneously published in the
United States and Canada.

ISBN 0-201-17752-8
ABCDEFGHIJ-DO-89876
First printing, March 1987

WARRANTY INFORMATION

ALL IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABILITY AND
FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN
DURATION TO NINETY (90)
DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed
this manual, APPLE MAKES NO
WARRANTY OR REPRESENTA-
TION, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO
THIS MANUAL, ITS QUALITY,
ACCURACY, MERCHANTABILITY,
OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS
MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS
TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT
OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLU-
SIVE AND IN LIEU OF AIL
OTHERS, ORAL OR WRITTEN,
EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is
authorized to make any modifica-
tion, extension, or-addition to this
warranty.

Some states do no allow the exclu-
sion or limitation of implied warran-
ties or liability for incidental or
consequential damages, so the
above limitation or exclusion may
not apply to you. This warranty
gives you specific legal rights, and
you may also have other rights
which vary from state to state.

Preface

Chapter 1

Contents

Figures and tables xiv

About This Manual xxi

Contents of this manual xxi
The Apple Ilc family xxiii

Identifying your Apple Ilc xxiii

The original Apple IIc xxiv

The UniDisk 3.5 Apple Ilc xxiv

The memory expansion Apple Ilc xxiv
Conventions used in this manual xxv

Introduction 1

The outside of the machine 2
The keyboard 3
Features 3
Special function keys 4
Cursor movement keys 4
Modifier keys 5
The 80/40 switch 5
The keyboard switch 6
Disk-use and power lights 7
The speaker 8
The built-in disk drive 8
The back panel 9
The inside of the machine 11
The internal voltage converter 11
The main logic board 12
The other circuit boards 15

iii

iv

Contents

Chapter 2

Chapter 3

Memory Organization and Control 17

The 65C02 microprocessor 18
Overview of the address space 20
Memory map and memory switching 20
Main RAM addresses ($0000-$BFFF and $D0O00-SFFFF) 22
Auxiliary RAM addresses ($0000-BFFF and $D000-SFFFE) 22
ROM addresses ($C100-$FFFF) 22
Hardware addresses ($C000-$COFF) 23
Bank-switched memory 24
Page allocations 26
Page $00 (one-byte addresses) 26
Page $01 (the 65C02 stack) 26
Pages $D0-$FF (ROM and RAM) 26
Using bank selector switches 27
48K memory 36
Page allocations 36
Page $02 (the input buffer) 36
Page $03 (global storage and vectors) 36
Pages $04-$07 (text and low-resolution Page 1) 36
Pages $08-$0B (text and low-resolution Page 2) 38
Pages $08 (communication port buffers) 38
Pages $20-$3F (high-resolution Page 1) 38
Pages $40-$5F (high-resolution Page 2) 39
Using 48K memory switches 39
Transfers between main and auxiliary memory 42
Transferring data 42
Transferring control 43
Using display memory switches 44
The reset routine 49
The cold-start procedure (power on) 51
The warm-start procedure (Control-Reset) 51
Forced cold start (Open Apple-Control-Reset) 52
The reset vector 52

Introduction to Apple lic 1/O 55

The standard 1/O links 56
Standard input features 58
RdKey subroutine 58
KeyIn subroutine 58
GetLn subroutine 59
Escape codes with Getln 60
Editing with Getln 63
Cancel line 63
Backspace 63
Retype 63

Chapter 4

Chapter 5

Standard output features 64
COut subroutine 64
Control characters with COutl 65
Control characters with C3COutl 65
The stop-list feature 67
The text window 68
Normal, inverse, and flashing text 69
Primary character set display 70
Alternate character set display 70
Port /O 71
Standard link entry points 71
Firmware protocol 72
Port I/O space 73
Port ROM space 73
Expansion ROM space 74
Port screen hole RAM space 74
Interrupts 75

Keyboard and Speaker 77

Keyboard input 78

Reading the keyboard 78

Monitor firmware support for keyboard input 82
Speaker output 82

Using the speaker 83

Monitor firmware support for speaker output 84

Video Display Output 85

Video display specifications 87
Text modes 88
Text character sets 88
MouseText 90
40-column versus 80-column text 91
Graphics modes 94
Low-resolution graphics 94
High-resolution graphics 95
Double high-resolution graphics 97
Mixed-mode displays 98
Display pages 99
Display mode switching 101
Display page maps 105
Monitor support for video display output 112
1/0O firmware support for video display output 116

Contents

Vi

Contents

Chapter 6 Block Device 1/0 119

Disk drive I/O 120
Startup 121
Cold start 121
Warm start 123
Memory expansion card I/O 123
The Smartport I/O interface 123
Locating the Smartport 124
Issuing a call to the Smartport 125
Cautions 126
Descriptions of the Smartport calls 126
STATUS 128
Parameter descriptions 128
Possible errors 132
READ BLOCK 132
Parameter descriptions 133
Possible errors 133
WRITE BLOCK 134
Parameter descriptions 134
Possible errors 135
FORMAT 135
Parameter descriptions 135
Possible errors 136
CONTROL 136
Parameter descriptions 136
Possible errors 139
INIT 139
Parameter descriptions 140
Possible errors 140
OPEN 140
Parameter descriptions 140
Possible errors 141
CLOSE 141
Parameter descriptions 141
Possible errors 142
READ 142
Parameter descriptions 142
Possible errors 143
WRITE 143
Parameter descriptions 144
Possible errors 144
An example: issuing a Smartport call 145
Summary of commands and parameters 149
Summary of error codes 150

Chapter 7

Chapter 8

Chapter 9

Serial 1/O Port 1 153

Using serial port 1 155

Characteristics of port 1 at startup 159

Hardware page locations for port 1 159

I/O firmware support for port 1 160

Screen hole locations for port 1 160

Changing port 1 characteristics 161
Data format and baud rate 163
Carriage return and line feed 164
Sending special characters 165
Displaying output on the screen 165

Serial 1/0 Port 2 167

Using serial port 2 169
Characteristics of port 2 at startup 173
Hardware page locations for port 2 173
1/0O firmware support for port 2 174
Screen hole locations for port 2 174
Changing port 2 characteristics 176
Data format and baud rate 177
Carriage return and line feed 179
Routing input and output 179
Half-duplex operation 180
Full-duplex operation 182
Terminal mode 184

Mouse and Game Input 185

Mouse input 186
Mouse connector signals 187
Mouse operating modes 187
Transparent mode 187
Movement interrupt mode 187
Button interrupt mode 188
Movement/button interrupt mode 188
Vertical blanking active modes 188
Mouse soft switches 189
1/0 firmware support for mouse input 191
Pascal support 195
BASIC and assembly-language support 195
Screen holes 196
Using the mouse as a hand controller 198

Contents Vi

Game input 198
The hand controller connector signals 199
Switch inputs (Sw0 and Sw1) 200
Analog inputs (PdI0 and Pdl1) 200
Monitor support for game input 201

Chapter 10 Using the Monitor 203

Invoking the Monitor 204
Syntax of Monitor commands 205
Monitor memory commands 205
Examining memory contents 206
Memory dump 206
Changing memory contents 208
Changing one byte 208
Changing consecutive locations 209
Moving data in memory 210
Comparing data in memory 211
Monitor register commands 212
Changing registers 213
Examining registers 213
Miscellaneous Monitor commands 213
Display inverse and normal 214
Back to BASIC 214
Redirecting input and output 215
Hexadecimal arithmetic 215
Advanced operations 216
Multiple-command lines 216
Filling memory 216
Repeating commands 217
Creating your own commands 218
Machine-language programs 219
Running a program 219
Disassembled programs 220
The STEP and TRACE commands 221
The Mini-Assembler 223
Starting the Mini-Assembler 223
Using the Mini-Assembler 224
Mini-Assembler instruction formats 226
Summary of Monitor commands 227
Examining memory 227
Changing the contents of memory 227
Moving and comparing 227
The Register command 228
Miscellaneous Monitor commands 228
Running and listing programs 229

vili Contents

Chapter 11

Hardware Implementation 231

Environmental specifications 232
Power requirements 233
The external power supply 233
The external power connector 234
The internal converter 234
Apple IIc overall block diagram 235
The 65C02 microprocessor 237
65C02 block diagram 237
65C02 timing 239
The custom integrated circuits 241
The memory management unit (MMU) 241
The input/output unit JOU) 243
The timing generator (TMG) 245
The general logic unit (GLU) 245
The disk controller unit TWM) 247
Memory addressing 248
ROM addressing 249
RAM addressing 251
Dynamic RAM refreshment 251
Dynamic RAM timing 252
The keyboard 254
The speaker 256
Volume control 256
Output jack 256
The video display 257
The video counters 257
Display memory addressing 258
Display address mapping 258
Video display modes 261
Text displays 263
Low-resolution display 266
High-resolution display 267
Double high-resolution display 269
Video output signals 270
Monitor output 270
Video expansion output 271
Disk I/O 273
Serial I/O 274
ACIA control register 278
ACIA command register 280
ACIA status register 281
ACIA transmit/receive register 282

Contents

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Contents

Mouse input 282

Hand controller input 287
Memory expansion card 291
Schematic diagrams 291

The 65C02 Microprocessor 297

Differences between 6502 and 65C02 297
Differing cycle times 297
Differing instruction results 298
Data sheet 298

Memory Map 308

Page $00 308

Page $03 312

Screen holes 312

The hardware page 316

Important Firmware Locations 322

The tables 322

Port addresses 323

Other video and I/O firmware addresses 326
Applesoft BASIC interpreter addresses 326
Monitor addresses 326

Operating Systems and Languages 328

Operating systems 328

ProDOS 328

DOS 328

Pascal Operating System 329
Languages 329

Applesoft BASIC 329

Integer BASIC 330

Pascal 330

Fortran 330

Logo II 330

Interrupts 331

Introduction 331
What is an interrupt? 331
Interrupts on Apple II computers 332
Interrupt handling on the 65C02 333
The interrupt vector at $FFFE 333

Appendix F

The built-in interrupt handler 334
Saving the memory configuration 335
Managing main and auxiliary stacks 336
User’s interrupt handler at $03FE 336
Handling break instructions 337
Sources of interrupts 338
Firmware handling of interrupts 339
Firmware for mouse and VBL 339
Firmware for keyboard interrupts 340
Using keyboard buffering firmware 341
Using keyboard interrupts through firmware 342
Using external interrupts through firmware 342
Firmware for serial interrupts 343
Using serial buffering transparently 343
Using serial interrupts through firmware 344
Transmitting serial data 344
A loophole in the firmware 345
Bypassing the interrupt firmware 345
Using mouse interrupts without the firmware 345
Using ACIA interrupts without the firmware 347

Apple Il Series Differences 348

Overview 348
Type of processor 350
Machine indentification 350
Memory structure 351
Amount and address ranges of RAM 351
Amount and address ranges of ROM 351
Peripheral-card memory spaces 352
Hardware addresses 353
$C000-SCO0F 353
$C010-SCO1F 353
$C020-SCO2F 354
$C030-SCO3F 354
$C040-SCO4F 354
$C050-SCOSF 354
$C060-SCO6F 355
$C070-SCO7F 355
$C080-SCO8F 356
$C090-SCOFF 356
Monitors 356

Contents

Xi

I/O in general 357
DMA transfers 357
Slots versus ports 357
Interrupts 357
The keyboard 357
Keys, switches, and lights 358
Character sets 358
The speaker 359
The video display 359
Character sets 359
MouseText 360
Vertical blanking 360
Display modes 360
Disk I/O 361
Serial I/O 361
Serial ports versus serial cards 361
Serial I/O buffers 362
Mouse and hand controllers 363
Mouse input 363
Hand controller input and output 363
Cassette I/O 364
Hardware 365
Power 365
Custom chips 365

Appendix G USA and International Models 366

Keyboard layouts and codes 366
USA standard (Sholes) keyboard 367
USA simplified (Dvorak) keyboard 370
ISO layout of USA keyboard 371
English keyboard 372
French keyboad 373
Canadian keyboard 375
German keyboard 376
Italian keyboard 378
Western Spanish keyboard 380
ASCII character sets 381
Certification 383
Product safety 383
Important safety instructions 383
Power supply specifications 383

xii Contents

Appendix H

Appendix |

Conversion Tables 384

Bits and bytes 384

Hexadecimal and decimal 387
Hexadecimal and negative decimal 388
Peripheral identification numbers 389
Eight-bit code conversions 391

Firmware Listings 396

Glossary 509
Bibliography 533
Index 535

Tell Apple Card

Contents

Xili

Figures and tables

Chapter 1 Introduction 1

Figure 1-1 Apple Ilc external features, front 2
Figure 1-2 Apple Ilc external features, back 2
Figure 1-3 Front of Apple Ilc with standard USA keyboard 3
Figure 1-4 USA standard (or Sholes) keyboard,
keyboard switch up 6
Figure 1-5 USA simplified (or Dvorak) keyboard,
keyboard switch down 7

Figure 1-6 Speaker, volume control, and audio output jack 8
Figure 1-7 Built-in disk drive 9
Figure 1-8 Back panel connectors 10

Figure 1-9 Inside the machine 11

Figure 1-10 Power supply and voltage converter 12

Figure 1-11 Original and UniDisk 3.5 IIc main logic board 13
Figure 1-12 Memory expansion IIc main logic board 14
Table 1-1 Keyboard specifications

Chapter 2 Memory Organization and Control 17

Figure 2-1 Internal model of the 65C02 microprocessor 19
Figure 2-2 Apple IIc memory map 21

Figure 2-3 Bank-switched memory map 25

Figure 2-4 Read ROM 29

Figure 2-5 Read ROM, write RAM, and use first $D0 bank 30
Figure 2-6 Read ROM, write RAM, and use second $D0 bank 31
Figure 2-7 Read RAM and use first $D0 bank 32

Figure 2-8 Read RAM and use second $D0 bank 33

Figure 2-9 Read and write RAM and use first $D0 bank 34
Figure 2-10 Read and write RAM and use second $D0 bank 35
Figure 2-11 48K memory map 37

Figure 2-12 48K RAM selection, split pairs 40

Figure 2-13 48K RAM selection, one side only 41

Figure 2-14 Page2 selections, 80Store on and HiRes off 47
Figure 2-15 Page2 selections, 80Store on and HiRes on 48
Figure 2-16 Reset routine flowchart 49

Table 2-1 Bank selector switches 28

Xiv

Chapter 3

Chapter 4

Chapter 5

Table 2-2
Table 2-3
Table 2-4
Table 2-5
Table 2-6
Table 2-7

48K memory switches 39

48K RAM transfer routines 42
Parameters for MoveAux routine 43
Parameters for XFer routine 43
Display memory switches 45

Page $03 vectors 50

Introduction to Apple lic I/O 55

Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 3-5
Table 3-6
Table 3-7
Table 3-8
Table 3-9

Prompt characters 59

Escape codes with Getln 61

Control characters with COutl 65
Control characters with C3COutl 66
Text window memory locations 69
Port characteristics 71

Firmware protocol locations 72

Port I/O locations 73

Port screen hole memory locations 74

Keyboard and Speaker 77

Table 4-1
Table 4-2
Table 4-3

Keyboard input characteristics 79
Keys and ASCII codes 80
Speaker output characteristics 83

Video Display Output 85

Figure 5-1
Figure 5-2

Figure 5-3
Figure 5-4
Figure 5-5
Figure 5-6
Figure 5-7
Figure 5-8
Figure 5-9
Table 5-1
Table 5-2
Table 5-3
Table 5-4
Table 5-5
Table 5-6
Table 5-7
Table 5-8

MouseText characters 91

40-column and 80-column text

with alternate character set 92

Text mode characteristics and switching 93
High-resolution display bits 96

Map of 40-column text display 107

Map of 80-column text display 108

Map of low-resolution graphics display 109
Map of high-resolution graphics display 110
Map of double high-resolution graphics display 111
Video output port characteristics 86

Video display specifications 87

Display character sets 89

Low-resolution graphics colors 94
High-resolution graphics colors 97

Double high-resolution graphics colors 99
Video display page locations 101

Display soft switches 102

Figures and tables XV

Table 5-9 Display modes supported by firmware,
including Applesoft 104

Table 5-10 Other display modes 104

Table 5-11 Monitor firmware routines 112

Table 5-12 Port 3 firmware protocol table 116

Table 5-13 Pascal video control functions 117

Chapter 6 Block Device 1/O 119
Figure 6-1 Summary of Smartport calls 149
Table 6-1 Disk 1/O port characteristics 120

Chapter 7 Serial 1/O Port 1 153

Figure 7-1 Diagram of port 1 characteristics storage 162
Figure 7-2 Data format 163
Table 7-1 Serial port 1 characteristics 154

Table 7-2 Printer port commands 155

Table 7-3 Port 1 hardware page locations 159
Table 7-4 Port 1 1/O firmware protocol 160
Table 7-5 Port 1 screen hole locations 160

Chapter 8 Serial 1/O Port 2 167

Figure 8-1 Diagram of port 2 characteristics storage 177
Figure 8-2 Devices in a typical communication setup 178
Figure 8-3 Effect of IN#2 180
Figure 8-4 Effect of IN#2 and T command, half duplex 181
Figure 8-5 Effect of IN#2 and T command,
full-duplex terminal 182
Figure 8-6 Effect of IN#2, PR#2, and T command,
full-duplex host 183
Table 8-1 Serial port 2 characteristics 168
Table 8-2 Modem port commands 170
Table 8-3 Port 2 hardware page locations 174
Table 8-4 Port 2 I/O firmware protocol 174
Table 8-5 Port 2 screen hole locations 175

Chapter 9 Mouse and Game Input 185

Table 9-1 Mouse input port characteristics 186
Table 9-2 Mouse soft switches 189

Table 9-3 Mouse firmware routines 193

Table 9-4 Mouse port I/O firmware protocol 195
Table 9-5 Mouse port screen hole locations 197
Table 9-6 Game input characteristics 199

XVi Figures and tables

Chapter 10 Using the Monitor 203

Chapter 11

Table 10-1

Mini-Assembler address formats 226

Hardware Implementation 231

Figure 11-1
Figure 11-2
Figure 11-3
Figure 11-4
Figure 11-5
Figure 11-6
Figure 11-7
Figure 11-8
Figure 11-9
Figure 11-10
Figure 11-11
Figure 11-12
Figure 11-13
Figure 11-14
Figure 11-15
Figure 11-16
Figure 11-17
Figure 11-18
Figure 11-19
Figure 11-20
Figure 11-21
Figure 11-22

Figure 11-23

Figure 11-24
Figure 11-25
Figure 11-26
Figure 11-27
Figure 11-28
Figure 11-29
Figure 11-30
Figure 11-31
Figure 11-32
Figure 11-33
Figure 11-34
Figure 11-35
Figure 11-36
Figure 11-37
Figure 11-38

External power connector 234

Apple IIc block diagram 236

65C02 block diagram 238

65C02 timing signals 240

MMU pinouts 242

10U pinouts 243

TMG pinouts 245

GLU pinouts 246

IWM pinouts 247

Memory bus organization 249

23128 ROM pinouts 249

2316 ROM pinouts 250

2364 pinouts 250

64K RAM pinouts 251

RAM timing signals 253

Keyboard circuit diagram 254
Keyboard signals 255

Speaker circuit diagram 256

Display address transformation 260
40-column text display memory 261
Video display circuits 262

7-MHz video timing signals: 40-column,
low-resolution, and high-resolution display 264
14-MHz video timing signals: 80-column
and double high-resolution display 265
Video output back panel connectors 270
Video expansion connector pinouts 272
Disk drive connector 274

Serial port circuits 275

6551 ACIA block diagram 276

6551 pinouts 277

Serial port connectors 278

ACIA control register 279

ACIA command register 280

ACIA status register 281

Sample mouse waveform 283

Mouse movement and direction waveforms 283
Mouse connector 284

Mouse circuits 285

Mouse button signals 286

Figures and tables

XVii

XVviii

Appendix A

Appendix B

Figures and tables

Figure 11-39
Figure 11-40
Figure 11-41
Figure 11-42
Figure 11-43

Figure 11-44
Table 11-1
Table 11-2
Table 11-3
Table 11-4
Table 11-5
Table 11-6
Table 11-7
Table 11-8
Table 11-9
Table 11-10
Table 11-11
Table 11-12
Table 11-13
Table 11-14
Table 11-15
Table 11-16
Table 11-17
Table 11-18
Table 11-19
Table 11-20
Table 11-21
Table 11-22

Hand controller connector 287

How to connect switch inputs 288

Hand controller circuits 288

Hand controller signals 289

Memory expansion card connector
pinout diagram 291

Apple IIc schematic diagram 292
Environmental specifications 232
Power supply specifications 233
External power connector signals 234
Internal converter specifications 234
65C02 microprocessor specifications 239
65C02 timing signal descriptions 240
MMU signal descriptions 242

IOU signal descriptions 243

TMG signal descriptions 245

GLU signal descriptions 246

IWM signal descriptions 247

RAM address multiplexing 252

RAM timing signals 253

Display memory addressing 260
Memory address bits for display modes 260
Character-generator control signals 266
Video expansion connector signals 272
Disk drive connector signals 274

6551 signal descriptions 277

Serial port connector signals 278
Mouse connector signals 284

Hand controller connector signals 287

The 65C02 Microprocessor 297

Table A-1

Memory Map

Table B-1
Table B-2
Table B-3
Table B-4
Table B-5
Table B-6
Table B-7
Table B-8
Table B-9

Cycle time differences 298

308

Page $00 use 309

Page $03 use 312

Main memory screen hole allocations 313
Auxiliary memory screen hole allocations 315
Addresses $C000-$CO3F 316

Addresses $C040-$COSF 318

Addresses $C060-$CO7F 319

Addresses $C080-$COAF 320

Addresses $COB0-$COFF 321

Appendix C

Appendix E

Appendix F

Appendix G

Important Firmware Locations 322

Table C-1
Table C-2
Table C-3
Table C-4
Table C-5

Table C-6

Interrupts
Table E-1

Table E-2
Table E-3

331

Serial port 1 addresses 323

Serial port 2 addresses 324

Video firmware addresses 324

Mouse port addresses 325

Apple IIc enhanced video

and miscellaneous firmware 326

Apple IIc monitor entry points and vectors 326

Interrupt-handling sequence 335
Activating mouse interrupts 346
Reading mouse interrupts 346

Apple Il Series Differences 348

Figure F-1
Table F-1

Apple II, II Plus, and Ile hand controller signals 364

Apple II series indentification bytes 350

USA and International Models 366

Figure G-1
Figure G-2
Figure G-3
Figure G-4
Figure G-5
Figure G-6
Figure G-7
Figure G-8
Figure G-9

Table G-1
Table G-2

Table G-3
Table G-4

Table G-5

USA standard (or Sholes) keyboard,
keyboard switch up 368

USA simplified (or Dvorak) keyboard,
keyboard switch down 370

ISO version of USA standard keyboard,
keyboard switch up 371

English keyboard, keyboard switch up 372
French keyboard, keyboard switch down 373
Canadian keyboard, keyboard switch down 375
German keyboard, keyboard switch down 376
Italian keyboard, keyboard switch down 378
Western Spanish keyboard, keyboard

switch down 380

Keys and ASCII codes 368

English keyboard code differences

from Table G-1 372

French keyboard code differences

from Table G-1 374

Canadian keyboard code differences

from Table G-1 375

German keyboard code differences

from Table G-1 377

Figures and tables

Xix

Table G-6 Italian keyboard code differences
from Table G-1 379

Table G-7 Western Spanish keyboard code differences
from Table G-1 381

Table G-8 ASCII code equivalents 381

Table G-9 50-Hz power supply specifications 383

Appendix H Conversion Tables 384

Figure H-1 Bits, nibbles, and bytes 386

Table H-1 What a bit can represent 385

Table H-2 Values represented by a nibble 386

Table H-3 Hexadecimal/decimal conversion 387

Table H-4 Hexadecimal to negative decimal conversion 388
Table H-5 PIN numbers 390

Table H-6 Control characters, high bit off 392

Table H-7 Special characters, high bit off 393

Table H-8 Uppercase characters, high bit off 394

Table H-9 Lowercase characters, high bit off 395

Appendix | Firmware Listings 396

Table I-1 Main side ROM map 397
Table I-2 Auxiliary side ROM map 398

XX Figures and tables

Preface

About This Manual

This is the reference manual for the Apple® IIc personal computer.
It contains detailed descriptions of all the hardware and firmware
that make up the Apple Ilc and provides the technical information
that peripheral-card designers and programmers need.

The information in this manual is aimed at assembly-language
programmers and hardware designers, but others interested in the
internal operation of the Apple Ilc can also benefit from reading it.

This manual tells you how the Apple IIc works, but not how to use it.
If you need to know how to set up and use your Apple Ic, read the
Apple Ilc Owner’s Manual.

This manual describes three versions of the Apple Ilc:

O the original Apple Ilc

D the Apple IIc that supports the UniDisk™ 3.5 drive

O the Apple lic that supports the Memory Expansion Card

More information on the various versions of the Apple Iic is
provided under “The Apple IIc Family,” later in this Preface.

Contents of this manual
The Apple Ilc is presented in this manual from the outside in.

Chapter 1 introduces the Apple Ilc, including external controls,
connectors, and the main internal components.

Chapter 2 introduces the 65C02 microprocessor and its directly
addressable memory space.

Chapter 3 introduces the I/O characteristics of the Apple Ilc.
Chapters 4 and 9 cover specific areas of the I/O interface.

xXXi

xxll

Chapter 4 describes the keyboard and speaker.
Chapter 5 describes the video display.

Chapter 6 describes block device 1/O, including the Smartport
firmware interface.

Chapter 7 describes serial port 1.
Chapter 8 describes serial port 2.
Chapter 9 describes the mouse/game paddle port.

Chapter 10 describes the Apple IIc's built-in Monitor firmware. The
Monitor helps you write, disassemble, and debug machine-
language programs, as well as providing you with a means to look at
and manipulate the contents of main memory.

Chapter 11 describes the Apple IIc hardware in detail,

Appendix A describes the 65C02 microprocessor in detail,
including the differences between it and the 6502 microprocessor
used on early-model Apple II's. Most of this appendix is 2 reprint of
the manufacturer’s data sheet for the 65C02,

Appendix B contains a memory map of the Apple IIc main
memory. Detailed maps are provided for memory pages $00 and
$03, the screen holes, and the hardware page.

Appendix C lists the Apple IIc firmware entry points, including
those for the I/O firmware and the Monitor firmware.

Appendix D describes some of the operating systems and languages
supported by Apple Computer for the Apple Ilc.

Appendix E describes the operation of the Apple Ic interrupt
handler firmware and how to use it in your programs.

Appendix F outlines the differences and similarities between the
diverse members of the Apple II family of computers.

Appendix G describes the various international versions of the
Apple Ilc keyboard and character set. Power and safety information
for international versions of the Apple IIc is also included in this
appendix.

Appendix H contains tables to aid you in code and number base
conversions.

Appendix I contains the firmware listing for the new version of the
Apple IIc and information on obtaining listings for the original and
UniDisk 3.5 ROMs.

The Glossary defines many of the technical terms used in this
manual.

Preface: About This Manual

Important

The Bibliography lists articles and books with additional
information about the Apple Ilc.

Finally, after the index at the back of this manual, you'll find the Tell
Apple Card; please take a minute to fill this card out and mail it back
to us. Your experience with this and other Apple manuals can help
us plan new reference materials.

The Apple lic family

Changes have been made to the Apple Ilc since the original version
was introduced. The first change was made in order to support the
UniDisk 3.5 external drive, and included a set of ROM-based
machine-language routines called the Protocol Converter. The
latest version incorporates all the UniDisk 3.5 upgrade features, a
new version of the Protocol Converter called the Smartport, and
support for an optional memory expansion card. All of these
versions are described in this manual. Where there are differences
between the various versions of the Apple Ilc, they will be called out
in the manual. For the sake of convenience, the various versions of
the Apple llc are identified by the features they support, such as
memory expansion for the newest lic and UniDisk 3.5 for the
version that introduced the UniDisk 3.5 drive support. Unless
specified, all versions of the Apple IIc operate identically.

Smartport is merely a new name for the Protocol Converter; all
the specifications for the Smartport apply to the Protocol
Converter, and vice versa.

Identifying your Apple lic

There are basically three versions of the Apple Ilc:
O the original Apple Ilc

O the UniDisk 3.5 Apple llc

O the memory expansion Apple Ilc

You can tell which Apple IIc you have by checking the value of the
ID byte at ROM location 64447 ($FBBF in hexadecimal). The value
of this byte is 255 ($FF) in the original Apple Ilc, 0 ($00) in the
UniDisk 3.5 version, and 3 ($03) in the memory expansion version.

» Checking the ID byte: You can check the value of the ID byte
from Applesoft by typing PRINT PEEK (64447).

The Apple lic family xxili

XXV

The original Apple lic

The original Apple IIc is the oldest member of the IlIc family. It has
the following features:

O the 65C02 microprocessor
0O 128K of RAM

The UniDisk 3.5 Apple lic

The Apple Ilc that introduced support for the UniDisk 3.5 drive is
identified in this manual as the UniDisk 3.5 version. It includes the
following changes from the original Apple Ilc:

0 the Protocol Converter, to support the UniDisk 3.5 external disk
drive

O a 256K ROM IC to replace the 128K ROM

O some new serial port commands

O the Mini-Assembler

O two new Monitor commands (STEP and TRACE)
O built-in diagnostics

The UniDisk 3.5 Apple Ilc also includes improved interrupt handler
features and new external drive startup procedures.

The memory expansion Apple lic

The Apple IIc that supports an optional memory expansion card
supports all the features of the UniDisk 3.5 version. It includes the
following changes from the UniDisk 3.5 Ilc:

O an internal connector to support an optional memory expansion
card

O 4 64Kx4 RAM ICs to replace the 16 64Kx1 ICs

The Apple IIc that supports the memory expansion option also
reorganizes the I/0 port (“slot”) entry points in the firmware. The
mouse, located at port 4 in the original and UniDisk 3.5 versions, is
now at port 7. The memory expansion card uses port 4 in the new
Apple IIc. What this means is that g/l the mouse I/O entry point
addresses have been changed from $C4XX to $C7XX.

Preface: About This Manual

Warning

Important

Original llc

UniDisk 3.5

Memory expansion

To avoid confusion and maintain compatibility with previous
versions, the text and tables in this book still show the values used
for the original and UniDisk 3.5 versions of the Apple Ilc. However,
a statement reminding you of the change appears near affected
tables.

Remember that the Smartport and the Protocol Converter are
the same thing.

Conventions used in this manual

Special text in this manual is set off in several different ways, as
shown in these examples.

Important warnings look like this. These flag potential danger to
the Apple lic, its software, or you.

Text set off like this Is less urgent or threatening than text in a
Warning box, but still of a critical nature.

Text set off like this applies only fo the original version of the
Apple lic.

Text set off like this applies only to the UniDisk 3.5 version of the
Apple lic.

Text set off like this applies only to the memory expansion
version of the Apple lic.

< By the way: Information that is useful but incidental to the text
is set off like this. You may want to skip over such information
and return to it later.

Terms that appear in boldface in the text are defined in the
Glossary or a marginal gloss.

Computer voice is used to indicate text that should be identical
to your screen display or printout.

Conventions used in this manual XXV

Chapter 1

Introduction

This chapter introduces you to the working parts of the Apple IIc by
briefly describing the major components of the computer—both
internal and external hardware and firmware—and telling you

. where in the manual to find out more about them.

The outside of the machine

This section briefly describes the Apple Iic's keyboard, controls,
indicators, and expansion connectors.

The Apple IIc comes equipped with a keyboard, speaker (with audio
output jack and volume control), built-in disk drive, external power
supply, and internal voltage converter. It also has built-in interfaces
with external connectors for a serial printer, video monitor, special
video display adapters, modem, mouse, and game controllers.
These external connectors allow you to plug in accessory equipment
without having to go inside the machine to use expansion slots like
those in the Apple Ile.

Figure 1-1 shows the front and right side of an Apple IIc, and
Figure 1-2 shows the back and left side.

Keyboard Disk‘ Drive Back Panel Speaker
(See Figs. 1-4 and 1-5) (See Fig. 1-7) (See Fig. 1-8) Volume Gontrol
(See Fig. 1-6)
Figure 1-1 Figure 1-2
Apple llc external features, Apple lic extemnal features,
front back

Chapter 1: Introduction

The keyboard

ASCII stands for American The Apple IIc’s primary input device is the keyboard, shown in
standard Code for Information Figure 1-3. The keyboard has a 63-key typewriter layout with both
Inferchange. Table 4-2 lists the

ASCII character encoding for uppercase and lowercase characters and can generate all 128

the standard and simplified USA standard ASCII characters. A reset key, 80/40-column display
keyboards. Appendix G lisfs the selector switch, keyboard layout selector switch, disk-use light, and

encoding for international

keyboards. power light are also located on the front of the computer.

Reset Switch
80/40-Column Switch

Keyboard Switch

Disk-Use Light Power Light

Figure 1-3
Front of Apple lic with standard USA keyboard

Table 1-1 lists the characteristics of all Apple Ilc keyboards and
front panels.

Features

The Apple IIc keyboard has automatic repeat on all character keys.
This means that if you hold the key down longer than about a
second, the character it generates repeats until you let up the key. It
also has two-key rollover, which means if you press a key before
releasing the one you pressed before it, the second character enters
the computer the same as though you had released the previous key
first. (This is important for fast touch-typists.)

The outside of the machine 3

The Open Apple and Solid Apple
keys are connected to 1-bit
addresses in memory, described
in Chapter 9.

Chapter 2 describes the results
of the various reset procedures.

Table 1-1
Keyboard specifications

Number of keys 63

Character encoding ASCII

Number of codes 128

Features Automatic fepeat, twe-key rollover

Special function keys Reset, Open Apple, Solid Apple,

Cursor movement keys Left Arrow, Right Arrow, Down Arrow,
: Up Arrow, Return, Delete, Tab

Modifier keys Control, Shift, Caps Lock, Escape

Front-panel switches 80/40 switch, keyboard switch

Front-panel lights Power light, disk-use light

Special function keys

The Apple Ilc keyboard has three special function keys: Reset, and
two keys marked with apples—one outlined (Open Apple) and one
filled in (Solid Apple).

Reset has a direct line to the 65C02 microprocessor’'s RESET signal
line (see Chapter 11): holding down Control while pressing Reset
causes the Apple Ilc to restart processing with an internal firmware
program that puts the machine in a known state (see Chapter 2).

You can restart the Apple IIc without turning the power off and back
on again, by holding down both Control and Open Apple while
pressing Reset. Restarting this way is less stressful to the Apple IIc’s
components than normal powerup.

Cursor movement keys

The Apple Ilc keyboard has four cursor movement keys with arrows
marked on them: left, right, down, and up. Three other keys can
also cause cursor movements: Return, Delete, and Tab. All seven of
these keys generate ASCII control characters (see Table 4-2). It is up
to the operating system or application program to interpret and act
on the control codes that these keys generate.

4 Chapter 1: Introduction

The Monitor Is a bullt-in program
that performs some of the basic
activities of the computer, such
as retrieving and storing key
codes as they come in, and
clearing or updating the display
screen.

Important

Modifier keys

Three special keys—Control, Shift, and Caps Lock—generate no
codes when pressed by themselves, but change the codes generated
by other keys they are pressed in combination with. A fourth key,
Escape, generates a nonprinting control code that causes the
Monitor to interpret certain subsequent keystrokes in a modified
way.

O Control, when pressed in combination with letter keys or certain
other keys, produces ASCII control characters. Most of the
control characters are invisible most of the time.

O Shift works the same on the Apple Ilc as on an ordinary
typewriter: it selects uppercase letters and the upper characters
on the keys.

o Caps Lock, in its down position, changes the letter keys to
uppercase, but does not affect other keys.

O Escape is not a modifier key in the same sense as Control and
Shift: you do not hold it down while pressing other keys. Rather,
you press Escape and it generates the ASCII escape (ESC) control
character (key code $1B—see Table 4-2). When the Escape key is
pressed, many programs—including the built-in Monitor
program—then interpret other specific keys as designating an
escape sequence.

The 80/40 switch

The 80/40 switch lets you specify whether a program should display
information in 40 or 80 columns per line. The switch indicates 40-
column display when in its down position, and 80-column display
when in its up position.

Not all programs check this switch. Even programs that do
check the swifch may do so only when the program first starts
up. If that is the case, changing the switch position while the
program is running will have no effect on the program’s display.
(See Table 4-1.)

The outside of the machine 5

The keyboard switch

You use the keyboard switch to select for use one of the two keyboard
layouts and screen character sets built into your Apple IIc. On USA
versions of the Apple Ilc, you select the standard Sholes keyboard
layout (Figure 1-4) with the switch in the up position, and the
Dvorak simplified layout (Figure 1-5) with-the switch in the down
position.

If you normally use the Dvorak keyboard layout, you can gently pry
up the keys from the keyboard and rearrange and replace them in
their Dvorak positions.

ﬂ?ﬁ/ﬂ] ﬂeybaafd /1//'5k use ﬁawef

! @ # 8 % ” & * { / — +
6st ! 2 3 4 5 6 7 § g 0 - = delete
{ y; I
1ab a W I3 R 7 Y U / 0 P [7] \
3 "
control A S 1 f G H J K L ; ! retum
< > ?
shift Z X A v B N M ; . / shift
ot | a 6 | <« > |V T

Figure 1-4
USA standard (or Sholes) keyboard, keyboard switch up

6 Chapter 1: Introduction

ﬂﬂ/llﬂ ﬂeybnaﬂ/ /d/'s/(use ﬁawe/

delete

contro/ retumn

a J K X b M w v Ve shift

shift

caps
lock

-

Figure 1-5
USA simplified (or Dvorak) keyboard. keyboard switch down (shaded characters may be in
different positions on some models)

Appendix G illustrates the On international models, the keycaps indicate the character
keyboard layouts for both positions for the local keyboard layout, which is selected when the
keyboard switch positions on \eaybuard sydich i d Wh e, kesibnd swdichy sel fy
several Internatienal versions of eyboard switch is down. en up, the keyboard switch selects the
the Apple lic. USA standard characters and key layout.

Disk-use and power lights

The red disk-use light glows whenever the built-in disk drive’s motor
is switched on.

The green power light glows when the Apple Ilc is tumed on and
normal power is present at the Apple IIc’s internal power supply.

Warning If the power light flashes on and off, tumn off the computer
immediately. Find out what caused the condition (such as a
brownout or short circuit) and fix the problem before turning
the computer on again. Above all, do not use the disk drive
when the power light is flashing; this may damage the
computer.

The outside of the machine 7

The speaker

The MI:OV' péogrqrgs é:on’gol the The Apple Ilc has a speaker in the bottom of the case, as shown in
IPRCREL I CEIRBE UTacE Figure 1-6. The speaker lets Apple Ilc programs produce a variety of
Sokan Qutpat™ i Chapierd. sounds. There is also a volum‘!:3 control on the left side of the
Apple Ilc case, and a jack for connecting headphones or an
external speaker. The jack accepts either one-charinel (monaural)
or two-channel (sterco) plugs, although speaker output is monaural
only. Inserting a plug disconnects the built-in speaker

Volume Control Knob
Speaker (Inside)

Audio Output Jack

Figure 1-6
Speaker, volume conirol, and audio output jack

The built-in disk drive

The Apple IIc’s built-in disk drive (Figure 1-7) is fully compatible
with the Apple Disk IIc that reads and writes 5.25-inch single-sided
35-track disks. ‘The drive door is on the right side of the Apple Tlc
case.

8 Chapter 1: Introduction

Disk Drive-Door

Figure 1-7
Built-in disk drive

The back panel

The back panel of the Apple IIc (Figure 1-8) has seven connectors
and a main power switch. From left to right they are

O a 9-pin D-type miniature connector for connecting hand
controllers, a mouse, a joystick, or some other device (see
Chapters 9 and 11)

O a 5-pin DIN connector for serial input and output (port 2;
normally for a modem) (see Chapters 7 and 11)

O a 15-pin D-type connector for video expansion (see Chapter 11)
0O an RCA-type jack for a video monitor (see Chapter 11)

O a 19-pin D-type connector for connecting one or more external
devices, such as intelligent disk drives (see Chapters 6 and 11)

O another 5-pin DIN connector for serial input and output (port 1;
normally for a printer or plotter) (see Chapters 8 and 11)

O a special 7-pin DIN connector for power input (see Chapter 11)
Before attaching cables to the Apple IIc back panel connectors, be
sure to move the handle until it clicks into position for propping up

the computer. The handle should be down whenever the computer
is running so that it can maintain proper cooling airflow.

The installation manuals for external devices contain instructions
for connecting them to the Apple Ilc.

The outside of the machine 9

Mouse and Hand Serial Port2 Video Expansion Handle Serial Port 1 Power

Control Connector Connector Connector Connector Switch
(See Figs. 11-37 (See Fig. 11-30) (See Fig. 11-25) (See Fig. 11-30)
and 11-42)
Video Output External External Power
Connector Disk Drive Connector
(See Fig. 11-24) Connector (See Fig. 11-1)

(See Fig. 11-26)

Figure 1-8
Back panel connectors

10 Chapter 1: Introduction

Voltage ——

Converter

Built-in ——&

Disk Drive

Main Logic Board
(See Figure 1-11)

Speaker AL

(underneath)

Complete specifications of the
Apple lic power supply and
volfage converter appear in
Chapter 11.

The inside of the machine

Figure 1-9 shows the main components inside the Apple Ilc
computer.

=na

- Figure 1-9

Inside the machine

The internal voltage converter

The built-in voltage converter operates from a 12 to 15 VDC input
source, such as provided by the external power supply furnished
with the Apple Ilc (Figure 1-10). The voltage converter provides
power for the logic board, built-in disk drive, one external disk
drive, and the I/O signals available at the back panel.

The inside of the machine 11

12

Internal Voltage Converter

Power Switch

Power Supply

Figure 1-10
Power supply and voltage converter

The voltage converter produces three different voltages: +5V,
+12V, and -12V. (Minus 5V, needed by some components in the
Apple Ilc, is derived from —12V on the main logic board.) It is a
high-efficiency switching converter that protects itself and the rest
of the Apple Ilc against short circuits and other electrical mishaps.

The main logic board

The main logic board, which is mounted flat in the bottom of the
Apple IIc’s case, has almost all the electronic parts of the computer
attached to it.

Chapter 1: Introduction

Figure 1-11 shows the main logic board and the most important
integrated circuits (ICs) in the Apple Ilc. They are the CPU (central
processing unit), RAM (random-access memory), ROM (read-
only memory) ICs for keyboard encoding, display character

Firmware is program code that is generation, and firmware, and the five custom ICs.
stored in ROM. It can be read
and executed, but not changed. The processor is a 65C02 microprocessor. The 65€02 is a CMOS

version of the 6502 used in other members of the Apple II family. It
is an 8-bit microprocessor with a 16-bit address bus. In the

Apple IIc, the 65C02 runs at 1 MHz and performs up to 500,000 8-bit
operations per second.

Character Generator ROM
WM
TMG
GLU

Auxiliary RAM

Main RAM

10U

MMU

Keyboard ROM

65C02 Microprocessor
Firmware ROM

@oppiaomputar

Figure 1-11
Original and UniDisk 3.5 lic main logic board

The inside of the machine 13

@rppic’omputar 6 1385

FELE e
zz: E

|
|
I

Figure 1-12
Memory expansion lic main logic board

The keyboard is scanned by an IC that generates matrix values for a
ROM. The value of the ASCII code supplied by the ROM is latched at
a specified memory location and is readable by programs.

The character generator ROM converts ASCII character values to a
form that the video display can use.

The Applesoft language The other ROM contains the Monitor, the Applesoft BASIC
interpreter Is described in the interpreter, enhanced video firmware, and other input/output
Applesoft Tutorial and the fi The fi hat thi . Y
Applesoft BASIC Programmer’s irmware. The firmware that this ROM contains is describe
Reference Manual, throughout this manual.

14 Chapter 1: Introduction

For more on memory addressing,

see Chapter 2.

See Chapters 3 through 9.

Chapter 11 discusses the

functions of these integrated

circuits in some detail.

Warning

Five of the large ICs on the main logic board are custom-made for
the Apple Ilc:

]

0

The memory management unit (MMU) contains most of the
logic that controls memory addressing in the Apple Ilc.

The input/output unit IOU) contains most of the logic that
controls the built-in input and output features of the Apple Ilc.

The timing generator (CIMG) generates all the system and I/O
clock and timing signals from a 14-MHz oscillator.

The general logic unit (GLU) performs the remaining required
logic functions.

The disk controller unit, also known as the Integrated Woz
Machine (IWM), is a single-chip version of the Apple Disk II
controller card. It controls the built-in and external disk drives
connected to the Apple Ilc.

The other circuit boards

The Apple Ilc contains other circuit boards that serve special
purposes: a motor-speed control and read/write logic board for the
disk drive, and a matrix board for detecting the position of keys
pressed. This manual does not discuss these circuit boards.

Adjustment of disk drive speed must be done by an authorized
Apple Service Center. Do not attempt to adjust the speed of
your built-in disk drive. If you do, you may damage it and you
will void your warranty.

The inside of the machine

15

Chapter 2

Memory
Organization
and Control

17

Each of the other registers holds
eight bits (one byte), so the
65C02 is called an 8-bit
processor.

Appendix A lists the instructions
the 65C02 can carry out, their
use, and their effects on the
registers. For further
information, consult the
pertinent books listed in the
Bibliography.

This chapter introduces the Apple Ilc’s processor, the 65C02, and
the memory ranges and locations in the Apple Ilc that have been set
aside for special purposes. The last section of this chapter describes
the reset routines, which restore the computer to a known state.

The 65C02 microprocessor

The 65C02 is a general-purpose 8-bit CMOS microprocessor similar
in operation to the 6502 used in other members of the Apple II
family of computers.

Figure 2-1 is a model of the 65C02 microprocessor’s register
organization. Registers are fast-acting built-in storage areas where
the processor performs and keeps track of its work. The 65C02 has
one 16-bit register and five 8-bit registers.

The 16-bit register is called the program counter (PC). It specifies
the address in memory that contains the instruction the processor is
currently carrying out. A 16-bit register can specify any one of
65,536 memory addresses, and so the 65C02 is said to have an
address space of 65,536 locations.

The five 8-bit registers in the 65C02 are the following:

O The accumulator, or A register. The accumulator is like a desk
top where the processor performs mathematical and logical
operations on information.

0O The index registers, X and Y. The processor uses these registers
to modify the address where information is to be found or
placed, and to pass information from one program to another.

0O A stack pointer, or S register. The processor uses a 256-byte
region of memory—page $01—as an area to stack up bytes for
future use. The stack is empty when the computer is turned on.
Several 65C02 instructions either push (store) the contents of a
register onto the stack, or pull (retrieve) a byte from the stack and
place it in a register. The S register keeps track of the address of
the byte in the stack that is currently ready for use.

O A processor status register, or P register. Seven of the eight bits of
this register are used as flags to record the outcome of processor
activities, and can be checked by later instructions to determine
what has happened and what the processor should do next.

18 Chapter 2: Memory Organization and Control

Address
Bus

4

\A15 -~

AQ |
A1<—1
A2
A3
A4~y
A5 |
A6 ey

A7

ABL

Internal ADL

A8~y
A9~
A10 —mf
A1~
A12
A13 iy

A14 —am

ABH

Figure 2-1
Internal model of the 65C02 microprocessor (copyright © 1982 by NCR Corporation;

used by permission)

-~-=f—— Register Section

Index
Register
(Y)

Control Section ————3=

RES IRQ NMI

Yy

Index
Register
(X)

Stack Pointer
Register
(S)

Interrupt
Logic

P Yy

[

ALU

Internal ADH

f;

Accumulator
(A)

PCL

Internal Data Bus

=

Instruction
Decode

ref———— RDY

————3= SYNC

PCH

Input Data

Latch (DL)

Legend:

s 8-Bit Line

l = 1-Bit Line

Data Bus

Buffer
)

A A

J

Processor -
Status
Register (P)

,——> ML

| i
iming
Control

Clock B,(In)
Generator
Oscillator

$,(Out)

L 3 $,(Out)

l

Instruction
Register

o000 0O00
NoasON0a2O

YYYYYYYY

The 65C02 microprocessor

Data Bus

19

Soft switches are described
more fully under “Bank-
Switched Memory”™ and "48K
Memory.”

There are two other ROMs in the
Apple lic: one to generate
characters corresponding to
keystrokes and another to
generate characters for display.
(See "The Keyboard” and “The
Video Display” in Chapter 9.)
However, these ROMs are not
addressable by the
microprocessor.

Overview of the address space

The Apple IIc’s 65C02 microprocessor can address 65,536 (64K)
memory locations. All the Apple IIc’'s RAM, ROM, and input and
output (I/0) devices are accessed using addresses in this 64K
address range. Some functions have the same addresses—but not at
the same time. The Apple IIc controls its shared addresses by using
soft switches. A soft switch is a memory location that controls
some aspect of the computer’s operation when it is accessed.

All input and output in the Apple Ilc is memory mapped—that is,
specific memory addresses (all in the $C0 page) are allocated to
each I/O device. In this chapter, the I/O memory spaces are
described simply as areas of memory. For details of the built-in I/O
features and firmware, refer to the descriptions in Chapters 3
through 9.

A contiguous block of 256 address locations in the 65C02’s address
range is called a page. A 1-byte address counter or 8-bit register can
specify 1 of 256 different locations. Thus, page $00 consists of
memory locations from 0 through 255 (hexadecimal $00 through
$FF); page $01 consists of locations 256 through 511 (hexadecimal
$0100 through $01FF); and so on. In this manual, all page numbers
are given in hexadecimal format.

*,

% Note: The first two digits of a four-digit hexadecimal address are
the page number. There are 256 pages of 256 bytes each in the
address space. This kind of page is different from the display
areas in the Apple IIc, which are sometimes referred to as

Page 1 and Page 2. In this manual, dollar signs ($) in addresses
signify that the addresses are in hexadecimal notation.

Memory map and memory switching

Figure 2-2 is a map of the Apple IIc’s memory address space and
what the major blocks of addresses are used for. As you can see in
the figure, addresses $C000 through $COFF contain hardware only,
and addresses $C100 through $CFFF contain ROM only. At all
other addresses there are two to five blocks of RAM or ROM
locations. At any given time, only one block of RAM or ROM
occupies each set of addresses. As described later in this chapter,
soft switches in the hardware page control that blocks the processor
is currently using.

20 Chapter 2: Memory Organization and Control

Hardware ROM Main RAM Auxiliary RAM
A e
$FFFF N
- =
S Monitor
=1 E

]

b=

3

54 Applesoft

-*; BASIC

@ Interpreter

é Bank 1 Bank 2 Bank 1 Bank 2
$D000 _| oA

1/0 Firmware
$C100 _|
]
$C000 7] X 7
Hardware
Page

=

=

Y

<
$0200 Pages $00 t
$0000 ~ and $01
Figure 2-2
Apple llc memory map

Memory map and memory switching 21

22

Main RAM addresses ($0000-$BFFF
and $D000-$FFFF)

The area labeled Main RAM in Figure 2-2 is so called because some
or all of it is present in all models of the Apple II series of
computers. The Apple Ilc has 64K bytes of main RAM.

Auxiliary RAM addresses ($0000-$BFFF
and $D000-$FFFF)

The Apple Ilc has 64K of auxiliary RAM built in. Some or all of that
range of auxiliary memory is present in an Apple Ile with one of the
80-column text cards installed (see Appendix F), but there is no
auxiliary RAM in the Apple II or II Plus.

A range of addresses in auxiliary RAM cannot be used
simultaneously with the same range of addresses in main RAM; your
programs must use the soft switches described in this chapter to
select either main or auxiliary memory for any given range of
addresses.

ROM addresses (5C100-$FFFF)

ROM addresses contain the built-in Apple Ilc firmware. Addresses

$C100 through $CFFF belong exclusively to ROM. Addresses $D000
through $FFFF are shared by ROM, main RAM, and auxiliary RAM;
the selection techniques are described later in this chapter.

The Apple IIc’s built-in ROM pages $C1 through CF (addresses
$C100 through $CFFF) contain I/O firmware. The Apple Ilc I/O
firmware is roughly divided among the built-in I/O devices as
follows:

O Serial port 1 (RS-232 device) firmware entry points are on
page $C1. Much, but not all, of the firmware for the port is in the
$C100 space.

0 Serial port 2 (communication device) firmware entry points are
on page $C2. Much, but not all, of the firmware for the port is in
the $C100 space.

Chapter 2: Memory Organization and Control

The operation of the Applesoft
interpreter firmware is
described in the Applesoft
BASIC Programmer’s Reference
Manual.

Chapters 3 through 9 describe
the Apple lic’s input and output
locations. Appendix B lists these
locations in address order, rather
than by function.

Bit numbering in a byte is
explained in Appendix H.

O Video output firmware entry points are on page $C3; the
enhanced video firmware and miscellaneous 1/O support
routines occupy pages $C8 through $CF. This is partly because
there are no slots 8 through F on the Apple IIc and because the
firmware takes up more than one page of firmware memory
space.

O Mouse firmware entry points are on page $C4 (page $C7 in the
memory expansion version).

O

Block device I/O firmware entry points are on page $C6.

KD
L <4

Note: This correspondence of ports and entry points does not
imply that all of each port’s firmware occupies a specific page.
The Apple Ilc I/O port firmware space is allocated in a way that
provides the best possible performance in the available space.

The ROM address range of pages $D0 through $FF contain the
Applesoft BASIC interpreter and the Monitor firmware, allocated as
follows:

O Pages $DO through $F7 (addresses $D000 through $F7FF)
contain the Applesoft interpreter firmware.

O Pages $F8 through $FF (addresses $F800 through $FFFF) contain
the Monitor, described in Chapter 10. You can use some of the
built-in Monitor routines to make input and output procedures in
your assembly-language programs easier to write. These routines
are described in Chapters 3 through 9.

Hardware addresses ($C000-$COFF)

The soft switches that the Apple IIc and your programs use to
control the Apple IIc’s built-in input and output functions are all
found in the $CO memory page (addresses $C000 through $COFF).
In the same range of memory are the switches for selecting blocks of
memory throughout the address space. This chapter describes the
address space (memory) switches.

The hardware functions of the switches in this page fall into five
basic categories:

O Data inpuis. The only data input is location $C000, where the
low-order seven bits (bits 6 through 0) represent the keyboard
key just pressed. (These data are guaranteed valid only when
bit 7 = 1.)

O Flag inputs. Most built-in input locations are single-bit flags in
the high-order (bit 7) position of their respective memory
addresses. Flags have only two values: on (greater than or equal
to 128 or $80) or off (less than 128 or $80).

Memory map and memory switching 23

24

The switch, hand controller (analog) and button inputs, and the
keyboard strobe are examples of flag inputs. The locations for
reading soft-switch states are also of this type.

O Strobe outputs. The clear keyboard strobe (Chapter 4) and

paddle timer strobe (Chapter 9) outputs are controlled by
memory locations. If your program reads the contents of one of
these locations, then the function associated with that location
will be activated.

O Toggle switches. The Apple Ilc has only one toggle switch: the

speaker switch. A toggle switch has only one address assigned to
it; each time you access it, it changes to its other state (on or off).

Reading the speaker toggle at location $C030 clicks the speaker
once. However, if you write to the speaker location, the
microprocessor activates the address bus twice during successive
clock cycles, causing the speaker toggle to end up in its original
state before the speaker cone can move. Therefore, you should
read, rather than write, to use this device.

The processor cannot read the on/off status of the speaker
switch.

O Soft switches. Soft switches are two-position switches turned on
by accessing one address and turned off by accessing another
address. Most of these switches have a third address associated
with them for reading the state of the switch.

There are eight soft switches that select different combinations of
bank-switched memory. Four of these eight switches require that
your program read them twice in succession to activate them.

Bank-switched memory

The memory areas described in this section are called bank-
switched memory (Figure 2-3) because so many banks (ranges) of
addresses—one bank of ROM and up to four banks of RAM—occupy
the same group of locations among the upper addresses of
memory. Pages $00 and $01, at the low end of memory, are
included here because the two sets of them—one in main RAM and
one in auxiliary RAM—are controlled by the same switches as the
high-address banks. The stack and zero page are switched this way
so that system software running in the bank-switched memory space
can maintain its own stack and zero page while it manipulates the
48K memory space.

Chapter 2: Memory Crganization and Control

7 SFFFF]

$F800 _|
$F7FF

Bank-Switched Memory
A

$0200

Pages $00

and $01 { $0000 ~

Figure 2-3

ROM

Monitor
Firmware

Applesoft
BASIC
Interpreter

Bank-switched memory map

Main RAM Auxiliary RAM

P >

' Y 4 N\
Bank 1 Bank 2 Bank 1 Bank 2
=" =1
I I I I
I I I I
I | I |
| I I I
I I I I
I I I I
I I | I
I I I I
| I I I
I I | I
I I | I
I I I |
[I I I
| | I |
Bank-switched memory 25

These memory banks are
controlled by the soft switches
described under “Using Bank
Selector Switches.”

Page allocations

Pages $00 and $01 are used by many of the 65C02 instructions. The
ROM and RAM addresses in bank-switched memory are usually
occupied by system software such as interpreters, compilers, and
operating systems.

Page $00 (one-byte addresses)

Several of the 65C02 microprocessor’s addressing modes—for
example, indirect addressing—require the use of addresses in page
%00, or zero page. However, the Monitor, the interpreters, and the
operating systems all make extensive use of page $00, too. One way
to avoid conflicts is to use only those page-$00 locations not
already used by these other programs. But there is another way.

As you can see from Table B-1 in Appendix B, page $00 is pretty
well used up, except for a few bytes here and there. Rather than
trying to squeeze your data into an unused corner, you may prefer a
safer alternative: turn off interrupts, save the contents of part of
page $00, use that part, then restore the previous contents to page
$00, restore interrupts to their previous state, and then pass control
to another program.

Page $01 (the 65C02 stack)

The 65C02 microprocessor uses page $01 as its stack—a place where
it can store subroutine return addresses, in last-in, first-out
sequence. Programs can also use the stack for temporary storage of
registers (via push and pull instructions). However, programs
should use the stack carefully.

Pages $D0-$FF (ROM and RAM)

The memory address space from locations $D000 through $FFFF is
used for both ROM and RAM. The 12K bytes of ROM in this address
space contain the Monitor and the Applesoft BASIC interpreter.

There are 16K bytes of main RAM in this 12K space, with two banks
occupying the 4K of addresses from $D000 through $DFFF. The
RAM is normally used for storing other languages such as Pascal, or
operating systems such as ProDOS®.

There are also 16K bytes of auxiliary RAM in this 12K space, again
with double occupancy in the address range $D000 through $DFFF.

26 Chapter 2: Memory Organization and Control

Warning

Important

Using bank selector switches

You switch banks of memory in the same way you switch other
functions in the Apple IIc: by using soft switches. These soft switches
do four things:

O select either RAM or ROM in this memory space

O allow or inhibit (write-protect) writing to the RAM when RAM is
selected

O select the first or second 4K-byte bank of RAM in the address
space $D000 through $DFFF

O select either main RAM or auxiliary RAM

Do not use soft switches without careful planning. Careless
switching between RAM and ROM is almost certain to have
catastrophic effects on your program.

Table 2-1 shows the addresses of the soft switches for selecting all
allowed combinations of reading and writing in this memory space,
and the addresses of the locations to read the switch settings.
Figures 2-4 through 2-10 illustrate how to select the combinations
and what the resulting status of each switch is.

To make sure you do not inadvertently remove write protection
from bank-switched RAM, the four write-enable addresses require
that you read them twice in succession (indicated by RR in

Table 2-1).

Because the AItZP switch shares the read keyboard address, you
must write (W in Table 2-1) to its locations to change the switch
setting.

To find out which way a switch is set, read the appropriate location
and then check bit 7 (shown as R7 in Table 2-1). If the bit is a 1, the
answer to the question given in the table is affirmative.

Note that there is no way to check whether write protection is on or
off.

You can’t read one RAM bank and write to the other; if you
select either RAM bank for reading. you get that one for writing
as well. However, you can read ROM and write RAM

(Figures 2-5 and 2-6), which makes It easy to transfer firmware
to bank-switched RAM if you want to use it with a program
there.

Bank-switched memory 27

28

Table 2-1

Bank selector switches

Name Action Hex Dec Function
R $C080 49280 Read RAM; no write;
use $D000 bank 2
RR $C081 49281 Read ROM; write RAM;
use$D000 bank 2
R $C082 49282 Read ROM; no write;
use $D000 bank 2
RR $C083 49283 Read and write RAM;
use $D000 bank 2
R $C088 49288 Read RAM:; no write;
use $D000 bank 1
RR $C089 49289 Read ROM; write RAM;
use$D000 bank 1
R $CO08A 49290 Read ROM; no write;
use $D000 bank 1
RR $CO8B 49291 Read and write RAM;
use $D000 bank 1
RdBnk2 R7 $C011 49169 Read whether $D000
bank 2 (1) or bank 1 (0)
RALCRAM R7 $C012 49170 Read RAM (1) or
ROM (0)
AltZP W $C008 49160 Off: Use main bank,
page $00 and page $01
AltZP W $C009 49161 On: Use auxiliary bank,
page $00 and page $01
RAAILZP R7 $C016 49174 Read whether

Chapter 2: Memory Organization and Control

auxiliary (1) or
main (0) bank

Select memory: Select memory:

W $C008 Turn off AtZP W $C009 Turn on AltZP
R $C082 Read ROM, use bank 2* R $C082 Read ROM, use bank 2*
or R $CO8A Read ROM, use bank 1* or R $CO08A Read ROM, use bank 1*

Main RAM Auxiliary RAM ROM Main RAM Auxiliary RAM

ol - —— L ! e

>
P
o
£
[}
=
°
[}
<
[5}
=
3
[
M Bank Bank Bank Bank ‘ Bank Bank Bank
s 1 2 1 2 | : 1 1
[o1]
Read resulting status: Read resulting status:
R7 $C016 Read AltZP; bit 7 = 0 R7 $C016 Read AltZP; bit 7 = 1
R7 $CO011 *ReadBank2;bit7 = 10r0 R7 $CO11 *Read Bank2; bit7 = 10or 0
R7 $cCo012 Read EnLCRAM; bit 7 = 0 R7 $C012 Read EnLCRAM; bit 7 = 0
Legend: % = Read memory D = Inactive memory R7 = Read, check bit 7 RR = Read twice in succession
w = Write memory R = Read W = Write
Figure 2-4
Read ROM

Bank-switched memory 29

Select memory:

Select memory:

w $C008 Turn off AltZP W $C009 Turn on AItZP
RR $C089 RR $C089
ROM Main RAM Auxiliary RAM ROM Main RAM Auxiliary RAM
[| [M 1 | 1 | 1 | 1
>~
o
o
£
()
b=
°
5]
£
[3)
=
3
n
~ Bank Bank Bank Bank Bank Bank Bank Bank
s 1 2 1 2 1 2 1 2
oL
Page $01 [
Page $00 [
Read resulting status: Read resulting status:
R7 $C016 Read AltZP; bit7 = 0 R7 $C016 Read AltZP;bit7 =1
R7 $CO11 Read Bank2; bit7 = 0 R7 $CO11 Read Bank2; bit 7 = 0
R7 $C012 Read EnLCRAM; bit 7 = 0 R7 $C012 Read EnLCRAM; bit 7 = 0
Legend: V//A = Read memory I:] = Inactive memory R7 = Read, check bit 7 RR = Read twice in succession
&S = Write memory R = Read W = Write

Figure 2-5

Read ROM, write RAM, and use first $SDO bank

30

Chapter 2: Memory Organization and Control

Select memory: Select memory:

W $Co008 Turn off AltZP W $C009 Turn on AltZP
RR $C081 RR $C081
ROM Main RAM Auxiliary RAM ROM Main RAM Auxiliary RAM
I 1 I 1 I I I 1 I 1 [1
-
—
[}
£
[7)
=
°
Q
<
[3}
=
3
(72
¥ Bank Bank Bank Bank Bank Bank Bank Bank
% 1 2 1 2 1 2 1 2
oL
Page $01 [
Page $00 [
Read resulting status: Read resulting status:

R7 $C016 Read AltZP;bit7 =0 R7 $C016 Read AltZP; bit 7 = 1

R7 $CO11 Read Bank2; bit 7 = 1 R7 $CO11 Read Bank2; bit 7 = 1

R7 $C012 Read EnLCRAM; bit7 = 0 R7 $C012 Read EnLCRAM; bit 7 = 0

Legend: % = Read memory I:] = Inactive memory R7 = Read, check bit 7 RR = Read twice in succession
@ = Write memory R = Read W = Write

Figure 2-6
Read ROM, write RAM, and use second $DO bank

Bank-switched memory . 31

Select memory:

Select memory:

W $C008 Turn off AIZP W $C009 Turn on AItZP
R $C088 R $C088
ROM Main RAM Auxiliary RAM ROM Main RAM Auxiliary RAM
[1 [[1 [1 [1 | 1
-
1
o
=
[}
=
°
(]
=
)
=
&
M Bank Bank Bank Bank Bank Bank Bank Bank
g 1 2 1 2 1 2 1 2
oL
Page $01 [
Page $00C
Read resulting status: Read resulting status:
R7 $C016 Read AltZP; bit7 = 0 R7 $CO016 Read AltZP; bit 7 = 1
R7 $CO11 Read Bank2; bit7 = 0 R7 $CO011 Read Bank2; bit 7 = 0
R7 $C012 Read EnLCRAM; bit 7 = 1 R7 $C012 Read EnLCRAM; bit7 = 1
Legend: V)] = Read memory D = Inactive memory R7 = Read, check bit 7 RR = Read twice in succession
N = Write memory R = Read W = Write
Figure 2-7

Read RAM and use first SDO bank

32

Chapter 2: Memory Organization and Control

Select memory:
W $C008 Turnoff AltZP

Select memory:
W $C009 Turn on AltZP

R $C080 R $C080
ROM Main RAM Auxiliary RAM ROM Main RAM Auxiliary RAM
| I— S R . 1 - I
o
£
(7]
=
he
2]
£
L
=
@
~ Bank Bank Bank
= 1 1 2
mL
Page$01[
Page$00

Read resulting status:

R7 $C016 Read AltZP; bit7 = 0
R7 $CO011 Read Bank2; bit 7 = 1
R7 $C012 Read EnLCRAM; bit 7 = 1

Read resulting status:
R7 $C016 Read AlItZP; bit 7 = 1
R7 $CO011 Read Bank2; bit 7 = 1
R7 $C012 Read EnLCRAM; bit 7 = 1

[

Legend: = Read memory [:I
= Write memory R = Read

Inactive memory

R7

= Read, check bit 7 RR = Read twice in succession

= Write

Figure 2-8
Read RAM and use second $D0 bank

Bank-switched memory 33

Select memory: Select memory:

W $C008 Turn off AltZP W §C009 Turn on AItZP
RR $cCo08B RR $C08B
ROM Main RAM Auxiliary RAM ROM Main RAM Auxiliary RAM
I 1 I 1 [1 [1 [1 | 1
ST
[=]
E
[F}
=
ie
15}
=
2
=
1)
™M Bank Bank Bank Bank Bank Bank Bank
S 2 1 2 1 2 1 2
oL
Page $01[C
Page $00 [
Read resulting status: Read resulting status:
R7 $C016 Read AIRZP; bit7 = 0 R7 $CO016 Read ARZP; bit 7 = 1
R7 $CO11 Read Bank2; bit7 = 0 R7 $CO11 Read Bank2; bit 7 = 0
R7 §C012 Read EnLCRAM; bit 7 = 1 R7 $C012 Read EnLCRAM,; bit 7 = 1
Legend: V-] = Read memory I___] = Inactive memory R7 = Read, check bit 7 RR = Read twice in succession
N = Write memory R = Read W = Write
Figure 2-9

Read and write RAM and use first SDO bank

34 Chapter 2: Memory Organization and Control

Select memory:

Select memory:

W $C008 Turn off AltZP W $C009 Turn on AltZP
RR $C083 RR $C083
ROM Main RAM Auxiliary RAM ROM Main RAM Auxiliary RAM
r 1 I 1 1 . A ! —— :
>0 ‘ '
o
(=
)
=
o
9]
ic
L2
=
n
~ Bank Bank Bank Bank Bank
E 1 2 1 2 1
oL
Page $01 [
Page $00 C

Read resulting status:
Read AItZP; bit7 = 0
Read Bank2; bit 7 = 1
Read EnLCRAM; bit 7 = 1

R7 $C016
R7 $CO11
R7 $C012

Read resulting status:

R7 $C016 Read AItZP; bit 7 = 1
R7 $CO11 Read Bank2; bit7 = 0
R7 $C012 Read EnLCRAM; bit 7 = 1

Legend: _ Read memory
&\‘ = Write memory

]

R

Inactive memory

Read

R7 = Read, check bit 7 RR = Read twice in succession

w

= Write

Figure 2-10

Read and write RAM and use second $DO bank

Bank-switched memory

35

Important

A buffer is any storage area set
aside for one program or device
to put information into and
another to take information out
of at a different time or rate.

Refer to Appendix D and to the
appropriate programmer and
reference manuals for operating
system use of page $03.

Global storage refers to an area
reserved for information that
programs use in common.
Vectors—the addresses of
special routines—are examples
of this kind of information. See
“The Reset Routine” about the
global storage and vectors
found on page $03.

48K memory

The 48K memory space (actually, 47.5K) extends from location
$0200 to location $BFFF (Figure 2-11) in both main and auxiliary
RAM. The amount of storage available in this address space
depends on what language or operating system you are using, and
what video display needs your program has.

Page allocations

Most of the Apple IIc’s 48K RAM is available for storing your
programs and data. However, a few RAM pages are reserved for the
use of the Monitor firmware, the Applesoft BASIC interpreter, and
whatever video display you may select.

The system does not prevent your using these pages, but if you
do use them, you must be careful not to disturb the system
data they contain.

Page $02 (the input buffer)

The GetLn input routine uses page $02 as its keyboard-input buffer.
The size of this buffer (256 bytes) sets the maximum size of input
strings read by Applesoft or the Monitor. If you know that you won't
be typing any long input strings (more than, say, 30 characters),
you can store temporary data at the upper end of page $02.

Page $03 (global storage and vectors)

The Monitor and operating systems use parts of page $03 for global
storage and vectors. Table 2-7, later in this chapter, shows the
part of page $03 the built-in firmware uses.

Pages $04-507 (text and low-resolution Page 1)

The most often used display buffer is the text and low-resolution
graphics Page 1 (TLP1 in Figure 2-11), which occupies main
memory pages $04 through $07. It is not usable for program and
data storage if you are using Monitor routines or Applesoft, or with
almost any other program that uses text or low-resolution display.

36 Chapter 2: Memory Organization and Control

Main RAM

Y I H
| |
Bank- I }
Switched | |
Memory | RN
I | |
| |
spooo| 1+ 1 I
$crFF| I '"'“‘I
ROM/HW |
$C000_
($BFFF
$6000_
s (" $5FFF
<
x4
X HRP2
[e0]
< High-
Resolution { $4000_
Pages $3FFF
HRP1
\ $2000 |
$1FFF
$OBFF |
Text and $0800 TLR2
Low-Resolution O7FF | —]
Pages :0400 TLP1 =
\ $0200 |
$01FF
Pages $00 and $01 !]
9 $ $oo00 | L __ B
Figure 2-11

48K memory map

Main Memory
Screen Holes

Auxiliary RAM
[&
] |
| |
| [
[|
| |
b=
| | |
| I |
p———t———
| |
I |

HRP2X
HRP1X
TLP2X
TLPIX =
1]
1 1
e e e e e -

Auxiliary Memory
Screen Holes

48K memory

37

See “Port Screen Hole RAM
Space” in Chapter 3.

Warning

For more on serial port 2, see
Chapter 8.

See Chapter 5.

Text and low-resolution Page 1X (TLP1X) is an identical display
page occupying auxiliary memory pages $04 through $07. This pair
of text and low-resolution graphics pages are used together to
produce 80-column text display.

There are 128 locations in pages $04 through $07 (64 in main RAM,
64 in auxiliary RAM) that are not displayed on the screen. These
locations are called screen holes.

The screen holes are reserved for use by the built-in firmware.

Pages $08-$0B (text and low-resolution Page 2)

The second text and low-resolution graphics display buffer, TLP2,
occupies main memory pages $08 through $0B. Most programs do
not use Page 2 for displays, but TLP2 is there for display use if
required.

Text and low-resolution Page 2X (TLP2X) is an identical display
buffer occupying pages $08 through $0B in auxiliary memory.

Note that Apple Ilc firmware does not provide a way to use the
second pair of text and low-resolution graphics pages for 80-
column text display.

Page $08 (communication port buffers)

Serial port 2 uses the first half of auxiliary memory page $08
(addresses $0800 through $087F) as a keyboard input buffer, and the
second half of the page (addresses $0880 through $O8FF) as a serial
input buffer. These buffers increase the data transfer rates possible
with the serial communication port. Appendix E explains how to
use these features. If your program does not use this page for
buffers, it can use it as part of TLP2X.

Pages $20-53F (high-resolution Page 1)

The primary high-resolution graphics display buffer, high-
resolution Page 1 (HRP1), occupies the 32 memory pages from $20
through $3F (locations $2000 through $3FFF). If your program
doesn’t use high-resolution graphics, this area is usable for
programs or data.

High-resolution Page 1X (HRP1X) is an identical display page
occupying auxiliary memory pages $20 through $3F.

The Apple Ilc can display double high-resolution graphics by
interleaving HRP1 and HRP1X.

38 Chapter 2: Memory Organization and Control

For more information about the
display buffers, see Chapter 5.

For details. refer to “Using
Display Memory Switches.”

Pages $40-$5F (high-resolution Page 2)

High-resolution Page 2 occupies main memory pages $40
through $5F (locations $4000 through $SFFF). Most programs use
this area for program or data storage, but it is also available as a
second high-resolution page.

High-resolution Page 2X (HRP2X) occupies auxiliary memory
pages $40 through $5F.

Apple Ilc firmware provides high-resolution graphics routines for
HRP1 and HRP2 only. Refer to the Applesoft BASIC Programmer’s
Reference Manual.

Using 48K memory switches

Two switches select main or auxiliary RAM in the 48K memory
space: RAMRd determines which to use for reading, and RAMWTrt
determines which to use for writing. When these switches are on,
they select auxiliary memory. When they are off, they select main
memory. (This discussion assumes that the 80Store switch, used to
control display memory, is off.)

Each switch has three locations assigned to it (Table 2-2): one to
turn it on, one to turn it off, and a third to read its state. Because the
memory locations for turning the switches on and off are shared
with keyboard reading functions, you must write to these addresses
to use them for memory switching. For each switch, you can read
bit 7 at its third location to check whether the switch is on or off. If
the switch is on, bit 7 is 1; if the switch is off, bit 7 is 0.

Table 2-2
48K memory switches

Name Action Hex Dec Function

RAMRd W $C002 49154 Off: Read main 48K RAM

RAMRd \4 $C003 49155 On: Read auxiliary 48K RAM

RARAMRd R7 $C013 49171 Read whether main (0) or
aux. (1)

RAMWrt W $C004 49156 Off: Write to main 48K RAM

RAMW rt W $C005 49157 On: Write to auxiliary 48K
RAM

RARAMWTrt R7 $C014 49172 Read whether main (0) or
aux. (1D

Note: 80Store must be off to switch all memory in this range, including
display memory (Table 2-6).

48K memory 39

Select memory: Select memory:

W $C000 Turn off 80Store W $C000 Turn off 80Store
W $C002 Read from main memory W $C003 Read from auxiliary memory
W $C005 Write to auxiliary memory W $C004 Write to main memory
Main RAM Auxiliary RAM Main RAM Auxiliary RAM
Il'__——'i | ple ks e I'"——-—"E
st . S N ; ‘ T -———-
b — L — L___n____4l - — L — }_.__1___4;,?
1
| / | X \\ /
< 7 LN 7
o HRP2 NHRP2X\ HRP2 HRP2X
¥ 2N N NN
? % N NN
/HRF;/ HRP 1X HRP1 HRP1X
Z 2] TLP2 :\\\\\ N} TLP2X %\\\\ | TLP2 EZ 74 TLP2X
s SN TLPY SSSSSYN TLPAX PSSSSSSSNIN TLP1 ™ TLP1X
| WpRp———— I —— | S ——— R —
Read resulting status: Read resulting status:
R7 $C018 Read 80Store; bit 7 = 0 R7 $C018 Read 80Store; bit 7 = 0
R7 $C013 Read RAMRd; bit 7 = 0 R7 $C013 Read RAMRd; bit 7 = 1
R7 $C014 Read RAMWrt; bit 7 = 1 R7 $C014 Read RAMWIt; bit 7 = 0
Legend: % = Read memory D = Inactive memory R7 = Read, check bit 7

I

Read W = Write

&\\‘ = Write memory R

Figure 2-12
48K RAM selection, split pairs

40 Chapter 2: Memory Organization and Control

Select memory:

Select memory:

W $C000 Turn off 80Store W $C000 Turn off 80Store
W $C002 Read from main memory W $C003 Read from auxiliary memory
W $C004 Write to main memory W $C005 Write to auxiliary memory
Main RAM Auxiliary RAM Main RAM Auxiliary RAM
I 1 r— 1 [1
r————n ;k:-—‘——f—- . r__.—__I
71 T ST
—_— — - —
)
=
< ,,
o HRP2 HRP2X
4
g |
HRP1 HRP1X HRP1
TLP2 | TLPOX | TLP2
L N TLP1 ™ TLP1X N TLP1 ™ TLPIX
O T —— T S —— .
Read resulting status: Read resulting status:
R7 $Co018 Read 80Store; bit7 = 0 R7 $C018 Read 80Store; bit7 = 0
R7 $C013 Read RAMRd; bit7 = 0 R7 $C013 Read RAMRd; bit 7 = 1
R7 $C014 Read RAMWrt; bit 7 = 0 R7 $C014 Read RAMWrt; bit 7 = 1
Legend: % = Read memory I:] = Inactive memory R7 = Read, check bit 7
& = Write memory R = Read W = Write
Figure 2-13

48K RAM selection, one side only

48K memory

41

42

Important

Warning

Transfers between main and auxiliary memory

If you want to write assembly-language programs that use auxiliary
memory but you don’t want to manage the auxiliary memory
yourself, you can use the built-in 48K RAM transfer routines. These
routines (listed in Table 2-3) make it possible to move between
main and auxiliary memory without having to manipulate the soft
switches described earlier in this chapter.

The routines described below make it easier to use auxiliary
memory, but they do not protect you from errors. You sfill have
to plan your use of auxiliary memory to avold catastrophic
effects on your program.

Table 2-3

48K RAM transfer routines

Name Action Hex Function

MoveAux JSR $C311 Move data blocks between main

and auxiliary 48K memory.

XFer JMP $C314 Transfer program control between
main and auxiliary 48K memory.

Transferring data

In your assembly-language programs, you can use the built-in
routine named MoveAux to copy blocks of data from main memory
to auxiliary memory or from auxiliary memory to main memory.
Before calling this routine, you must put the data addresses into
byte pairs in page $00 and set or clear the carry bit to select the
direction of the move.

Don’'t try to use MoveAux to copy data in bank-switched
memeory (page $00, page $01, or pages $DO through S$FF).
MoveAux uses page $00 all during the copy.

The pairs of bytes you use for passing addresses to this routine are
called A1, A2, and A4, and they are used for parameter passing by
several of the Apple II¢’s built-in routines. The addresses of these
byte pairs are shown in Table 2-4.

Put the addresses of the first and last bytes of the block of memory
you want to copy into Al and A2. Put the starting address of the
block of memory you want to copy the data to into A4.

Chapter 2: Memory Organization and Control

Table 2-4
Parameters for MoveAux routine

Name Location Parameter passed

Carry 1 = Move from main to auxiliary memory.
0 = Move from auxiliary te*fain memory.
AlL $3C Source starting address, low-order byte.
AlH $3D Source starting address, high-order byte.
A2L $3E Source ending address, low-order byte.
A2H $3F Source ending address, high-order byte.
A4L $42 Destination starting address, low-order byte.
A4H $43 Destination starting address, high-order byte.

XY, A These registers are preserved.

The MoveAux routine uses the carry bit to select the direction to
copy the data. To copy data from main memory to auxiliary
memory, set the carry bit (SEC instruction); to copy data from
auxiliary memory to main memory, clear the carry bit

(CLC instruction).

When you make the subroutine call to MoveAux, the subroutine
copies the block of data as specified by the A register and the carry
bit. When it is finished, the accumulator and the X and Y registers
are just as they were when you called it.

Transferring control

You can use the built-in routine named XFer to transfer control to
and from program segments in auxiliary memory. You must set up
three parameters before using XFer: the address of the routine you
are transferring to, the direction of the transfer, and which page $00
and stack you want to use (Table 2-5).

Table 2-5

Parameters for XFer routine

Name Location Parameter passed

Carry 1 = Transfer from main to auxiliary memory.
0 = Transfer from auxiliary to main memory.

Overflow 1 = Use page $00 and stack in auxiliary
memory.

0 = Use page $00 and stack in main memory.
$03ED Program starting address, low-order byte.
$03EE Program starting address, high-order byte.
X, Y, A These registers are preserved.

48K memory 43

44

Warning

Put the transfer address into the two bytes at locations $03ED

and $03EE, with the low-order byte first, as usual. The direction of
the transfer is controlled by the carry bit: sct the carry bit to transfer
to a program in auxiliary memory; clear the carry bit to transfer to a
program in main memory.

Use the overflow bit to select which page $00 and stack you want to
use: clear the overflow bit to use the main memory; set the overflow
bit (cause an overflow condition) to use the auxiliary memory.

After you have set up the parameters, pass control to the XFer
routine by a jump instruction, rather than a subroutine call.

It Is your responsibllity as the programmer to save the current
stack pointer before using XFer and fo restore it after regaining
control. Fallure to do so will cause program errors. Refer to
Appendix E for instructions on how to do this.

Using display memory switches

Selection of main or auxiliary RAM for the 48K memory space is
described earlier in this chapter. However, under many
circumstances your program may want to control reading and
writing to display pages separately. The switches discussed in this
section override the effects of RAMRd and RAMWTt for display
pages only.

Three switches are involved in the display page selection process.
Each of them has three locations assigned to it: one to turn it on,
one to turn it off, and a third to read its state (Table 2-6). One of the
switches, 80Store, shares its on and off addresses with a keyboard
reading function. As a result, your program must write to these
locations to turn the switch on and off.

Chapter 2: Memory Organization and Control

Table 2-6

Display memory switches

Name

Action

Hex

Dec

Function

80Store

80Store

Rd80Store

Page2

Page2

RdPage2

HiRes

HiRes

RdHiRes

I0OUDis

IOUDis

A%

w

R7

R7

$C000

$C001

$C018

$C054

$C055

$Co01C

$C056

$C057

$C01D

$CO7E

$CO7F

49152

49153

49176

49236

49237

49180

49238

49239

49181

49278

49279

Off: RAMRd and
RAMWirt determine RAM
locations.

On: Page?2 switches
between TLP1 and
TLP1X, and (if HiRes on)
between HRP1 and
HRP1X.

Read whether 80Store
on (1) or off (0).

Off: Select TLP1 and
HRP1.

On: If 80Store off, switch
to TLP2, and (if HiRes
on) to HRP2. If 80Store
on, switch to TLP1X, and
(if HiRes on) to HRP1X.

Read whether Page?2
on (1) or off (0).

Off: Display text and
low-resolution page.

On: Display high-
resolution pages; make
Page2 switch between
high-resolution pages.

Read whether HiRes
on (1) or off (0).

On: Disable IOU access
for addresses$COS8 to
$COSF; enable access to
DHiRes switch*.

Off: Enable IOU access
for addresses $CO58 to
$COSF,; disable access to
DHiRes switch*.

48K memory 45

46

Table 2-6 (continued)
Display memory switches

Name Action Hex Dec Function
RAIOUDis R7 $CO7E 49278 Read IOUDis switch
-(1=0ofDt.

DHiRes R/W $COSE 49246 On: (If IOUDis on) turn
on double high-
resolution.

DHiRes R/W $COSF 49247 Off: (If IOUDis on) turn
off double high-
resolution.

RdDHiRes R7 $CO7F 49279 Read DHiRes switch

* The firmware normally leaves IOUDis on.
+ Reading or writing any address in the range $§CO70-$COT7F also triggers
the paddle timer and resets VBIInt (see Chapter 9).

(1=o0on)i.

For each switch, you can read bit 7 at its third location to check
whether the switch is on or off. If the switch is on, bit 7 is 1; if the

switch is off, bit 7 is 0.

Here is how these switches work for reading and writing:

O If HiRes is off, then Page2 switches between text and low-
resolution graphics pages (TLP) only. If HiRes is on, then Page2
switches between TLP and high-resolution graphics pages (HRP).

O If 80Store is off, RAMRd and RAMWrt (Table 2-2) determine
whether main or auxiliary RAM locations are used. Page2 selects
pages for display (Chapter 5), but not for reading and writing.

O If 80Store is on, it overrides RAMRd and RAMWTrt with respect to
the display pages selected by HiRes and Page2 (Figures 2-14

and 2-15).

Chapter 2: Memory Organization and Control

High-Resolution
Graphics Pages

Text and
Low-Resolution
Graphics Pages

Select memory:

Read resulting status:
R7 $C018
R7 $C01D
R7 $Co01C

W $Co001 Turn on 80Store
R $C056 Turn off HiRes
R $C054 Turn off Page2
Main RAM Auxiliary RAM
L ¢ e———=
] I 1
S T
b — b — -———L——4
HRP2 HRP2X
L LU
[T HTTTT
HRP1 HRP1X
- TLP2 /TLP2X ”
IO TLP1 |||||rl||||\TLP1X
Ty—— | ea— -4

Read 80Store; bit 7 = 1
Read HiRes; bit7 = 0
Read Page2; bit7 = 0

Select memory:

W $C001 Turn on 80Store
R $CO056 Turn off HiRes
R $C055 Turnon Page2
Main RAM Auxiliary RAM
l'____'|l ‘r""""—"i‘
F—T T
= -
1]
|
HRP2 HRP2X
LU T
[T [T
HRP1 HRP 1X
|- TLP2 - TLP2X
ARRKRRS
tﬂm\ TLP1 ™ TLP1X
| I — P ——

Read resulting status:

R7 $C018
R7 $CO01D
R7 $C01C

Read 80Store; bit 7 = 1
Read HiRes; bit7 = 0
Read Page2; bit 7 = 1

Legend: %

Read memory

Write memory

‘:I = |nactive memory

_ Controlled by RAMRd and
[]]IIII] ~ RAMWTrt (See Figs. 2-12 and 2-13)

R = Read
W = Write
R7 = Read, check bit 7

‘igure 2-14

’age? selections, 80Store on and HiRes off

48K memory

47

Select memory:
W $Co001 Turn on 80Store
R $C057 Turnon HiRes
R $C054 Turn off Page2

High-Resolution
Graphics Pages

Text and
Low-Resolution
Graphics Pages

Main RAM Auxiliary RAM
I 1 N 1
| bt | . pbummkekie |
1 [} 1 I
mas | SRR
——t— ——t—

e e s s e s

Read resulting status:
R7 $C018 Read 80Store; bit 7 = 1
R7 $C01D Read HiRes; bit 7 = 1
R7 $C01C ReadPage2;bit7 =0

e e e e e ol

HRP2 HRP2X
[LLJLL i
HRP 1 HRP1X
| _11P2 - TLP2X
DS TLPT I TLP1X

Select memory:

W $C001 Turn on 80Store
R $C057 Turn on HiRes
R $C055 Turn on Page2
Main RAM Auxiliary RAM
I " I l _,I
F‘———_'} r;—-'—_ _.1.
T T
T F
HRP2 HRP2X
L I
HRP1 BHRP1X
| TLP2 |- TLP2X
TITITITIT \TLP1 INEEENNE |\TLP1X
_____ - . L el |

Read resulting status:

R7 $CO1
R7 $Co01
R7 $CO01

8 Read 80Store; bit 7 = 1

Legend: _

Read memory l__—l
Write memory I]I[m]

I

Inactive memory

Controlled by RAMRd and

RAMWrt (See Figs. 2-12 and 2-13)

D Read HiRes; bit7 = 1
C Read Page2; bit 7 = 1
R = Read
W = Write

R7 = Read, check bit 7

Figure 2-15
Page?2 selections.

48 Chapter 2: Memory Organization and Control

80Store on and HiRes on

Power On
(Cold Start)

Y

The reset routine

A procedure called the reset routine (Figure 2-16) puts the Apple Ilc
into a known state when it has just been turned on or when you hold
down Control while pressing Reset. The reset routine puts the
Apple IIc into its normal operating mode and restarts the program
indicated at locations $03F2 and $03F3 (Table 2-7).

When you initiate a reset, hardware in the Apple lic sets the
memory-controlling soft switches to normal: main ROM and RAM
are enabled, auxiliary RAM is disabled and the bank-switched
memory space is set up to read from ROM and write to RAM, using
the second bank at $D000.

- (CONTROL) - (RESET)
(Forced Cold Start)

A

(CONTROL) - (RESET

(Warm Start)

Write trash in one location
per memory page (including

power-up validity byte)

— Read/write main 48K RAM
— Read ROM, write main bank-
switched RAM, use bank 2

primary character set, normal
format, cursor at bottom left

— Enable access to DHiRes switch

— 1/O links: keyboard input (KSW),
display output (CSW)

— Ports: startup settings

— Clear keyboard strobe

— Sound the speaker

— Display 40-column text page $01.

Applesoft

Restart program with
variables intact

Reset

Power-up

Figure 2-16

Reset routine flowchart

Restart Applesoft
or Integer BASIC
Do what it
says to do

vector points

byte valid? 6

Y

Clear screen; display

Apple 1lc, load reset and in New Load IO I;u(f)lss
vector and power-up byte; operating system (GONTROL) - anq rest o
(170 hooks operating system;

initiate disk startup
firmware

not yet loaded) RE:ET run program

Yes

Display
Check Disk Drive;
turn off disk motor

Run Applesoft;
no operating system

The reset routine 49

Table 2-7
Page $03 vectors

Vector address Vector function

$03F0 (1008) Address of the subroutine that handles BRK
$03F1 (1009) requests (normally $59, .$FA)

$03F2 (1010) Reset vector (see text) $03F3 (1011)
$03F4 (1012) Power-up byte (see text)

$03F5 (1013) Jump instruction to the subroutine that handles

$03F6 (1014) Applesoft and commands (normally
$4C,$58,3FF)

$03F7 (1015)

$03F8 (1016) Jump instruction to the subroutine that handles
$03F9 (1017) user Control-Y commands
$03FA (1018)

$03FB (1019) Jump instruction to the subroutine that handles
$03FC (1020) nonmaskable interrupts (not used on Apple IIc)
$03FD (1021)

$03FE (1022) Interrupt vector (address of the subroutine that
$03FF (1023) handles interrupt requests) (Appendix E)

The reset routine sets the display-controlling soft switches to display
40-column text Page 1 using the primary character set, then sets the
display window equal to the full 40-column display, puts the cursor
at the bottom of the screen, and sets the text display format to
normal.

The reset routine also sets the keyboard and display as the standard
input and output devices (Chapter 3). It masks mouse interrupts and
sets mouse defaults (Table 9-1). Finally, it enables DHiRes switch
access (by turning on IOUDis), clears the keyboard strobe, and
sounds the speaker.

The Apple IIc has three types of reset: power-on reset, also called

cold-start reset, warm-start reset; and forced cold-start reset. The

procedure described above is the same for any type of reset. What
The reset vector validity check happens next depends on the reset vector. The reset routine checks
is described under “The Reset the reset vector to determine whether it is valid or not. If the reset
Vector. . ; .

was caused by turning the power on, the vector will not be valid, and

the reset routine will perform the cold-start procedure. If the vector

is valid, the routine will perform the warm-start procedure.

50 Chapter 2: Memory Organization and Control

Important

The cold-start procedure (power on)

If the reset vector is not valid, either the Apple IIc has just been
turned on or something has caused memory contents to be
changed. The reset routine clears the display and puts the string
Apple© IIc atthe top of the display. It loads the reset vector and
the validity-check byte, then initiates the startup routine that resides
in the disk controller firmware. The bootstrap routine then loads
whatever operating system resides on the disk in the built-in drive.
When the operating system has been loaded, it displays other
messages on the screen. If there is no disk in the disk drive, the drive
motor keeps spinning for a brief time. Then the firmware shuts it off
and displays the message Check Disk Drive at the bottom of the
screen.

If you press Control-Reset again before the startup procedure is
completed, the reset routine continues without using the disk, and
passes control to the Applesoft BASIC interpreter.

The warm-start procedure (Control-Reset)

Whenever you press Control-Reset when the Apple Ilc has already
completed a cold-start reset, the reset vector is still valid and it is
not necessary to reinitialize the entire system. The reset routine
simply uses the vector to transfer control to the program it points
to, which at power-up is the Applesoft interpreter.

If the vector does point to the Applesoft interpreter, your Applesoft
program and variables are still intact. If you are using DOS or
ProDOS, that operating system is the resident program and it
restarts the BASIC interpreter you were using when you pressed
Control-Reset.

A program residing only in bank-switched RAM cannot use the
reset vector to regain control after a reset, because upon reset
the hardware selects the ROM for reading in the bank-switched
memory space.

The reset routine 51

52

Important

UniDisk 3.5

Forced cold start (Open Apple-Control-Reset)

If a program has set the reset vector to point to its own warm-start
address, as described below, pressing Control-Reset causes transfer
of control to that program. If you want to stop such a program
without turning the power off and on, you can force a cold-start
reset by holding down Control and Open Apple, then pressing and
releasing Reset.

When you want to stop a program unconditionally—for
example, to start up the Apple lic with some other
program—you should use the forced cold-start reset, Open
Apple-Control-Reset, instead of turning the power off and on.

You must hold Open Apple down until the bullt-in drive starts
to spin. If you release Open Apple before the drive starts fo
spin, the Apple lic drops into BASIC instead of rebooting.

The forced cold-start reset works as follows. First, it destroys the
program or data in memory by writing two bytes of arbitrary data
into each page of main RAM. The two bytes that get written over in
page $03 are the ones that contain the reset vector. The warm-start
reset routine finds the error, and so performs a normal cold-start
reset.

Note that if you press both Open Apple and Solid Apple during
power-up or Control-Reset, built-in exercise code is executed. This
code is for production and has no end-user value.

The reset vector

The cold-start reset routine stores the starting address of the built-in
Applesoft interpreter, low-order byte first, in the reset vector
address at locations $03F2 and $03F3. It then stores a validity-check
byte, also called the power-up byte, at location $03F4. The validity-
check byte is computed by performing an exclusive-OR of the
second byte of the vector with the constant 165 (hexadecimal $A5).
Each time you reset the Apple Ilc, the reset routine uses this byte to
determine whether the reset vector is still valid.

Chapter 2: Memory Organization and Control

You can change the reset vector so that the reset routine will transfer
control to your program instead of to the Applesoft interpreter. For
this to work, you must also change the validity-check byte to the
exclusive-OR of the high-order byte of your new reset vector with
the constant 165 ($AS). If you fail to do this, then the next time you
reset the Apple Ilc, the reset routine will determine that the reset
vector is invalid and perform a cold-start reset, eventually
transferring control to the disk bootstrap routine or to Applesoft.

There is a subroutine that generates the validity-check byte for the
current reset vector. This subroutine, called SetPWRC, is at
location $FB6F. When your program finishes, it can return the
Apple IIc to normal operation by restoring the original reset vector
and again calling the subroutine to fix up the validity-check byte.

The reset routine 53

Chapter 3

Intfroduction
to Applellc 1/O

55

56

This chapter is an introduction to the built-in I/O capabilities of the
Apple IIc. It outlines

0 standard 1/O links and their functions
0 I/O firmware protocols

O dedicated memory storage locations
o direct I/O

The next six chapters discuss these capabilities in detail.

The standard 1/0 links

You can use some of the routines in the Apple IIc’s firmware for
your own programs. This can save you both program space and the
time and effort of writing all your own I/O routines.

To use the built-in firmware routines, your program must perform a
JSR to the routine’s entry address. The called routine then performs
an indirect jump through an address stored somewhere in RAM and
begins executing. When the routine has finished doing its work, it
returns (with an RTS) to your program at the first instruction
following the JSR used to call the routine. Memory locations used
for transferring control to other subroutines, such as the indirect
jump’s address used by the character I/O routine, are sometimes
called vectors. In this manual, the locations used for transferring
control to the Apple IIc’s /O subroutines are called the /O links.

In an Apple IIc running without an operating system, each 1/0 link
normally contains the address of the standard input or output
subroutine. An operating system will typically place addresses of its
own I/O routines in these link locations instead.

By calling the I/O subroutines that then jump to the routines
pointed to by the link addresses instead of calling the standard
subroutines directly, you ensure that your program will work
properly with other software, such as the operating system or a
device driver. The I/O links contain the addresses of KeyIn and
COut1 if the enhanced video firmware is off (when the display shows
a flashing checkerboard cursor), and of C3KeyIn and C3COutl if
that firmware is on (when the display shows an inverse solid cursor).

The standard I/O links are two pairs of locations in the Apple Ilc
RAM in the range $36 through $39 that are used for controlling
character input and output.

< Note: Not all operating systems use the standard I/O links. For
example, Apple Pascal does not use them.

Chapter 3: Introduction to Apple lic I/O

The Monitor is discussed in

Chapter 10.

Warning

The link at locations $36 and $37 is called CSW (character output
switch). Individually, location $36 is called CSWZ (CSW low) and
location $37 is called CSWH (CSW high). This link holds the
starting address of the subroutine the Apple Ilc is currently using for
single-character output. This address is normally $§FDFQ, the
address of routine COutl.

When you issue either a PR#n from BASIC or an n Control-P from
the Monitor, the Apple IIc changes this link address to the first
address in the ROM space allocated to port n. That address has the
form $Cn00. Subsequent calls for character output are thus
transferred to the firmware starting at that address. When it has
finished, the firmware executes an RTS (return from subroutine)
instruction to return control to the calling program. Sometimes a
PR#n will cause both input and output switches to be changed (as in
the 80-column firmware).

A similar link at locations $38 and $39 is called KSW (keyboard
input switch). Individually, location $38 is called KSWL (KSW low)
and location $39 is called KSWH (KSW high). This link holds the
starting address of the routine currently being used for single-
character input—normally $§FD1B, the starting address of the
standard input routine Keyln.

When you issue an IN#n command from BASIC or an n Control-K
from the Monitor, the Apple Ilc changes the link address in KSW to
$Cn00, the beginning of an I/O firmware subroutine. Subsequent
calls for character input are thus transferred to that firmware. The
firmware puts the input character, with its high bit set, into the
accumulator and executes an RTS (return from subroutine)
instruction to return control to the program that requested input.

When a disk operating system (DOS or ProDOS) is running, one or
both of the standard I/O links hold addresses of the disk operating
system’s input and output routines. The operating system has
internal locations that hold the addresses of the currently active
character input and output routines.

If a program that Is running with DOS or ProDOS changes the
standard link addresses, either directly or via IN# and PR#
commands, the operating system may be disconnected from
the system. To avoid this problem, when programming in BASIC
you should always Issue an empty PRINT statement (to be sure
that what follows begins a new line) before issuing the PRINT
statement containing Control-D and the IN# or PR# command.

The standard 1/O links 57

Refer to the section on input
and output link addresses in the
operating system manuals for
further details.

Getln also provides on-screen
editing features. See “Editing
With GetlLn.”

After changing either CSW or KSW, your assembly-language
programs running under DOS should call the subroutine at
location $03EA. This subroutine transfers the link address to a
location inside the operating system and then restores the
operating system link address in the standard link location.

Standard input features

The Apple Iic’s firmware includes two different subroutines for
reading from the keyboard, RdKey (read key) and GetLn (get line).

RdKey calls the current character input routine (that is, the one
whose address is stored at KSW). This is normally Keyln or
C3Keyln, which accepts one character from the keyboard. GetLn
accepts a sequence of characters terminated with a carriage return.
Thus GetLn allows line-oriented input using the current input
routine.

RdKey subroutine

A program can get a character from the keyboard by making a
subroutine call to RdKey at memory location $FDOC. RdKey passes
control via the input link KSW to the current input subroutine,
which is normally KeylIn.

RdKey displays a cursor at the current cursor position, which is
immediately to the right of whatever character you last sent to the
display (normally by using the COut routine, described below).

Keyln subroutine

Keyln is the standard input subroutine. When your program calls it,
Keyln displays a cursor, waits until someone presses a key, then
inserts the ASCII code of the key just pressed in the accumulator and
returns to the calling program.

If the enhanced video firmware is inactive, Keyln displays a cursor
by alternately storing a checkerboard block in the cursor location,
storing the original character, then storing the checkerboard again.
If the firmware is active, C3KeyIn places a block cursor on the
screen by inverting (swapping black for white) the character at the
cursor position.

58 Chapter 3: Introduction to Apple lic I/O

Keyln also generates a random number. While it is waiting for the
user to press a key, Keyln repeatedly increments the 16-bit number
in memory locations $4E and $4F. This number keeps increasing
from 0 to $FFFF (65535), then starts over again at 0. The value of
this number changes so rapidly that it is very difficult to predict what
it will be after a key is pressed. A program that reads from the
keyboard can use this value as a random number or as a seed for a
pseudo-random number routine.

Geiln subroutine

Programs often need strings of characters as input. While you could
call RdKey repeatedly to get several characters from the keyboard,
there is an easier way to do it. The routine that you want to use in this
case is named GetLn, and it starts at location $FD6A. Using repeated
calls to RdKey, GetLn accepts characters from the standard input
subroutine—usually KeyIn—and puts them into the input buffer
located in the memory page from $0200 to $02FF. GetLn also
provides you with some basic on-screen editing and control
features.

The first thing GetLn does when you call it is to display a prompt.
The prompt indicates to the user that the program is waiting for
input. Different programs use different prompt characters, helping
to remind the user which program is requesting the input. Table 3-1
shows the prompt characters used by different programs on the
Apple Ilc.

GetLn uses the character stored at memory location $33 as the
prompt character. In an assembly-language program, you can
change the prompt to any character you wish. In BASIC, changing
the prompt character has no effect because both BASIC interpreters
and the Monitor restore it each time they request input from the
user.

Table 3-1
Prompt characters

Prompt
character Program requesting input

User’s BASIC program (INPUT statement)
Applesoft BASIC (Appendix D)

Integer BASIC (Appendix D)

Firmware Monitor (Chapter 10)

% Note: Applesoft uses GetLn1 ($FD6F) when a program is
executing. GetLn1 does not print a prompt.

* V=W

Standard input features 59

60

Important

As the user types each character, GetLn sends the character to the
standard output routine—normally COutl—which displays it at the
current cursor position and then advances the cursor to indicate the
next character position. Control characters echoed by GetLn are
not executed.

GetLn stores the characters in its buffer, starting at memory
location $0200 and using the X register to index the buffer. GetLn
continues to accept and display characters until the user presses
Return (or Control-X to cancel the line). Then it clears the
remainder of the line the cursor is on, stores the carriage-return
code to mark the end of the buffer, places the cursor at the
beginning of the next line, and returns.

The maximum line-length that GetLn can handle is 255 characters.
If the user types more than this, GetLn sends a backslash (\) and a
carriage return to the display, cancels the line it has accepted so far,
and starts over. To warn the user that the line is getting full, Getln
sounds a bell (tone) at every keypress after the 248th.

< Note: The Applesoft interpreter accepts only 239 characters.

Escape codes with Getiln

GetLn has many special functions that you invoke by typing escape
codes on the keyboard. An escape code is sent by pressing Escape,
releasing it, and then pressing some other key, as shown in

Table 3-2.

Be sure to release Escape right away. If you hold it too long.
the auto-repeat mechanism begins, which may cancel the
Escape.

Chapter 3: Infroduction to Apple lic I/O

Table 3-2

Escape codes with Getln

Escape code Function
Escape Clears the window and homes the cursor
(places it in the upper-left corner of
the screen); exits from escape mode
Escape A Moves the cursor right one line; exits
or Escape a from escape mode
Escape B Moves the cursor left one line; exits
or Escape b from escape mode
Escape C Moves the cursor down one line; exits
or Escape c from escape mode
Escape D Moves the cursor up one line; exits from
or Escape d escape mode
Escape E Clears to the end of the line; exits from
or Escape e escape mode
Escape F Clears to the bottom of the window; exits
or Escape f from escape mode
Escape I Moves the cursor up one line; remains in
or Escape i escape mode
or Escape Up Arrow
Escape J Moves the cursor left one space; remains
or Escape j in escape mode*
or Escape Left Arrow
Escape K Moves the cursor right one space;
or Escape k remains in escape mode*
or Escape Right Arrow
Escape M Moves the cursor down one line;
or Escape m remains in escape mode*

or Escape Down Arrow

Escape 4

Switches to 40-column mode; sets links to
C3KeyIn and C3COutl; restores normal
window size (Table 3-5); exits from
escape modet

Standard input features 61

62

Table 3-2 (continued)
Escape codes with Getln

Escape code Function

Escape 8 Switches to 80-column mode; sets links
to C3KeyIn and C3COut]l; restores
normal window size (Table 3-5); exits
from escape modet

Escape Control-D Disables control characters; only
carriage return, linefeed, bell, and
backspace have an effect when printed

Escape Control-E Reactivates control characters

Escape Control-Q Deactivates the enhanced video
firmware; sets links to Keyln and COutl;
restores normal window size (Table 3-5);
exits from escape modet

* Cursor-control key: see text.
t This code functions only when the enhanced video firmware is active.

In escape mode, you can keep using the arrow keys and the cursor
movement keys I, J, K, and M without pressing Escape again. This
enables you to perform repeated cursor moves by holding down the
appropriate key.

When GetLn is in escape mode, it displays an inverse plus sign as
the cursor. You leave escape mode by typing any key other than a
cursor movement key.

< Note: The escape codes with the arrow keys are the standard
cursor movement keys on the Apple Ilc. The escape codes with
I,], K, and M are the standard cursor movement keys on the
Apple II and II Plus, and are present on the Apple IIc for
compatibility.

Escape sequences can be used in the middle of an input line to
change the appearance of the screen. They have no effect on the
input line.

Chapter 3: Infroduction to Apple lic I/O

For an introduction to editing
with these features, refer to the
Applesoft Tutorial,

See “Escape Codes With
Getln.”

Editing with GetlLn

Subroutine GetLn provides the standard on-screen editing features
used by the BASIC interpreters and the Monitor. Any program that
uses GetLn for reading the keyboard has these features.

Cancel line

Any time you are typing a line, pressing Control-X causes GetLn to
cancel the line. GetLn displays a backslash (\) and issues a carriage
return, then displays the prompt and waits for you to type a new
line. Getln takes the same action when you type more than

255 characters, as described above.

Backspace

When you press Left Arrow (or Control-H), GetLn moves its buffer
pointer back one space, effectively deleting the last character in its
buffer. It also sends a backspace character to routine COut, which
moves the cursor back one space. If you type another character
now, it replaces the character you backspaced over, both on the
display and in the line buffer.

Each time you press Left Arrow, it moves the cursor left and deletes
another character, until you are back at the beginning of the line. If
you then press Left Arrow one more time, you have effectively
canceled the line, and GeltLn issues a carriage return and displays
the prompt. The cursor moves even if the deleted character is an
invisible control character. Thus it is possible for screen alignment
and buffer alignment to be different.

Retype

Right Arrow (or Control-U) has a function that is complementary to
the backspace function. When you press Right Arrow, GetLn picks
up the character under the cursor just as if it had been typed on the
keyboard. You can use this procedure to pick up characters that you
just deleted by backspacing across them. You can use the backspace
and retype functions with the cursor-motion functions to edit data
on the display.

Standard input features 63

64

Warning

Standard output features

The standard output routine is named COut (character output). COut
normally calls COutl or C3COutl, which sends one character to the
display, advances the cursor position, and scrolls the display when

necessary. COutl and C3COut1 restrict their use of the display to an
active area called the text window, described later in this chapter.

COut subroutine

Your program makes a subroutine call to COut at memory location
$FDED with a character in the accumulator. COut then passes
control via the output link CSW to the current output subroutine,
normally COutl or C3COut1, which takes the character in the
accumulator and writes it out. If the accumulator contains an
uppercase or lowercase letter, a number, or a special character,
COutl or C3COutl displays it; if the accumulator contains a control
character, COutl or C3COutl either performs one of the special
functions described below or ignores the character.

Each time you send a character to COut1 or C3COutl, it displays the
character at the current cursor position, replacing whatever was
there, and then advances the cursor position one space to the right.
If the cursor position is already at the right edge of the window,
COut1 or C3COutl moves it to the leftmost position on the next line
down. If this would move the cursor position past the end of the last
line in the window, COutl or C3COut1 scrolls the display up one
line and sets the cursor position at the left end of the new bottom
line.

The cursor position is controlled by the values in memory
locations $24 and $25. These locations are named CH, for cursor
horizontal, and CV, for cursor vertical. COutl and C3COutl do not
display a cursor, but the input routines described above do, and
they use this cursor position. However, changing CV directly does
not change the cursor’s vertical position until the next carriage
return or reaching the end of the current line causes a call to VTab
(for setting the base address within windows). If some other routine
displays a cursor, it will not necessarily put it in the cursor position
used by COutl or C3COutl.

When the video fimware Is set for 80-column display. the value
of CH Is kept at 0 and the true horizontal position is stored

at $057B. When the 80-column video firmware Is active, use
$057B Instead of CH.

Chapter 3: Introduction to Apple lic 1/O

Control characters with COutl

Escape codes are described COutl does not display control characters. Instead, the control
‘é”gfr’\ [Escape Codes With characters listed in Table 3-3 are used to initiate some action by the

firmware. Other control characters are ignored. Most of the
functions listed here can also be invoked from the keyboard, either
by typing the control character listed or by using the appropriate
escape code. The stop-list function, described separately, can only
be invoked from the keyboard.

Table 3-3

Control characters with COutl

Control ASCIl Applelic

character name hame Action taken by COutl

Control-G BEL Bell Produces a 1000-Hz tone for
0.1 second

Control-H BS Backspace Moves cursor position one
space to the left; from left
edge of window, moves to
right end of line above

Control-J LF Line feed Moves cursor position down
to next line in window;
scrolls if needed

Control-M CR Return Moves cursor position to left

end of next line in window;
scrolls if needed

Control characters with C3COutl

When the 80-column firmware is active, COut calls C3COut1 instead
of COut1 for character output. C3COutl does not display control
characters, but you can use some control characters to control
some of what the routine does. All other control characters are
ignored.

The control characters listed in Table 3-4 are used to initiate some
action by the firmware. Except for the stop-list function (Control-S)
you can send control characters to C3COutl1 either from a program
or from the Apple IIc's keyboard. The stop-list function can only be
invoked from the keyboard. Most of the functions listed here can
also be performed by using an equivalent escape code.

Standard output features 65

Table 3-4

Control characters with C3CQut1

Control ASCII Apple lic

character name name Action taken by C3COutl

Control-G BEL Bell Produces a 1000-Hz tone
for 0.1 second

Control-H BS Backspace Moves cursor position one
space to the left; from left
edge of window, moves to
right end of line above

Control-] LF Line feed Moves cursor position
down to next line in
window; scrolls if needed

Control-K VT Clear EOS Clears from cursor position
to the end of the screen*

Control-L FF Home and Moves cursor position to

clear upper-left corner of window
and clears window*

Control-M CR Return Moves cursor position to
left end of next line in
window; scrolls if needed

Control-N SO Normal Sets display format
normal®*

Control-O SI Inverse Sets display format
inverse*

Control-Q DC1 40-column Sets display to 40-column®

Control-R DC2 80-column Sets display to 80-column*

Control-S DC3 Stop-list Stops listing characters on
the display until another
key is pressedt

Control-U NAK Quit Turns off enhanced video
firmware*

Control-V SYN Scroll Scrolls the display down
one line, leaving the cursor
in the current position*

Control-W ETB Scroll-up Scrolls the display up one

Chapter 3: Intfroduction to Apple lic I/O

line, leaving the cursor in
the current position*

Table 3-4 (continued)
Control characters with C3COut1

Control ASCII Apple lic
character name name Action taken by C3COutl
Control-X CAN Disable Disables MouseText

MouseText character display; uses
inverse uppercase

Control-Y EM Home Moves cursor position to
upper-left corner of window
(but doesn’t clean)*

Control-Z SUB Clear line Clears the line the cursor
position is on*
Control-[ESC Enable Maps inverse uppercase
MouseText characters to MouseText
characters
Control-\ FS Fwd. space = Moves cursor position one

space to the right; from
right edge of window,
moves it to left end of line
below*

Control-] GS Clear EOL Clears from the current
cursor position to the end
of the line (that is, to the
right edge of the window)*

Control-_ UsS Up Moves cursor up a line, no
scroll

* Doesn't work from the keyboard.
t Only works from the keyboard.

The stop-list feature

You can stop the Apple Ilc from updating its display Gf it is using
either COutl or C3COutl) by pressing Control-S. Whenever COutl
or C3COutl gets a carriage return from the program, it checks the
keyboard for a Control-S. If a Control-S has been pressed, COutl or
C3COut1 stops and waits for another key to be pressed before
resuming. The character code of the key that is pressed is ignored
unless it is Control-C, which is passed to the program. This feature
lets you exit BASIC programs from stop-list mode.

Standard output features 67

The text window

The active portion of the display is called the text window. After
you start up the computer or perform a reset, the entire display is
the text window. COutl or C3COutl puts characters only into the
window; when it reaches the end of the last line in the window, it

scrolls only the contents of the window.

You can restrict video activity to any rectangular portion of the
display by changing the current text window. Your programs can
thus control the placement of text in the display and protect other
portions of the screen from being written over by new text. To do
this, store the appropriate values into four locations in memory to
set the top, bottom, left margin, and width of the text window. The
following memory locations control the text window:

O ‘The left margin is stored in memory location $20. This number
is normally 0, the number of the leftmost column in the display.
In a 40-column display, the maximum value for this number is 39
(hexadecimal $27); in an 80-column display, the maximum
value is 79 (hexadecimal $4F).

0O ‘The width of the text window is stored in memory location $21.
For a 40-column display, this value is normally 40
(hexadecimal $28); for an 80-column display, it is normally 80
(hexadecimal $50).

O The position of the top line of the text window is stored in
memory location $22. This is normally 0, the topmost line in
the display. Its maximum value is 23 (hexadecimal $17).

D The position of the bottom line of the screen plus 1 is stored in
memory location $23. It is normally 24 (hexadecimal $18) for
the bottom line of the display. Its minimum value is 1.

Important Pascal does not use this method of supporting window widths.

Warning Be careful not to let the sum of the window width and the
leftmost position in the window exceed the width of the display
you are using (40 or 80 columns). If this happens, COut1 or
C3COutl may put characters into memory locations outside
the display page. possibly destroying programs or data.

Table 3-5 summarizes the memory locations and the possible
values for the text window parameters.

Chapter 3: Introduction to Apple lic I/O

Table 3-5
Text window

memory locations

Normal values Maximum values
Minimum -
Location value 40-col. 80-col. 40-col. 80-col.

Window

parameter Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex
Left edge 32 $20 00 $0 00 $00 00 300 39 $27 79 $4F
Width 33 $21 00 $00 40 $28 80 $50 40 $28 80 $50
Top edge 34 $22 00 $00 00 $00 00 $00 23 $17 23§17
Bottom edge 35 $23 01 $01 24 $18 24 $18 24 $18 24 $18

‘hese display character sets are
lescribed in Chapter 5.

Normal, inverse, and flashing text

The way that the Apple IIc displays characters is affected by two
things: the value that is stored in the inverse flag (zero page
location $32), and whether the enhanced video firmware is off or
on. The inverse flag’s influence is discussed in the next two
subsections.

If the enhanced video firmware is off, the Apple Ilc displays what is
called the primary character set; if the video firmware is on, the
Apple Ilc displays what is called the alternate character set.

The primary character set includes normal (light on dark), inverse
(dark on light), and flashing (alternating normal and inverse)
characters. Lowercase inverse characters are not included in the
primary character set.

The alternate character set includes normal and inverse characters
(including lowercase inverse), and a set of graphic characters called
MouseText. Flashing characters are not included in the alternate
character set.

If you want your program to display a character, it should first load
the character to be displayed in the accumulator, and then call the
character-output subroutine COut. For example, to display the
character corresponding to $C8, you can use something like this:

LDA #5C8
JSR COut

Standard output features 69

For a brief explanation of logical
functions, refer to Appendix H.

Important

MouseText is described more
fully in Chapter 5.

See “MouseText” in Chapter 5.

Primary character set display

The primary character set is displayed by COutl, which operates
only when the enhanced video firmware is off. The primary
character set includes text in normal, inverse, or flashing format,
but not inverse or flashing lowercase text.

If the value of the character sent to COutl is greater than or equal
to $A0, that value is logically ANDed with the value of the inverse
flag (at location $32), then displayed. (If you're curious about
which ASCII character is being sent, subtract $80 from the value
being sent to COutl.) You can use the following inverse flag values:

O $FF (decimal 255) produces the normal character format.
O $3F (decimal 63) produces the inverse character format.
0 $7F (decimal 127) produces the flashing character format.

To avold unusual character display results, use only the three
values $3F, $7F, and $FF,

COutl interprets character values from $80 through $9F as control
characters and tries to execute them.

Character values from $00 through $7F are all interpreted as
display characters, not control characters.

Alternate character set display

The alternate character set includes normal and inverse format
characters and the MouseText graphic characters. You should use
C3COutl, the standard output link when the enhanced video
firmware is active, to display the alternate character set. Here are
the rules for using the alternate character set:

0 Control characters are not displayed. Characters sent to
C3COutl are interpreted as control characters if they are in the
range $00 through $1F or $80 through $9F.

O Characters in the range $20 through $7F and $A0 through $FF
are displayed.

O If inverse flag (location $32) bit 7 is 1, the character is normal.

O If inverse flag bit 7 is 0, the character is inverse.

O If MouseText is off, characters $40 through $5F are remapped to
the range $00 through $1F and are displayed as uppercase
inverse characters.

O If MouseText is on, character values $40 through $5F are left
unchanged, and the characters are displayed as MouseText.

70 Chapter 3: Introduction to Apple lic I/O

Memory expansion

Important

Port 1/O

The Apple Ilc is 2 member of the Apple II family of computers;
however, unlike the Apple II, II Plus, and Ile, the Apple IIc does not
have peripheral connector slots. In place of these, it has
ports—the equivalent of firmware interface cards installed in slots.

Standard link entry points

To maintain compatibility with existing software and its protocols,
each port’s I/O firmware has the same standard entry

points ($Cn00) as its equivalent slot in another Apple II would
have. Table 3-6 shows these equivalents, as well as listing the
chapter where each port is described.

The section on the standard I/O links describes how and when these
entry addresses are placed in CSW and KSW. For example, issuing
PR#n or IN#n changes the output and input links, respectively, so
that subsequent output or input is handled by the firmware starting
at address $Cn00, and thus goes to or comes from the selected
device.

The 4memory expansion version of the Apple lic places the
mouse at $C700 and the memory expansion card at $C400.

Table 3-6
Port characteristics
Entry.
Port point Port connector Use Chapter
1 $C100 Serial port 1 Printers 7
2 $C200 Serial port 2 Communication 8
3 $C300 Video Enhanced video 5
connectors firmware
4 $C400 Mouse Mouse 9
5 $C500 Intelligent disk
port devices
6 $C600 Disk drives Built-in and 6
external drives
7 $C700 No device Reserved 6

The addresses shown In Table 3-6 are not entry points in the
sense that you can send characters to be printed by sending
them to JSR $Cn00.

Port 1/O 71

Firmware protocol

The Apple Ilc supports a standard firmware protocol that, in
addition to the standard link address, provides a table of device
identification and entry points to standard and optional firmware
subroutines. The protocol is equivalent to the Pascal 1.1 firmware
protocol in use on other Apple II's, and is outlined in Table 3-7.

Table 3-7
Firmware protocol locations

Address Value Description

$Cn05 $38 Pascal firmware card/port identifier.
$Cn07 $18 Pascal firmware card/port identifier.
$Cn0B $01 Generic signature byte of a firmware card/port.

$Cn0OC $ci Device signature byte: i is an identifier (not
necessarily unique).

¢ = device class (not all used on the Apple IIc):

$00 reserved
$01 printer
$02 hand control or other X-Y device
$03 serial or parallel 1/O card/port
$04 modem ‘
$05 sound or speech device
$06 clock
$07 mass-storage device
$08 80-column card/port
$09 network or bus interface
$0A special purpose (none of the above)
$0B-OF reserved
$Cn0OD i $Cnii is the initialization entry address (PInit).
$CnOE rr $Cnrr is the read routine entry address (PRead)

(returns character read in A register).

$CnOF ww $Cnww is the write routine entry address
(PWrite) (enters with character to write in
A register).

$Cnl10 ss $Cnss is the status routine entry address
(PStatus) (enters with request code in A register:
0 to ask “Are you ready to accept output?” or 1 to
ask “Do you have input ready?”).

$Cnl1 $00 If additional address bytes follow; nonzero if not.

72 Chapter 3: Infroduction to Apple lic I/O

For more information, refer to
the hardware page memory
map in Appendix B.

Table 3-8
Port 1/O locations

Port Locations

1 $C090-$CO9F
2 $COAO0-$COAF
6 $COE0-$COEF

-Each table begins with identification bytes ($Cn05 through $Cn0C).

Then, starting with address $Cn0D, each byte in the table
represents the low-order byte of the entry-point address of a
firmware routine. The high-order byte of each address is always
$Cn, where n is the port number. Your program uses these byte
values to construct its own jump table for subroutine calls to the
ports. ’

All port routines require, on entry, that the X register contain $Cn
and that the Y register contain $n0.

All routines, on exit, return an error code in the X register (0 means
no error occurred; 3 means the request was invalid). The carry bit
in the program status register usually contains a reply to a request
code (0 means no; 1 means yes).

All the Apple IIc ports except the disk port conform to this
protocol. The disk port is described in Chapter 6.

Port 1/O space

By a convention used in other Apple II series machines, each port
or slot has exclusive use of 16 memory locations set aside for data
input and output. The addresses of these locations are of the form
$C080 + #n0, where n is the port or slot number. Table 3-8 lists the
port I/0 space used in the Apple Ilc.

Port ROM space

In the Apple II and Ile, one 256-byte page of memory space is
allocated to each slot. This space is used for read-only memory
(ROM or PROM on the interface card) with driver programs that
control the operation of input/output devices, as outlined in

Table 3-7. On the Apple Ilc, this space is dedicated to port
firmware. However, I/O ROM space in the Apple IIc is used as
efficiently as possible, and there is not a strict correspondence
between firmware for port n and the $Cn00 space, except as regards
entry points.

Port 1/O 73

Expansion ROM space

The 2K-byte memory space from $C800 to $CFFF in the

Apple Ilc—called expansion ROM space on the Apple 11, II Plus,
and ITe—contains the enhanced video firmware and port and
memory transfer subroutines. The Apple Ilc, unlike the II, II Plus,
or Ile, always has this space switched in.

Port screen hole RAM space

There are 128 bytes of memory (64 in main memory, 64 in auxiliary
memory) allocated to the ports, eight bytes per port, as shown in
Table 3-9. These bytes are reserved for use by the system, except as
described in Chapters 4 through 9.

Table 3-9

Port screen hole memory locations

Base Ports

address 1 2 3 4 5 é 7

$0478 $0479 $047A $047B $047C $047D $047E $047F
$04F8 $04F9 $04FA $04FB $04FC $04FD $04FE $04FF
$0578 $0579 $057A $057B $057C $057D $0S7E $0S7F
$0SF8 $05F9 $OSFA $0SFB $0SFC $0SFD $O0SFE $0SFF
$0678 $0679 $067A $067B $067C $067D $067E $067F
$06F8 $06F9 $06FA $06FB $06FC $06FD $O06FE $O06FF
$0778 $0779 $077A $077B $077C $077D $077E $077F
$07F8 $07F9 $07FA $07FB $07FC $07FD $07FE $07FF

These addresses are unused bytes in the RAM reserved for text and
low-resolution graphics displays, and hence they are sometimes
called screen holes. These particular locations are not displayed on
the screen and their contents are not changed by the built-in output
routines. In other words, they are used by the output routines but
they are not part of the video display.

Warning All the screen holes In auxiliary memory, and many of them In
main memory, are reserved for special use by Apple lic
firmware—for example, to store initialization information. Do not
use any locations marked reserved In this manual.

The way that port firmware uses these RAM locations and their
addresses is covered in Chapters 4 through 10.

74 Chapter 3: Infroduction to Apple lic I/O

Appendix E describes interrupt
handling on the Apple lic.

Interrupts

Interrupts are a way to more efficiently use the hardware in a
computer. Interrupt support built into the Apple IIc’s firmware is
described briefly below.

When the IRQ line on the 65C02 microprocessor is activated, the
65C02 transfers program control through the vector in locations
$FFFE through $FFFF of ROM or whichever bank of RAM is switched
in (Chapter 2). If ROM is switched in, this vector is the address of
the Monitor’s interrupt handler, which determines whether the
request is due to an interrupt that should be handled internally. If
so, the Monitor handles it and then returns control to the
interrupted program.

If the interrupt is due to a BRK ($00) instruction, control is
transferred through the BRK vector ($03F0-03F1). Otherwise,
control is transferred through the IRQ vector ($03FE-$03FF).

Interrupts 75

Chapter 4

Keyboard
and Speaker

77

For a description of how the
keyboard strobe works, refer to

Appendix E.

78

Important

This chapter describes how to use two of the Apple IIc’s built-in
devices: the keyboard and the speaker.

Keyboard input

Table 4-1 describes the characteristics of the keyboard that relate to
programming. You won't have to write routines to read the
keyboard from all your assembly-language programs since the
Apple Ilc firmware Monitor provides keyboard support through the
three standard input routines described in Chapter 3—RdKey,
Keyln, and GetLn. You can do all your keyboard handling directly
in your programs if you want to, but it's nice to know that you're not
forced to.

Reading the keyboard

The keyboard encoder and ROM (see Chapter 11) can generate all
128 ASCII codes, so all the special character codes in the ASCII
character set are available from the keyboard. Your machine-
language programs can call RdKey to get characters from the
keyboard. RdKey reads characters a byte at a time from the
keyboard data location ($C000) shown in Table 4-1.

Here is how your programs should go about reading the keyboard:

1. Test bit 7 of address $C000 to see if a key has been pressed. Bit 7
is the keyboard strobe bit.

2. When bit 7 goes to a 1, you know that the low-order seven bits of
$CO00 are a valid character.

3. Clear the keyboard strobe (bit 7) at $C000 by reading or writing
anything to address $C010.

$C010 has another function besides clearing the keyboard strobe:
its high bit is a 1 while a key is pressed (except the Apple keys,
Control, Shift, Caps Lock, and Reset). Bit 7 at this location is
therefore called any-key-down. You could use this to let a program
do something useful other than just waiting for the next key to be
pressed. (People are generally a /ot slower than the Apple Iic.)
Check $C010 occasionally to see if something should be done.

If your program needs to read both the keyboard flag and the
strobe, it must read the strobe bit first, Any time you read the
any-key-down bit at $C010, you also clear the keyboard sirobe
bit at $C000.

Chapter 4: Keyboard and Speaker

On game Input switches, see
Chapter 9.

on Getln, Getln1, and RdKey,
see Chapter 3.

Table 4-1
Keyboard Input characteristics

Port number None

Commarids Keyboard is always on, in the sense that any
keypress generates a KSTRB.

Initial Reset routine clears the keyboard strobe and sets

characteristics the keyboard as the standard input device (that is,
sets KSW to point to RdKey).

Hardware locations

$C000 Keyboard data and strobe

$C010 Any-key-down flag and clear-strobe switch

$C060 40-column switch status on bit 7; 1 = 40-column
display = switch down

$C061 Open Apple status on bit 7; 1 = pressed (also
game input switch 0)

$C062 Solid Apple status on bit 7; 1 = pressed

Monitor firmware

routines

Location Name Description

$FD6A Getln Gets an input line with prompt

$FD67 GetlnZ Gets an input line with preceding carriage
return

$FD6F GetLnl Gets an input line, but with no preceding
prompt

$FD1B Keyln The keyboard input subroutine
$FD35 RdChar Gets an input character or escape code
$FDOC RdKey The standard character input subroutine

Use of other pages
Page 2 The standard character string input buffer (see GetLn
description)

After your program has cleared the keyboard strobe, the strobe
remains low until another key is pressed.

Table 4-2 shows the ASCII codes generated by all the keys on the
Apple Ilc keyboard. Remember, if the strobe bit is set, the
character values that your program sees will be equal to the values
given in Table 4-2 plus $80.

Keyboard input 79

80

Table 4-2

Keys and ASCIl codes

Key alone + Control + Shift + Both
Key Code Char Code Char Code Char Code Char
Delete 7F DEL 7F DEL 7F DEL 7F DEL
Left Arrow 08 BS 08 BS 08 BS 08 BS
Tab 09 HT 09 HT 09 HT 09 HT
Down Arrow 0A LF 0A LF 0A IF OA IF
UpArrow 0B VT 0B VT 0B VT 0B VT
Return 0D CR 0D CR 0D CR 0D CR
Right Arrow 15 NAK 15 NAK 15 NAK 15 ©NAK
Escape 1B ESC 1B ESC 1B ESC 1B ESC
Space 20 SP 20 SP 20 Sp 20 Sp
A 27 ! 27 22 X 22 ¥
, < 2C 2C , 3C < 3C <
s 2D - 1F S 5F _ 1F US
. > 2E . 2E . 3E > 3E >
/? 2F [/ 2F [/ 3F ? 3F ?
0) 30 0 3 0 29) 29)
1! 31 1 31 1 21 ! 21 !
2@ 32 2 00 NUL 40 @ 00 NUL
3# 3 3 3 3 23 # 23 #
4% 34 4 34 4 24§ 24§
5% 35 5 35 5 25 % 25 %
6 A 36 6 1IE RS SE A 1E RS
7& 7 7 37 7 26 & 26 &
8* 38 8 38 8 2A ¢ 2A ¢
9(3% 9 39 9 28 (28 (
HE 3B 3B ; 3A 3A
= A aD = 3D = 2B+ 2B+
[{ SB[1B ESC 7B { 1B ESC
\ 5C \ 1C FS 7C | 1C FS
1} 5D 1] 1D GS 7D} 1D GS
| ~ 60 ! 60 ! 7JE ~ 7E ~
A 61 a 01 SOH 41 A 01 SOH
B 62 b 02 STX 42 B 02 STX
C 63 ¢ 03 ETX 43 C 03 ETX
D 64 d 04 EOT 44 D 04 EOT
E 65 e 05 ENQ 45 E 05 ENQ
F 66 f 06 ACK 46 F 06 ACK
G 67 g 07 BEL 47 G 07 BEL
H 68 h 08 BS 48 H 08 BS
I 69 i 09 HT 49 1 09 HT

Chapter 4: Keyboard and Spedaker

Keystrokes can also generate
Interrupts. See Appendix E.

[he reset routine Is described In
Chapter 2.

For Information on how to have
programs Iinterpret keystrokes In
a standard way, refer to the
Apple Il Design Guidelines listed
in the Bibliography.

Table 4-2 (continued)
Keys and ASCII codes

Key alone + Control + Shift + Both
Key Code Char Code Char Code Char Code Char
J 6A OA LF 47] OA IF
K 6B k 0B VT 4B K 0B VT
L 6C 1 0C FF 4C L 0C FF
M 6D m 0D CR 4D M 0D CR
N 6E n 0E SO 4E N 0OE SO
O 6F o OF SI 4F O OF SI
P 70 P 10 DLE 50 P 10 DLE
Q 71 q 11 DC1 51 Q 11 DC1
R 72 r 12 DC2 52 R 12 DC2
S 73 s 13 DC3 53 § 13 DC3
T 74 t 14 DC4 54 T 14 DC4
u 75 u 15 NAK 55 U 15 NAK
\' 76 v 16 SYN 56 V 16 SYN
w 77 w 17 ETB 57 W 17 ETB
X 78 X 18 CAN 58 X 18 CAN
Y 79 y 19 EM 59 Y 19 EM
Z 7JA z 1A SUB 5A Z 1A SUB

Note: Codes are in hexadecimal here; refer to Table G-8 for decimal

equivalents.

There are several keys that do not generate ASCII codes themselves,
but alter the characters produced by other keys. These modifier keys

are Control, Shift, and Caps Lock.

Your programs can also use the Open Apple and Solid Apple as
character modifier keys while handling keyboard input, and, if one
or both of them are pressed, branch to a special routine, such as a
help program. Your program can read Open Apple at $C061 and
Solid Apple at $C062.

Another key that doesn’t generate a code is Reset, located at the
upper-left corner of the keyboard; it is connected directly to the

Apple IIc's processor. Pressing Reset with Control depressed

normally causes the system to stop whatever program it’s running
and restart itself. If you hold Open Apple while pressing Control-

Reset, the Apple Ilc performs a forced cold start. The restart

sequence is described in Chapter 2.

Keyboard Input

81

Electrical specifications of the
speaker circult appear in
Chapter 11.

Monitor firmware support for keyboard input

Chapter 3 describes the three standard Monitor input routines
serving the keyboard: GetLn, RdKey, and Keyln. This section
discusses the three other available Monitor routines.

GetLnZ

GetLnZ (at address $FD67) is an alternate entry point for GetLn that
first sends a carriage return to the standard output, then continues
into Getln.

GetLnl

GetLn1 (at address $FDGF) is an alternate entry point for GetLn that
does not issue a prompt before it accepts the input line. However, if
the user cancels the input line with too many backspaces or with
Control-X, then GetLnl issues the prompt stored at location $33
when it gets another line,

RdChar

RdChar (at address $FD35) is a subroutine that gets characters from
the standard input subroutine, and also interprets the escape codes
listed in Chapter 3.

If the enhanced video firmware is active, Right Arrow (Control-U)
reads a character from the screen as if it were typed from the
keyboard. This is a function of the Monitor’s built-in editing
capability described in Chapter 3.

Speaker output

The Apple Iic has a small speaker mounted near the front of the
bottom plate of its case. The speaker is connected to a soft switch
that toggles; that is, the switch has two states, off and on, and it
changes from one to the other each time it is accessed. Table 4-3
describes the speaker output characteristics.

82 Chapter 4: Keyboard and Speaker

Important

Table 4-3
Speaker output characteristics

Port number None.

Commands Some programs sound the speaker in response to
Control-G.

Initial Reset routine sounds the speaker.

characteristics

Hardware location

$C030 Toggle speaker (read only).

Monitor firmware

routines

Location Name Description

$FBDD Belll Sends a beep to the speaker.
$FF3A Bell Sends Control-G to the current output.

Using the speaker

If you switch the speaker once, by reading or writing to $C030, it
emits a click; to make longer sounds, access the speaker repeatedly.
The switch for the speaker uses memory location $C030. You can
make various tones and buzzes with the speaker by using
combinations of timing loops in your program.

You should always use a read operation to toggle the speaker.
If you write to this soft switch, it switches twice In rapid
succession. The resulting pulse is so short that the speaker
doesn’t have time to respond: it doesn’t make a sound.

Speaker output 83

See Chapter 3.

Monitor firmware support for speaker output

The Monitor supports the speaker with one simple routine, Belll. A
related routine, Bell, supports the current output device—the one
that CSW points to.

Belll

Belll (at address $FDBB) makes a beep through the speaker by
generating a 1-kHz tone in the Apple Iic’s speaker for 0.1 second.
This routine scrambles the A and X registers.

Bell

The Monitor routine Bell (at location $FF3A) writes a bell control
character (ASCII Control-G) to the current output device. This
routine leaves the accumulator holding $87.

84 Chapter 4: Keyboard and Speaker

Chapter 5

Video
Display
Output

85

NTSC stands.for National
Televislon Standards ‘
Committee, a group that
formulates broadcast and
reception guldelines used by the
USA and several other countries.

Important

The Apple IIc’s primary output device is its video display. You can
use any ordinary color or monochrome video monitor with the
Apple Ilc. An ordinary monitor is one that accepts NTSC-
compatible composite video. If you use Apple IIc color graphics
with a black-and-white monitor, the display will appear as black,
white, and two shades of gray.

If you are only using graphics modes and 40-column text, you can
use a television set for your video display. If the TV set has an input
connector for composite video, you can connect it directly to your
Apple Iic; otherwise, you must attach an RF video modulator
between the Apple IIc and the television set.

The Apple lic can produce an 80-column text display. However,
if you use an ordinary color or black-and-white television set,
80-column text will be too blurry to read. For a clear 80-column
display, you must use a high-resolution video monitor with a
bandwidth of 14 MHz or greater.

Table 5-1 summarizes thé video output port’s characteristics and
points to other information in this chapter.

Table 5-1

Video output port characteristics

Port number Output port 3.

Commands See Figure 5-3.

Initial See Figure 5-3. _
characteristics Note: If a program is to use the enhanced video

firmware, it should turn it on and then
immediately check the 80/40 switch. If the
switch is in the 40 position, the program
should issue a Control-Q.

Hardware See Table 5-7.
locations

Monitor firmware See Table 5-11.
routines

1/© firmware See Table 5-12.
entry points

86 Chapter 5: Video Display Output

Video display specifications

Table 5-2 summarizes the video display’s specifications, and
provides a further guide to other information in this chapter.

Table 5-2 ,
Video display specifications

Display modes 40-column text; map: Figure 5-5
80-column text; map: Figure 5-6

Low-resolution color graphics;
map: Figure 5-7
High-resolution color graphics;
map: Figure 5-8

Double high-resolution color
graphics; map: Figure 5-9

Text capacity 24 lines by 80 columns (character
positions)

Character set 96 ASCII characters (uppercase and
lowercase)

Display formats Normal, inverse, flashing,
MouseText (Table 5-3)

Low-resolution 16 colors (Table 5-4): 40 horizontal

graphics by 48 vertical; map: Figure 5-7

High-resolution 6 colors (Table 5-5): 140 horizontal

graphics by 192 vertical (restricted)

Black and white: 280 horizontal

by 192 vertical; map: Figure 5-8
Double high-resolution 16 colors (Table 5-6): 140 horizontal
graphics by 192 vertical (no restrictions)

Black and white: 560 horizontal
by 192 vertical; map: Figure 5-9

The video signal produced by the Apple IIc is NTSC-compatible
. composite color video available at two places on the back panel of
See “Video Output Signals” in the Apple Ilc: theé RCA-type phono jack and the 15-pin D-type
g:;gggg;lhgmg:z on video connector. Use the RCA-type phono jack to connect a video
' monitor, and the DB-15 connector for an external video modulator
or other video expansion hardware.

Video display specifications 87

See “MouseText.”

Text modes

Either of the Apple IIc’s two text modes can display all 96 ASCII
characters: uppercase and lowercase letters, the ten digits,
punctuation marks, and special characters. Each character is
displayed in an area of the screen that is seven dots wide by eight
dots high. The characters are formed by a dot matrix five dots wide
(with a few exceptions, such as underscore), leaving two blank
columns of dots between characters in a row. Except for lowercase
letters with descenders, the characters are only seven dots high,
leaving one blank line of dots between rows of characters.

The normal display has white (or other monochrome color used by
your monitor) dots on a dark background. Characters can also be
displayed as black dots on a white background,; this is called
inverse video.

Text character sets

The Apple IIc can display either of two text character sets: the
primary set and an alternate set (Table 5-3). The forms of the
characters in the two sets are actually the same, but the available
display formats are different. The display formats are

O normal, with white dots on a black screen
O inverse, with black dots on a white screen

O flashing, alternating between normal and inverse

The Apple IIc can display uppercase characters in all three
formats—normal, inverse, and flashing—with the primary
character set. Lowercase letters can only be displayed in normal
format. This makes the primary character set compatible with most
software written for the Apple II and II Plus, which can display text
in flashing format but don’t have lowercase characters.

The alternate character set trades the flashing format for a complete
set of inverse characters. With the alternate character set, the
Apple Ilc can display uppercase letters, lowercase letters, numbers,
and special characters in either normal format or inverse format. It
can also display MouseText.

88 Chapter 5: Video Display Output

To identify particular characters
and values, refer to Table 4-2,

You can select between character sets with the alternate-text soft
switch, described later in this chapter. Table 5-3 shows the
character codes in decimal and hexadecimal for the Apple IIc
primary and alternate character sets in normal, inverse, and
flashing formats.

Table 5-3

Display character sets

Hex Primary character set Alternate character set

values Character type Format Character type Format

$00-$1F Uppercase Inverse Uppercase Inverse
letters letters

$20-$3F Special Inverse Special Inverse
characters characters

$40-$5F Uppercase Flashing MouseText
letters

$60-$7F Special Flashing Lowercase Inverse
characters letters

$80-$9F Uppercase Normal Uppercase Normal
letters . letters

$A0-$BF Special Normal Special Normal
characters character

$C0-$DF Uppercase Normal Uppercase Normal
letters letters

$E0-$FF Lowercase Normal Lowercase Normal
letters letters

Each character on the screen is stored as one byte of display data.
The low-order six bits make up the ASCII code of the character
being displayed. The remaining two (high-order) bits select format
and the group within ASCIL.

Text modes 89

Q0

MouseText

The alternate character set contains 32 graphics characters called
MouseText in place of the primary set’s inverse uppercase
characters from $40 through $5F. These graphics are especially
convenient to use with a mouse because they can be generated by
character codes instead of groups of high-resolution byte values,
and they can be moved around quickly. To use MouseText
characters, do the following:

1.
2.

Turn on the enhanced video firmware with PR#3 or 6 Control-P.

Set inverse mode: use the INVERSE command or put $3F in
location $32, or print Control-O.

. Turn on MouseText with PRINT CHR$(27); or pass $1B to COut

in the accumulator.

. Print the uppercase letter (or other ASCII character in the range

$40 through $5F:@[\] A or _) that corresponds to the
MouseText character you want.

. Turn off MouseText with PRINT CHR$(24); or pass $18 to COutl

in the accumulator.

. Set normal mode: use the NORMAL command or put $FF in

location $32, or print a Control-N.

Here is a sample Applesoft program that prints all the MouseText
characters:

10
20
30
40
50
60

D$=CHRS$ (4)

PRINT PRINT D$;“PR#3"

INVERSE

PRINT CHR$(27) ; “ABCDEFGHIJKLMNOPQRSTUVWXYZ []~_*";
PRINT CHRS$ (24);

NORMAL

MouseText characters and their corresponding ASCII characters are
shown in Figure 5-1.

Chapter 5: Video Display Output

S}
T A 4

o lll

PX

N 3
g | mi!

= <X
|
i ik S <

I L o
n I — L
P Q S T v w
C O ® — aF]
X Y [\] . e
Figure 5-1

MouseText characters

40-column versus 80-column text

The Apple IIc has two text display modes: 40-column and 80-
column. The number of dots in each character does not change,
but the characters in 80-column mode are only half as wide as the
characters in 40-column mode. Compare the two displays in
Figure 5-2. On an ordinary color or black-and-white television set,
the narrow characters in the 80-column display blur together; you
must use the 40-column mode to display text on a television set.

Text modes 91

JLIST 0,100
10 REM APPLESOFT CHARACTER DEMO

20 TEXT : HOME

30 PRINT : PRINT "Applesoft Char
acter Demo"

40 PRINT : PRINT "Which characte
r set--"

50 PRINT : INPUT "Primary (P) or
Alternate (A) ?2";AS

60 IF LEN (AS$) < 1 THEN 50

65 LET A$ = LEFTS$ (AS,1)

70 IF A$ = "P" THEN POKE 49166,

0

80 IF A$ = "A"™ THEN POKE 49167,
0

90 PRINT : PRINT "...printing th

e same line, first™
100 PRINT " in NORMAL, then INVE
RSE ,then FLASH:": PRINT

JLIST

10 REM APPLESOFT CHARACTER DEMO

20 TEXT : HOME

30 PRINT : PRINT "Applesoft Character Demo"

40 PRINT : PRINT "Which character set--"

50 PRINT : INPUT "Primary (P) or Alternate (A) 2?";A$

60 IF LEN (A$) < 1 THEN 50 '

70 LET A$ = LEFT$ (AS$,1)

80 IF AS "p" THEN POKE 49166,0

90 IF A$ = "A"™ THEN POKE 49167,0

100 PRINT : PRINT "...printing the same line, first"

150 PRINT "™ in NORMAL, then INVERSE ,then FLASH:"™: PRINT
160 NORMAL : GOSUB 1000

170 INVERSE : GOSUB 1000

180 FLASH : GOSUB 1000

190 NORMAL : PRINT : PRINT : PRINT "Press any key to repeat." GET A$
200 GOTO 10

1000 PRINT : PRINT "SAMPLE TEXT: Now is the time--12:00"
1100 RETURN ’

m

Figure 5-2
40-column and 80-column text with alternate character set

92 Chapter 5: Video Display Output

Figure 5-3 shows the characteristics of the text display modes and
how to switch between them.

Power On (Esc)(conTroL){(Q)

Resets full
40-column window

Cursor: checkerboard
Input hook: Keyln
Output hook: COut1
Window: 40 columns,
24 lines
Character Set: primary

(E9)8

(Do not affect I/0 hooks)

E0) 4

Cursor: square box
Input hook: C3KeyIn
Output hook: C3COut1
Window: 40 columns,
24 lines
Character Set: alternate

Figure 5-3

Text mode characteristics and switching

Cursor: narrow box
Input hook: C3Keyin
Output hook: C3COut1
Window: 80 columns,
24 lines
Character Set: alternate

Text modes 93

Table 5-4

Low-resolution graphics
colors

Nibble value

Dec Hex Color
0 $00 Black

1 501 Magenta

2 $02 Dark blue
3 503 Purple

4 304 Dark green
5 305 Gray 1
6 $06 Medium blue
7 $07 Light blue
8 $08 Brown
9 $09 Orange

10 $0A Gray 2

11 $0B Pink

12 $0C Light green
13 $0D Yellow
14 $OE Aquamarine
15 $OF White

Note: colors may vary, depending

on adjustment of monitor or

television set.

Graphics modes

The Apple Ilc can produce color video graphics in any of three
different modes:

O low-resolution graphics, 48 rows by 40 columns

O high-resolution graphics, 192 rows by 280 columns

O double high-resolution graphics, 192 rows by 560 columns
Each graphics mode treats the screen as a rectangular array of
spots. Normally, your programs will use the features of some high-
level language to draw graphics dots, lines, and shapes on the

screen; this section describes the way the resulting graphics data are
stored in the Apple IIc’s memory.

Low-resolution graphics

The Apple Ilc displays an array of 48 rows by 40 columns of colored
blocks in the low-resolution graphics mode. Each block can be any
one of sixteen colors, including black and white. On a black-and-
white monitor or television set, these colors appear as black, white,
and two shades of gray. There are no blank dots between blocks;
adjacent blocks of the same color merge to make a larger shape.

The low-resolution graphics display data are stored in the same part
of memory as the data for the 40-column text display. Each byte
contains data for two low-resolution graphics blocks. The two blocks
are displayed one atop the other in a display space the same size as
a 40-column text character, seven dots wide by eight dots high.

Half a byte—four bits, or one nibble—is assigned to each graphics
block. Each nibble can have a value from 0 to 15, and this value
determines which one of sixteen colors appears on the screen. The
colors and their corresponding nibble values are shown in

Table 5-4. In each byte, the low-order nibble sets the color for the
top block of the pair, and the high-order nibble sets the color for
the bottom block. Thus, a byte containing the hexadecimal

value $D8 produces a brown block atop a yellow block on the
screen.

94 Chapter 5: Video Display Output

As explained earlier in this chapter, the text display and the low-
resolution graphics display use the same area in memory. Your
programs should usually clear this part of memory when they
change display modes, but you can store data as text and display
them as graphics, or vice versa. All you have to do is change the
mode switch, described later in this chapter, without changing the
display data. This usually produces meaningless jumbles on the
display, but some programs have used this technique to good
advantage for producing complex low-resolution graphics displays
quickly.

High-resolution graphics

In the high-resolution graphics mode, the Apple Ilc displays an
array of colored dots in 192 rows and 280 columns. The colors
available are black, white, purple, green, orange, and blue,
although the colors of the individual dots are limited, as described
below, by the color of adjacent dots. Adjacent dots of the same
color merge to form a continuous colored area.

High-resolution graphics display data are stored in either of two
8192-byte areas in memory. These areas are called high-resolution
Pagge 1 and Page 2; think of them as display data buffers. Normally,
your programs will use the features of some high-level language to
draw graphics dots, lines, and shapes to display; this section
describes the way the resulting graphics data are stored in the
Apple IIc’'s memory.

The Apple Ilc high-resolution graphics display is bit-mapped: each
dot on the screen corresponds to a bit in the Apple IIc’s memory.
The seven low-order bits of each display byte control a row of seven
adjacent dots on the screen, and 40 adjacent bytes in memory
control a row of 280 (7 times 40) dots. The eighth bit (the most
significant) of each byte is not displayed; it selects one of two color
sets, as described below. The least significant bit of each byte is
displayed as the leftmost dot in a row of seven, followed by the next-
least significant bit, and so on, as shown in Figure 5-4.

Graphics modes 95

Bits in Data Byte

7 6|54)|3|]2]|]1]0

o0j1]2]|]3|]4|5]686

Dots on Graphics Screen

Figure 5-4
High-resolution display bits

There is a simple correspondence between bits in memory and dots
on the screen on a black-and-white monitor. A dot is white if the bit
controlling it is on (1), and the dot is black if the bit is off (0). On a
black-and-white television set, pairs of dots merge together;
alternating black and white dots merge to a continuous gray.

A dot whose controlling bit is off (0) is black on an NTSC color
monitor or a color television set. If the bit is on, the dot is white or a
color, depending on its position, the dots on either side, and the
setting of the high-order bit of the byte. Call the lefimost column of
dots column 0, and assume (for the moment) that the high-order
bits of all the data bytes are off (0). If the bits that control them are
on, dots in even-numbered columns, 0, 2, 4, and so forth, are
purple, and dots in odd-numbered columns are green—but only if
the dots on either side are black. If two adjacent dots are both on,
they are both white.

You select the other two colors, blue and orange, by turning the
high-order bit (bit 7) of a data byte on (1). The colored dots
controlled by a byte with the high-order bit on are either blue or
orange: the dots in even-numbered columns are blue, and the dots
in odd-numbered columns are orange (again, only if the dots on
either side are black). Within each horizontal line of seven dots
controlled by a single byte, you can have black, white, and one pair
of colors. To change the color of any dot to one of the other pair of
colors, you must change the high-order bit of its byte, which affects
the colors of all seven dots controlled by the byte.

96 Chapter 5: Video Display Output

For more detalls about the way
the Apple lic produces color on a
TV set, see Chapter 11, For a
table of reversed bit patterns,
refer to Appendix H.

In brief, high-resolution graphics displayed on a color monitor or
television set are made up of colored dots, according to the
following rules:

O Dots in even-numbered columns can be black, purple, or blue.
O Dots in odd-numbered columns can be black, green, or orange.
O If adjacent dots in a row are both on, they are both white.

O The colors in each row of seven dots controlled by a single byte
are either purple and green, or blue and orange, depending on
whether the high-order bit is off (0) or on (1).

These rules are summarized in Table 5-5. The blacks and whites are
numbered to remind you that the high-order bit is different.

Table 5-5

High-resolution graphics colors

Bits 0-6 Bit 7 off Bit 7 on
Adjacent columns off Black 1 Black 2
Even columns on Purple Blue
Odd columns on Green Orange

Adjacent columns on White 1 White 2

Note: Colors may vary, depending on adjustment
of monitor or television set.

The peculiar behavior of the high-resolution colors reflects in part
the way NTSC color television works. The dots that make up the
Apple llc video signal are spaced to coincide with the frequency of
the color subcarrier used in the NTSC system. Alternating on and
off dots at this spacing cause a color monitor or TV set to produce
color, but two or more on dots together do not.

Double high-resolution graphics

The horizontal resolution of double high-resolution graphics is
560 dots per line, with 192 lines. Double high-resolution graphics
maps the low-order seven bits of the bytes in the two double high-
resolution graphics pages. A double high-resolution page is made
up of a 8192-byte page in main memory and an equivalent page
having the same address in auxiliary memory. In most cases, only
the first double high-resolution graphics page is used.

Graphics modes 97

98

Important

The bytes in the main-memory and auxiliary-memory pages are
displayed in exactly the same manner as the characters in 80-
column text: of each pair of identical addresses, the auxiliary-
memory byte is displayed first, and the main-memory byte is
displayed second. A dot whose controlling bit is off (0) is black
when displayed.

Unlike high-resolution color, double high-resolution color has no
restrictions on which colors can be adjacent. Color is determined
by any four adjacent dots along a line. Think of a four-dot-wide
window moving across the screen: at any given time, the color
displayed corresponds to the 4-bit value from Table 5-6 that
corresponds to the window’s position (Figure 5-9). Effective
horizontal resolution with color is 140 (560 divided by 4).

Table 5-6 describes the data values used to produce colors in
double high-resolution graphics. To use the table, divide the
column number by four and use the remainder to find the correct
column: ab0 is a byte residing in auxiliary memory corresponding
to a remainder of 0 (byte 0, 4, 8, and so on), mb1 is a byte residing
in main memory corresponding to a remainder of 1 (byte 1, 2, 9
and so on), and similarly for ab2 and mb3.

Mixed-mode displays

Any of the graphics displays can have four lines of text, either 40-
column or 80-column, at the bottom of the screen. Graphics
displays with text at the bottom are called mixed-mode displays. To
use them, the TEXT switch must be off (read $C050) and the MIXED
switch on (read $C053).

You cannot display 40-column text with double high-resolution
graphics.

To determine what appears where in mixed-mode displays, refer to
Figures 5-5 through 5-9 later in this chapter. See the bottom sixth of
the appropriate text display (Figure 5-5 or 5-6) and the upper five-
sixths (down to the heavy horizontal line) in the appropriate
graphics display (Figures 5-7 to 5-9).

Chapter §: Video Display Output

Table 5-6
Double high-resolution graphics colors

Repeated
Color ab0 mb]l ab2 mb3 bit pattern
Black $00 $00 $00 $00 0000
Magenta $08 $11 $22 $44 0001
Brown $44 $08 $11 $22 0010
Orange $4C $19 $33 $66 0011
Dark green $22 $44 $08 $11 0100
Gray 1 $2A $55 $2A $55 0101
Green $66 $4C $19 $33 0110
Yellow $6E $5D $3B $77 0111
Dark blue $11 $22 $44 $08 1000
Purple $19 $33 $66 $4C 1001
Gray 2 $55 $2A $55 $2A 1010
Pink $5D $3B $77 $6E 1011
Medium blue $33 $66 $4C $19 1100
Light blue $3B $77 $6E $5D 1101
Aqua $77 $6E $5D $3B8 1110
White $7F $7F $7F $7F 1111

Note: Colors may vary, depending on adjustment of monitor or television
set,

Display pages

The Apple IIc uses data stored in specific areas in memory to
generate its video displays. These areas, called display pages, serve
as buffers where your programs can put data to be displayed. Each
byte in a display buffer controls an object—a character, a colored
block, or a group of adjacent dots—at a certain location on the
display, depending on the current display mode.

Display pages @9

100

Important

The 40-column-text and low-resolution-graphics modes use two
display pages of 1024 bytes each. These are called text Page 1 and
text Page 2, and they are located at $0400 through $07FF and $0800
through $0BFF in main memory. Normally, only Page 1 is used, but
you can put text or graphics data into Page 2 and switch between
displays. Either page can be displayed as 40-column text, low-
resolution graphics, or mixed-mode (four lines of text at the
bottom of a graphics display).

The 80-column text mode displays twice as much data as the 40-
column mode—1920 bytes—but it cannot switch pages when the
enhanced video firmware is active. The 80-column text display uses
a combination page made up of text Page 1 in main memory plus
another page in auxiliary memory. This additional memory is not
the same as text Page 2—in fact, it is text Page 1X, and it occupies
the same address space as text Page 1 (see Figure 2-11). The built-in
firmware I/O routines described in Chapter 3 take care of this extra
addressing automatically; that is one reason to use these routines
for all normal text output.

The bullt-in video firmware always displays Page 1 text. You
cannot wrlte fext to Page 2 with the built-in firmware.

The high-resolution graphics mode also has two display pages, but
each page is 8192 bytes long. In the 40-column text and low-
resolution graphics modes each byte controls a display area seven
dots wide by eight dots high. In high-resolution graphics mode
each byte controls an area seven dots wide by one dot high. Thus, a
high-resolution display requires eight times as much data storage as
a low-resolution display, as shown in Table 5-7.

The double high-resolution graphics mode interleaves the two
high-resolution pages (Pages 1 and 1X) in exactly the same way as
80-column text mode interleaves the text pages: column 0 and all
subsequent even-numbered columns come from the auxiliary page;
column 1 and all subsequent odd-numbered columns come from
the main page.

Chapter 5: Video Display Output

Table 5-7
Video display page locations

Display
Display mode page Lowest address Highest address
40-column text, 1 $0400 1024 $07FF 2047
low-resolution 2% $0800 2048 $OBFF 3071
graphics
80-column text 1 $0400 1024 $O7FF 2047
2* $0800 2048 $ObFF 3071
High-resolution 1 $2000 8192 $3FFF 16385
graphics 2 $4000 16384 $SFFF 24575
Double high- 1t $2000 8192 $3FFF 16383
resolution 2t $4000 6384 $5FFF 24575
graphics

* This is not supported by firmware; for instructions on how to switch
pages, refer to “Display Mode Switching.”
t See “Double High-Resolution Graphics.”

Display mode switching

Table 5-8 shows the reserved locations for the soft switches that
control the different display modes. The column of the table
labeled Action indicates what to do to activate or read a switch
setting: R means read the location, Wmeans write anything to the
location, R/W means read or write, and R7 means read the
location and then check bit 7.

Table 5-9 lists the display modes that the firmware can set up
automatically. In the 40-column modes, the contents of the
standard I/O hooks KSW and CSW (Chapter 3) determine whether
the enhanced video firmware features are available or not. The
firmware also takes care of setting or clearing AltChar.

Table 5-10 lists other display modes available but not supported by
firmware. For modes that display Page 2 with the 80Col switch on,
your program may have to turn 80Store off after the firmware has
turned it on.

Double low-resolution shows on the display screen when HiRes is
off and both 80Col and DHiRes are on. It is the low-resolution
graphics equivalent of 80-column text, and it uses the same map
(Figure 5-6), giving you 48 rows of 80 blocks.

Display mode switching 101

The IOUDis ($CO7E) switch must be on to allow you to use locations
$COSE and $COSF to change DHiRes. The firmware in fact leaves it
on—and your program should, too—unless it wants to use locations
$COSE and $COSF to change mouse values (Chapter 9).

Table 5-8

Display soft switches

Name Action Hex Function

AltChar w $COOE Off: Display text using
primary character set

AltChar w $COOF On: Display text using
alternate character set

RdAltChar R7 $CO1E Read AltChar switch (1 = on)

80Col w $C00C Off: Display 40 columns

80Col w $CO0D On: Display 80 columns

Rd80Col R7 $CO1F Read 80Col switch (1 = on)

80Store w $C000 Off: Cause Page2 on to select
auxiliary RAM

80Store w $C001 On: Allow Page2 to switch
main RAM areas

Rd80Store R7 $C018 Read 80Store switch (1 = on)

Page2 R/W $C054 Off: Select Page 1

Page2 R/W $C055 On: Select Page 1X (80Store
on) or 2

RdPage2 R7 $C01C Read Page2 switch (1 = on)

TEXT R/W $C050 Off: Display graphics or (if
MIXED on) mixed

TEXT R/W $C051 On: Display text

RATEXT R7 $CO1A Read TEXT switch (1 = on)

MIXED R/W $C053 Off: Display only text or only
graphics

102 Chapter 5: Video Display Output

Table 5-8 (continued)
Display soft switches

Name Action Hex Function

MIXED R/W $C054 On: (If TEXT off) display text
and graphics

RAMIXED R7 $C01B Read MIXED switch (1 = on)

HiRes R/W $C057 Off: (If TEXT off) display
low-resolution graphics

HiRes R/W $C058 On: (If TEXT off) display
high-resolution or (if DHiRes
on) double high-resolution
graphics -

RdHiRes R7 $CO01D Read HiRes switch (1 = on)

IOUDis w $CO7E On: Disable IOU access for
addresses $C058 to $COSF,
enable access to DHiRes
switch

IOUDis w $CO7F Off: Enable IOU access for
addresses $C058 to $COSF;
disable access to DHiRes
switch*

RdIOUDis R7 $CO7E Read IOUDis switch (1 = off)t

DHiRes R/W $COSE On: (If IOUDis on) turn on
double high-resolution

DHiRes R/W $COSF Off: (f IOUDis on) turn off
double high-resolution

RdDHiRes R7 $CO7F Read DHiRes switch (1 = on)}

* The firmware normally leaves IOUDis on. See also the following

footnote.

t Reading or writing any address in the range $C070-$CO7F also triggers
the paddle timer and resets VBLInt (Chapter 9). '

Display mode switching 103

Table 5-9

Display modes supported by firmware, including Applesoft

Switches
Display
col/res Type Page 80Col 80Store Page2 TEXT MIXED HiRes DHiRes
40-column Text 1 Off Off On Off Off Off
80-column Text 1 On * On
Low-res Graphics 1 Off Off Off Off Off Off
40/low Mixed 1 Off Off Off On Off
80/low Mixed 1 On . Off Off On Off Off
Hi-res Graphics 1 Off Off Off Off On
Hi-res Graphics 2 Off On Off Off On
40/high Mixed 1 Off Off Off On On
80/high Mixed 1 On % Off Off On On Off
* 80Store is set by the firmware when 80Col is turned on.
Table 5-10
Other display modes
Display Switches
col/res Type Page 80Col 80Store Page2 TEXT MIXED HiRes DHiRes
40-column Text 2 Off On On
80-column 2 On Off On On
Low-res Graphics 2 Off On Off Off Off
40/1low Mixed 2 Off On Off On Off
80/low Mixed 2 On Off On Off On Off Off
Dbl-low Graphics 1 On * Off Off Off Off On
Dbl-low Graphics 2 On Off On Off Off Off On
80/dbl-low Mixed 1 On * Off Off On Off On
80/dbl-low Mixed 2 On Off On Off On Off On
40/high Mixed 2 Off On Off On On
80/high Mixed 2 On Off On Off On On Off
Dbl-high Graphics 1 On » Off Off Off On On
Dbl-high Graphics 2 On Off On Off Off On On
80/dbl-high Mixed 1 On * Off Off On On On
80/dbl-high Mixed 2 On Off On Off On On On

* 80Store is set by the firmware when 80Col is turned on, and must be turned off to use the second 80-column

or double high-resolution page. This means that you cannot use firmware routines such as COut when

displaying Page 2 modes not supported by firmware.

104 Chapter 5: Video Display Output

Warning

For example, to switch to mixed 80-column and double high-
resolution display Page 1, you can use these instructions in your
program:

STA $cooD Turns on 80Col; firmware then turns on 80Store.
LDA $C054 Turns off Page2; you could also have done a STA.
STA $C050 Turns off TEXT; that is, turns on graphics mode.
STA $c053 Turns on MIXED; it works now that TEXT is off.
STA $c057 Turns on HiRes; it works now that TEXT is off.
STA $COTE Makes sure IOUDis is on so you can access DHiRes.
LDA $CO05E Turns on DHiRes; it works now that IOUD:is is on.

Display page maps

You should never have to store directly into display memory. Most
high-level languages let you write statements that control the text
and graphics displays. Similarly, if you are programming in
assembly language, you should use the display features of the built-
in I/O firmware.

Never call any firmware with 80Col on or with 80Store and
Page?2 both on. If you do, the firmware will not function
properly. As a general rule, always leave Page?2 off,

All the different display modes use the same basic addressing
scheme: characters or graphics bytes are stored as rows of

40 contiguous bytes, but the rows themselves are not stored at
locations corresponding to their locations on the display. Instead,
the display address is transformed so that three rows that are eight
rows apart on the display are grouped together and stored in the
first 120 locations of each block of 128 bytes ($80 hex). For
example, the first 128-byte block contains the data for rows 0, 8,
and 16. The next 128-byte block contains data for rows 1, 9, and 17,
and so on.

The display memory maps are shown in Figures 5-5 through 5-9.
For a full description of the way the Apple IIc hardware handles
display memory, see Chapter 11.

Display page maps 105

For more detalls about the way
the displays are generated, see
Chapter 11.

High-resolution graphics data are stored in much the same way as
text, but there are eight times as many bytes to store, because eight
rows of dots occupy the same space on the display as one row of
characters.

The first 1024 bytes of the high-resolution display page contain the
first row of dots from each of the 24 groups of eight rows of dots.
‘The second 1024 bytes of the high-resolution display page contain
the second row of dots from each group of eight rows of dots, and
so on for all eight rows of all the groups. This fills up the 8192 bytes
of the high-resolution display page.

The display maps show addresses only for each Page 1. To obtain
addresses for text or low-resolution graphics Page 2, add 1024
($0400); to obtain addresses for high-resolution Page 2, add 8192
($2000). '

The 80-column display works a little differently. Half of the data are
stored in the normal text Page 1 memory, and the other half are
stored in the quxiliary memory text Page 1. The display circuitry
fetches bytes from the same address in both memory areas
simultaneously and displays them sequentially: first the byte from
the auxiliary memory, then the byte from the main memory. The
characters in the even-numbered columns of the display are stored
(starting with column 0) in main memory, and the characters in the
odd-numbered columns of the display are stored (starting with
column 1) in main memory.

To store display data in auxiliary memory, first turn on the 80Store
soft switch by writing to location $C001. With 80Store on, the page-
select switch Page2 selects between the portion of the 80-column
display stored in Page 1 of main memory and the portion stored in
the auxiliary memory. To select auxiliary memory, turn the Page2
soft switch on by reading or writing at location $C055.

The double high-resolution graphics display stores information in
the same way as high-resolution graphics, except there is an
auxiliary memory location as well as a main memory location
corresponding to each address. The two sets of display information
are interleaved in a manner similar to the interleaving of two 40-
column displays to create an 80-column text display (Figure 5-9).

106 Chapter 5: Video Display Output

Row
0 $400

1 $480
2 $500
3 $580
4 $600
5 $680
6 $700
7 $780
8 $428
9 $4A8
10 $528
11 $5A8
12 $628
13 $6A8
14 $728
15 $7A8
16 $450
17 $4D0
18 $550
19 $5D0

1024
1152
1280
1408
1536
1664
1792
1920
1064
1192
1320
1448
1576
1704
1832
1960
1104
1232
1360
1488

0 $00
1 $01
2 $02
3 $03
4 $04
5 $05
6 $06
7 $07
8 $08
9 $09
10 $0A

$0B
12 $0C
13 $0D
14 $OE
15 $OF
16 $10
17 $11
18 $12
19 $13
20 $14
21 $15
22 $16
23 $17
24 $18
25 $19
26 $1A
27 $1B
28 $1C
29 $1D

$1E
31 $1F
32 $20
33 $21
34 $22
35 $23
36 $24
37 $25
38 $26
39 $27

11

30

20 $650
21 $6D0
22 $750
23 $7D0

Figure 5-5

1616
1744
1872
2000

Map of 40-column text display

Display page maps

107

Row
0 $400 1024

1 $480 1152
2 $500 1280
3 $580 1408
4 $600 1536
5 $680 1664
6 $700 1792
7 $780 1920
8 $428 1064
9 $4A8 1192
10 $528 1320
11 $5A8 1448
12 $628 1576
13 $6A8 1704
14 $728 1832
15 $7A8 1960
16 $450 1104
17 $4D0 1232
18 $550 1360
19 $5D0 1488
20 $650 1616
21 $6D0 1744
22 $750 1872
23 $7D0 2000

= s

$00.$01 $02 $03 $04 $05 $06 $07 2$20 $21‘$22 $23 $24 $25
0 1 2 3 4 5 6 7 32 33 34 35 36 37 38
Auxiliary Memory [

Figure 5-6
Map of 80-column text display

108 Chapter 5: Video Display Output

Row

-
SO OONONARWNLO

[S G G G T Gy
©CO~NONMAWN

NN
Nao

23

NNONNDN
ONOO S

29
30
31
32
33
34
35
36
37
38
39

| $400
| $480
| $500
| $580
| $600
| $680
| $700
| $780
| $428
| $4A8
| $528
| $5A8
| 8628
| $6A8
| $728
| $7A8
| $450
| $4D0
| $550
| $5D0

1024
11562
1280
1408
1536
1664
1792
1920
1064
1192
1320
1448
1576
1704
1832
1960
1104
1232
1360
1488

0 $00
1 $01
2 $02
3 $03
4 $04
5 $05
6 $06
7 $07
8 $08
9 $09
10 $0A
$0B

12 $0C
13 $0D
14 $OE
15 $OF
16 $10
17 $11
18 $12
19 $13
20 $14
21 $15
22 $16
23 $17
24 $18
25 $19
26 $1A
27 $1B
28 $1C
29 $1D
30 $1E
$1F

32 $20
33 $21
34 $22
35 $23
36 $24
37 $25
38 $26
39 $27

31

11

40
41
42
43
44
45
46
47

| $650
| $6D0
| $750
| $7D0

1616
1744
1872
2000

Figure 5-7
Map of low-resolution graphics display

Display page maps

109

OCrANNTWONDIPLCODNOOAWULOFTFANNMTOLONCODLCNOOUWLOT-N®DTION
2233223323233 323338500vrnnnnnnnnnensdsasssd
Bow CrNmt o~ rdIRere2RIiRIRERRAR3SB3I38588
0 $2000 8192 ‘
1 $2080 8320
2 $2100 8448
3 $2180 8576
4 $2200 8704
5 $2280 8832
6 $2300 8960
7 $2380 9088
8 $2028 8232
9 $20A8 8360
10 $2128 8488 L]
11 $21A8 8616
12 $2228 8744
13 $22A8 8872 + 0 +$0000
14 $2328 9000
15 $23A8 9128 +1024 +50400
163200 caue \ +2048 +$0800
17 $20D0 8400 \
18 $2150 8528 +3072 +$0C0C
19 $21D0 8656
20 $2250 8784 +4096 +$1000
21 $22D0 8912
PR \ +5120 +$1400
23 $2300 9168 \ +6144 +$1800
\ +7168 +$1C0C
Figure 5-8

Map of high-resolution graphics display

110

Chapter 5: Video Display Output

Row
0 $2000

1 $2080
2 $2100
3 $2180
4 $2200
5 $2280
6 $2300
7 $2380
8 $2028
9 $20A8
10 $2128
11 $21A8
12 $2228
13 $22A8
14 $2328
15 $23A8
16 $2050
17 $20D0
18 $2150
19 $21D0

8192
8320
8448
8576
8704
8832
8960
9088
8232
8360
8488
8616
8744
8872
9000
9128
8272
8400
8528
8656

- $20 $21 $22 $23 $24 $25 $26

;21]

32 33 34 35 38 37 38
~ o ey :

39

-+ 0 +I 0 (.III

+1024 +$0400

+2048 +$0800

+3072 +$0C00

+4096 +$1000

20 $2250
21 $2200
22 $2350
23 $23D0

Figure 5-9

Map of double high-resolution graphics display

8784
8912
9040
9168

+5120 +$1400

S

+6144 +$1800

0

1 2 3 4

5

6

$00 $01 $02 $03 $04 $05 $06 $07

7

+7168 +$1C00

Auxiliary Memory [

| i 0 B 2 S S 5, B 0 0

Display page maps

111

112

Monitor support for video display output

Table 5-11 summarizes the addresses and functions of the video
display support routines the Monitor provides. Except for COut and
COutl, which are explained in Chapter 3, these routines are
described in the subsections that follow.

Table 5-11

Monitor firmware routines

Name Location Description

CIrEOL $FCOC Clears to end of line from current cursor

_ position

CIEOLZ $FCOE Clears to end of line using contents of
Y register as cursor position

CItEOP $FC42 Clears to bottom of window

ClrScr F832 Clears the low-resolution screen

ClrTop $F836 Clears top 40 lines of low-resolution screen

COut $FDED Calls output routine whose address is
stored in CSW (normally COutl,
Chapter 3)

COutl $FDFO Displays a character on the screen
(Chapter 3)

CROut $FDSE Generates a carriage return character

CROut1 $FD8B Clears to end of line, then generates a
carriage return character

HLine $F819 Draws a horizontal line of blocks

HOME $FC58 Clears the window and puts cursor in
upper-left corner of window

PLOT $F800 Plots a single low-resolution block on the
screen

PrBI2 $F94A Sends 1 to 256 blank spaces to the output
device whose address is in CSW

PrByte $FDDA Prints a hexadecimal byte

PrErr $FF2D Sends ERR and Control-G to the output
device whose output routine address is in
CSW

PrHex $FDE3 Prints four bits as a2 hexadecimal number

Chapter &: Video Display Output

Table 5-11 (continued)
Monitor firmware routines

Name Location Description

PrntAX $F941 Prints contents of A and X in hexadecimal

SCRN $F871 Reads color value of a low resolution block
on the screen

SetCol $F864 Sets the color for plotting in low resolution

VTabZ $FC24 Sets cursor vertical position (setting CV at

location $25 does not change vertical
position until a carriage return)

Vline $F828 Draws a vertical line of low-resolution
blocks

CIrEOL

CIfECL clears a text line from the cursor position to the right edge
of the window. This routine destroys the contents of A and Y.

CIEOLZ

CIEOLZ clears a text line to the right edge of the window, starting at
the location given by base address BASL indexed by the contents of
the Y register. This routine destroys the contents of A and Y.

CIrEOP

CIrEOP clears the text window from the cursor position to the
bottom of the window. This routine destroys the contents of A
and Y.

ClrScr

ClrScr clears the low-resolution graphics display to black. If you call
this routine while the video display is in text mode, it fills the screen
with inverse-mode at-sign (@) characters. This routine destroys the
contents of A and Y,

ClrTop

ClrTop is the same as ClrScr, except that it clears only the top
40 rows of the low-resolution display.

COut

COut calls the current character output subroutine. The character to
be sent to the output device should be in the accumulator. COut
calls the subroutine whose address is stored in CSW (locations $36
and $37), usually the standard character output COutl.

Monitor support for video display output 113

114

COutl

COut1 displays the character in the accumulator on the display
screen at the current cursor position and advances the cursor. It
places the character using the setting of the inverse mask

(location $32). It handles these control characters: carriage return,
line feed, backspace, and bell. When it returns control to the
calling program, all registers are intact.

CROut

CROut sends a carriage return to the current output device.

CROutl

CROut1 clears the screen from the current cursor position to the
edge of the text window, then calls CROut.

HLine

HLine draws a horizontal line of blocks of the color set by SetCol on
the low-resolution graphics display. Call HLine with the vertical
coordinate of the line in the accumulator, the leftmost horizontal
coordinate in the Y register, and the rightmost horizontal
coordinate in location $2C. HLine returns with A and Y scrambled
and X intact.

HOME

HOME clears the display and puts the cursor in the upper-left
corner of the screen.

PLOT

PLOT puts a single block of the color value set by SetCol on the low-
resolution display screen. Call PLOT with the vertical coordinate of
the line in the accumulator, and its horizontal position in the

Y register. PLOT returns with the accumulator scrambled, but X
and Y intact.

PrBl2

PrBI2 sends from 1 to 256 blanks to the standard output device.
Upon entry, the X register should contain the number of blanks to
send. If X = $00, then PrBlank will send 256 blanks.

Chapter 5: Video Display Output

PrByte

PrByte sends the contents of the accumulator in hexadecimal to the
current output device. The contents of the accumulator are
scrambled.

PrErr

PrErr sends the word ERR, followed by a bell character (ASCII $07),
to the standard output device. On return, the accumulator is
scrambled.

PrHex

PrHex prints the lower nibble of the byte in the accumulator as a
single hexadecimal digit. On return, the contents of the
accumulator are scrambled.

PrntAX

PrntAX prints the contents of the A and X registers as a four-digit
hexadecimal value. The accumulator contains the first byte printed,
and the X register contains the second. On return, the contents of
the accumulator are scrambled.

SCRN

SCRN returns the color value of a single block on the low-resolution
display. Call it with the vertical position of the block in the
accumulator and the horizontal position in the Y register. The
block’s color is returned in the accumulator. No other registers are
changed.

SetCol

SetCol sets the color used for plotting in low-resolution graphics to
the value passed in the accumulator. The colors and their values are
listed in Table 5-4.

Vline

VLine draws a vertical line of blocks of the color set by SetCol on the
low-resolution display. Call VLine with the horizontal coordinate of
the line in the Y register, the top vertical coordinate in the
accumulator, and the bottom vertical coordinate in location $2D.
VLine returns with the accumulator scrambled.

Monitor support for video display output 115

1/0 firmware support
for video display output

Apple Ilc video firmware conforms to the I/O firmware protocol
described in Chapter 3. However, it does not support windows
other than the full 80-by-24 window in 80-column mode, and the
full 40-by-24 window in 40-column mode.

The video (port 3) protocol table is shown in Table 5-12.

Table 5-12
Port 3 fiimware protocol table

Address Value Description

$C30B $01 Generic signature byte of firmware cards

$C30C $88 B0-column card device signature

$C30D S§ii $C3ii is entry point of initialization routine (PInit)
$C30E $rr $C3rr is entry point of read routine (PRead)
$C30F $ww $C3ww is entry point of write routine (PWrite)
$C310 $ss $C3ss is entry point of the status routine (PStatus).

Plnit
| PInit does the following:
O sets a full 80-column window
O sets 80Store ($C001)
O sets 80Col ($C0O0D)
O switches on AltChar ($3CO0F)
O clears the screen; places cursor in upper-left corner
O displays the cursor

PRead

PRead reads a character from the keyboard and places it in the
accumulator with the high bit cleared. It also puts a 0 in the
X register to indicate IOResult = GOOD.

116 Chapter 5: Video Display Output

PWrite

PWrite should be called after placing a character in the accumulator
with its high bit cleared. PWrite does the following:

O turns the cursor off

O if the character in the accumulator is not a control character,
turns the high bit on for normal display or off for inverse display,
displays it at the current cursor position, and advances the
cursor; if at the end of a line, does carriage return but not line

feed

O carries out control functions as shown in Table 5-13

Table 5-13

Pascal video control functions

Control- Hex Function

Eore $05 Turns cursor on (enables cursor display)

Forf $06 Turns cursor off (disables cursor display)

Gorg $07 Sounds bell (beeps)

Horh $08 Moves cursor left one column; if cursor was at
beginning of line, moves it to end of previous
line

Jorj $0A Moves cursor down one row; scrolls if needed

Kork $0B Clears to end of screen

Lorl $0C Clears screen; moves cursor to upper-left
position on screen

Morm $0D Moves cursor to column 0

Norn $0E Displays subsequent characters in normal
video; characters already on display are
unaffected

Ooro $0F Displays subsequent characters in inverse
video; characters already on display are
unaffected

Vorv $16 Scrolls screen up one line; clears bottom line

Worw $17 Scrolls screen down one line; clears top line

Yory $19 Moves cursor to upper-left (home) positioﬁ on
screen

Zorz $1A Clears entire line that cursor is on

I/O firmware support for video display output

117

118

Table 5-13 (continued)
Pascal video control functions

Control- Hex Function

| or \ $1C Moves cursor right one column; if at end of
line, does Control-M

}or] $1D Clears to end of the line the cursor is on,
including current cursor position; does not
move cursor

Aor6 $1E GOTOxy: Initiates a GOTOxy sequence;
interprets the next two characters as x+32 and
y+32, respectively

$1F If not at top of screen, moves cursor up one line

When PWrite has completed this, it
O tirns the cursor back on (if it was not intentionally turned off)

O puts a 0 in the X register JOResult = GOOD) and returns to the
calling program

PStatus

A program that calls PStatus must first put 4 request code in the
accumulator: either a 0 (meaning “Ready for output?”) or a 1
(meaning “Is there any input?”). PStatus returns with the reply in the
carry bit: 0 (no) or 1 (yes). If the request was not 0 or 1, PStatus
returns with a 3 in the X register IOResult = ILLEGAL

OPERATION); otherwise, PStatus returns with a 0 in the X register
(IOResult = GOOD).

Chapter 5: Video Display Output

Chapfer 6

Block
Device 1/0O

19

A block-type device, or block
device, executes |/O operations
by grouping data info bundies,
called blocks. A block may be
made up of virtually any number
of bytes, but in the Apple lic a
standard block is 512 bytes.

Original llc

UniDisk 3.5

The external disk drive
connector is described under
“Disk 1/O” in Chapter 11.

The Apple Ilc supports both built-in and external block-type
devices. External block devices may be 5.25-inch Disk IIc drives,
UniDisk 3.5-inch disk drives, a memory expansion card, and other
similar devices. If you use a 5.25-inch Disk IIc as an external drive,
you must install it as the last device in the daisy chain.

The original Apple lic does not support devices other than its
internal 5.25-inch disk drive and an (optional) external
5.25-inch Disk lic drive.

The external block device interface is provided by the Smartport
firmware. The Smartport is described later in this chapter.

The UniDisk 3.5 ROM contains an older version of the Smartport,
the Protocol Converter. The description of the Smartport applies
to the Protocol Converter, and vice versa.

Disk drive 1/0O

Disk I/O firmware for the 5.25-inch drives resides in the $C600
address space on the main side of the ROM. The built-in 5.25-inch
drive is supported as if it were slot 6, drive 1, and the external
5.25-inch drive as if it were slot 6, drive 2.

Disk I/O firmware for the UniDisk 3.5 drive resides in the
$C500-$C58D address space on the main side, and in the
$C880-$CFFF address space on the auxiliary side of the ROM.

Table 6-1 summarizes the disk I/O port characteristics.

Table 6-1
Disk 1/O porf_ characteristics

Port number 1/O port 6 drive 1 (built-in 5.25-inch drive).
I/O port 6 drive 2 (external 5.25-inch
drive). 1/O port 5 drive 1 (external 3.5-inch
drive).

Commands IN#6 or PR#6 CALL -151 (to get to the
Monitor from BASIC), then 6 Control-K or
6 Control-P.

_ Initial characteristics Al resets except Control-Reset with a valid

reset vector eventually pass control to the
built-in disk drive.

120 Chapter 6: Block Device |/O

Original lic

Table 6-1 (continued)
Disk 1/O port characteristics

Hardware location

$COEO-EF Reserved.

Monitor firmware None.

routines

1/0 firmware $C600 (port 6).

entry points

Use of screen holes Port 6 main and auxiliary memory screen

holes are reserved.

Startup

The Apple IIc has two ways to start up—a cold start and a warm start.
A cold start clears the machine’s memory and tries to load an
operating system from disk. A warm start halts the program that is
running and leaves the machine in Applesoft with the contents of
memory intact.

Cold start

A cold start can be initiated by any of the following:

O turning the machine on

O pressing Open Apple-Control-Reset

O issuing a reboot command from the Monitor, BASIC, or a
program

O pressing Control-Reset, if a valid reset vector does not exist

The startup routine first sets a number of soft switches to their
initialization settings (see Chapter 2) and then passes control to the
memory expansion card I/O entry point at $C400. Because the
contents of the memory expansion card’s RAM are invalid in all
cold-start situations, the Apple IIc cannot boot from card and
control is returned to the startup routine.

The original Apple lic does not support the memory expansion
card; the restart routine in the original lic begins with the
internal 5.25-inch drive.

Startup 121

122

Original lic

Memory expansion

UniDisk 3.5

When control is returned to the startup routine by the memory
expansion card, it will attempt to boot the Apple Ilc from the
internal 5.25-inch drive. Control is passed to the 5.25-inch disk I/O
entry point at $C600. The code at this address turns on the internal
drive motor, recalibrates the read/write head at track 0, then reads
sector 0 from that track. The sector contents are loaded into main
memory, starting at address $0800. Once the contents of sector 0
have been loaded into main memory, control passes to $0801. The
program loaded depends on the operating system or application
program on the disk in internal drive.

If for any reason the Apple Ilc is unable to boot from the internal
drive, control is returned to the startup routine. The startup routine
then attempts to boot the Apple Ilc from the external UniDisk 3.5
drive. Control is passed to the UniDisk 3.5 I/O entry point at

$C500, and the startup attempt proceeds in the same manner as that
of the internal 5.25-inch drive.

The original Apple lic does not support the UniDisk 3.5 drive.
However, It Is possible to start the original Apple lic from the
external 5.25-inch drive. If you want to start your Apple lic from
the external 5.25-inch drive, you must use the ProDOS
operating system. To start from the external drive, insert a
ProDOS disk in the drive and

o From the Monitor, type CALL =151 and press 7 Control-P.
O From BASIC, type PR#7.

To force a cold restart of the system:

0 From BASIC, issue a PR#6 command.

O From the Monitor, issue 6 Control-P.

O From a machine-language program, JMP $C600.

To force a cold restart from a machine-language program in an
Apple lic that supports the memory expansion card, JMP $C400
(the memory expansion card entry point).

The Apple lic that supports the UniDisk 3.5 can force a cold
restart that skips the internal 5.25-inch drive and passes control
to the external drive port at $C500 entry point. This allows the
system to start up from the first intelligent drive connected to
the external drive port. You can use the ProDOS or Pascal
operating system if you want to start the system from an
external drive, but DOS and versions of Pascal earlier than 1.3
will not work.

Chapter 6: Block Device 1/O

Warm start

A warm start is initiated by pressing Control-Reset. The warm start

routine checks $F800-$FFFF on the main side ROM for a valid reset

vector. Provided a valid reset vector exists, control is turned over to

the entry point specified by the vector. Generally, a warm start

leaves you in BASIC with memory unchanged.

If there is no valid reset vector, a number of things may happen:

O The Apple IIc passes control to $C600 on the main side ROM and
the cold-start boot procedure begins.

O The Apple Ilc beeps.

0O The Apple IIc does nothing.

Memory expansion In the Apple lic that supports the memory expansion card,
control Is turned over to $C400 on the main side ROM In the
event there is no valid reset vector.

Memory expansion card 1/O

The memory expansion card provides up to IMb of RAM, in 256K
steps, for storage of program and data files. In this sense, it is like a
very fast disk drive. Programs can be loaded into the memory
expansion card’s RAM, but in order to be executed they must be
moved, in whole or in part, to the Apple IIc’s main memory.

The memory expansion card is a block-type device, so I/O
operations involving the card use the operating system or
Smartport I/O interface. The Smartport I/O interface is described
later in this chapter.

More information on the memory expansion card can be found in
the Apple Ilc Memory Expansion Card Technical Reference.

The Smartport I/O interface

Important The rest of this chapter applies only to the UniDisk 3.5 and
memory expansion versions of the Apple lic.

The Smartport 1/O interface 123

124

UniDisk 3.5

Important

The Smartport and the Protocol Converter are essentially the
same firmware interface with different names. All the
specifications given in this manual for the Smartport interface
apply to the Protocol Converter as well.

The rest of this chapter is about the Smartport, which is a set of
assembly-language routines used to support external I/O devices,
such as UniDisk 3.5. To ProDOS and Pascal 1.3, the Smartport
appears to be a block device.

At the end of this chapter is an example of an assembly-language
program that uses a Smartport call.

Locating the Smartport

The Smartport code in the Apple IIc’s firmware always begins at
address $C500. To ensure compatibility of your programs with the
Apple Ile, however, your Smartport routines should always begin
with a search for the Smartport. Your program can identify the
Smartport by finding the following bytes:

$Cn01=$20
$Cn03=$00
$Cn05=$03
$Cn07=$00

where n can be an integer from 1 to 7. The Smartport entry point is
then found at address $Cn00 + ($CnFF) + 3, where ($CnFF) refers
to the value of the byte located at $CnFF. The sample program at
the end of this chapter illustrates such a search.

The Smartport firmware is present even when the Memory
Expansion Card is not. To check for the Memory Expansion
Card, issue a STATUS cdall, code $03, from the operating system

" or the Smartport, If the data returmed indicates 0 bytes

available, the card Is not present.

Chapter 6: Block Device I/O

Issuing a call to the Smartport

Smartport calls are coded like ProDOS Machine Language Interface
(MLI) calls: the program executes a JSR to a dispatch routine at
On MU calls, the ProDOS
eI b e M address $C500 + ($CSFF) + 3, where ($CSFF) refers to the value of
Chapter 4. the byte located at $CSFF.

The Smartport call number and a two-byte pointer to the call’s
parameter list must immediately follow the call. Here is an example
of a call to the Smartport:

IWMCALL

JSR DISPATCH Calls PC command dispatcher

DFB CmdNum Specifies the command type

DW CmdList 2-byte (low, high) pointer to parameter list
BCS ERROR Sets carry on an error

The command number (CmdNum) defines which Smartport call
you want to make. Most Smartport calls include a two-byte pointer
to a parameter list. The parameter list can contain information to
be used by the call, or can provide space for information to be
returned by the call. The length and content of the parameter list
depend on the call being made. The format of each Smartport call’s
parameter list is described later in this chapter.

When the call has finished, the program resumes execution at the
statement following the pointer to the parameter list. In the
example above, the DFB and DW statements are skipped and
execution resumes with the BCS statement. If the call is successful,
the C flag (in the processor status register) is cleared (0), and the
accumulator (the A register) is cleared to all 0's. If the call is
unsuccessful, the C flag is set (1) and the error code is placed in the
A register. After the Smartport call, the contents of the 65C02’s
registers are as follows:

Register Processor status X Y A PC S
N \") 1 B D | z C

Successful

call x x 1 u 0 u x 0 x x 0 JSR+3 u

Unsuccessful

call x x 1 u 0 u x 1 b X Error JSR+3 u

x = undefined, except in cases where index information is returned in X and Y registers
u = unchanged

Issuing a call to the Smartport 125

On reading and writing to RAM,
see "Bank-Switched Memory”
in Chapter 4.

Cautions

You must observe the following cautions when using the Smartport,
or your program will crash:

O Leave space on the stack for the Smartport. The Smartport
requires up to 35 bytes of stack space. Be sure to take this into
account when calculating the stack space used by your program.
If you don't do this, your program will fail if it tries to access data
that used to be on the stack.

O Be sure that all RAM that you intend the Smartport to access is
both read-enabled and write-enabled. The Smartport must be
able to read from the RAM after writing to it, to obtain a
checksum. Failure to observe this rule results in an error
(BusErr $06).

O Don't pass data to or from the Smartport through any zero page
locations. Some of these locations are reserved for temporary
storage of data by the Smartport, and your data will get changed.

Descriptions of the Smartport calls

Calls to the Smartport are used

O to obtain status information about a device
O to reset a device

O to format the medium in a device

O to read from a device

O to write to a device

O to send control information to a device

The Smartport calls, in command-number sequence, are

STATUS (500) Returns status information about a
particular device, including general status
(character or block device, read or write
protection, format allowed, device on
line); the device control block (set with
the CONTROL call); the device newline
status (character devices only); and
device-specific information (number of
blocks, ID string, device name, device
type, device firmware version),

READ BLOCK ($01) Reads one 512-byte block from a disk
device, and writes it to memory.

126 Chapter é: Block Device I/O

WRITE BLOCK ($02) Writes one 512-byte block from memory

to a disk device.

FORMAT ($03) Prepares all blocks on a block device for
reading and writing.

CONTROL ($04) Controls some device functions,

including soft resets, setting the device
control block (which controls global
aspects of the device’s operating
environment), setting newline status
(character devices only), and device
interrupts. Several CONTROL calls are
device-specific.

INIT ($05) Resets all resident devices. A global reset
is done automatically on startup or system
resets from the keyboard; an application
should never have to reset all devices.

OPEN ($06) Prepares a character device for reading or
writing.

CLOSE ($07) Tells a character device that a sequence of
reads or writes is over.

READ ($08) Reads a specified number of bytes from a
specified device.

WRITE ($09) Writes a specified number of bytes from

memory to a specified device.

The following sections describe each Smartport call, including the
command number, the parameter list, and error codes. The calls
are discussed in command-number order in this format:

Command name: The name used to identify the call.

Command number: A hexadecimal number that specifies which
call is being made to the Smartport.

Parameter list; A list of required call parameters.
General description: What the call does and what you use it for.

Parameter descriptions: A description of each parameter and
the data it refers to. When a parameter refers to a status or control
code, the meaning of each code number is discussed.

Possible errors: A list of the error codes that can be returned by
this call. A complete list of Smartport error codes is included at the
end of this chapter.

Descriptions of the Smartport calls 127

128

Important

STATUS

Command $00
number

Parameter $03 (parameter count)

list Unit number
Status list pointer (low byte, high byte)
Status code

The STATUS call returns status information about a specified
device. The type of information returned is determined by the
device and its status-code parameter. The status list pointer defines
where the status information is returned to.

STATUS returns the number of bytes of status information that it
generates in the X and Y registers, the low byte of this number in
the X register, and the high byte in the Y register.

Parameter descriptions

Parameter
count

1-byte value Three for this call.

Unit number

1-byte value The Smartport assigns each device a unique number
during initialization (on startup and cold reset).
The numbers are in the range $01-$7E and are
assigned according to the devices’ positions in
the chain.

You can get the status of the Smartport itself if you use a unit
number of $00 and a status code of $00 In a STATUS call (see the
discussion beginning “Status code = $00,” below).

Chapter é: Block Device |/O

Status list

pointer

2-byte value Points to the buffer to which the status is to be
returned. The length required for the buffer varies
depending on the status request being made.

Status code
1-byte value Indicates what kind of status request is being made.
Status codes are in the range $00-$FF, as follows:

Code Status returned

$00 Return device status
$01 Return device control block (DCB) (not
supported by UniDisk 3.5)

$02 Return newline status (character devices
only) (not supported by UniDisk 3.5)
$03 Return device information block (DIB)

$05 Return UniDisk 3.5 status

Status code = $00 returns a device status consisting of four bytes.
The first is the general status byte, with the following format:

Bit Description

7 0 = character device, 1 = block device

6 1 = write allowed

5 1 = read allowed

4 1 = device on line or disk in drive

3 0 = format allowed

2 0 = medium write protected (block devices only)

1 1 = device currently interrupting

0 1 = device currently open (character devices only)

If the STATUS call is for a block device, the next three bytes (low
byte first) are the size in 512-byte blocks. The maximum size is

16 million ($FFFFFF) blocks (about 8 gigabytes). If the call is for a
character device, these three bytes must be set to 0.

Descriptions of the Smartport calls 129

On newline read mode, see
Chapter 4 in the ProDOS
Technical Reference Manual.

A STATUS call with status code = $00 and unit number = $00 returns
the status of the Smartport itself. In this case, the status list consists
of 8 bytes, as follows:

STAT_LIST DFB Number_Devices Devices hooked to PC
' DFB Interrupt_Status Bit 6 clear = interrupt sent
DFB Reserved
DFB Reserved
DFB Reserved
DFB Reserved
DFB Reserved
DFB Reserved

The Number_Devices byte returns the total number of intelligent
devices attached to the Smartport. The Interrupt_Status byte is a
copy of the asynchronous communications interface adapter
(ACIA) status register at the time of the interrupt, and is used to
indicate that a device requires interrupt servicing. If the sixth bit of
this byte equals 0, one or more devices in the Smartport bus daisy
chain must be serviced; your interrupt handler must poll each
device on the chain to determine which ones.

% About interrupts: Devices that require interrupt servicing must
use the EXTINT line on the Apple IIc’s external disk port
connector to be supported by the Smartport.

For example, UniDisk 3.5 does not support this line, and so
cannot generate interrupts to the Smartport. See the
description of the CONTROL command for instructions on
enabling Smartport interrupts. See Appendix E for more
information about programming with interrupts.

Status code = $01 returns the device control block (DCB). The
DCB is used to control various operating characteristics of a device
and is device dependent. Each device has a default DCB, which can
be altered with a CONTROL call. The first byte (the count byte) gives
the number of bytes in the control block (not including the count
byte), so the length never exceeds 256 bytes (257 including the
count byte). Note that UniDisk 3.5 has no DCB and returns an error
(BadCtl $21) in response to this call.

Status code = $02 returns newline status. Newline status applies only
to character devices. A status code = $02 passed to a block device
returns a BadCtl (§21) error.

130 Chapter 6: Block Device |/O

Status code = $03 returns the device information block (DIB). The
device’s information block identifies the device, its type, and
various other attributes. The returned status list has the following

form:

STAT_LIST DFB
DFB
DFB
DFB
DFB

ASC

DFB
DFB
DW

Device_Statbytel
Device_Size_Lo
Device_Size Med
Device_ Size_Hi
ID_String_Length

’<device name>’

Device_Type Code
Device_Subtype_ Code
Version

Same as byte 1 in status
code =0

Number of blocks
(block device)

Number of blocks
(middle byte)

Number of blocks (high
byte)

Length in bytes (16 max.)
7-bit ASCII, uppercase,
padded with spaces, 8th
bit always=0 (16 bytes)

Device firmware version
number

Status code = $05 returns the UniDisk 3.5 status. This call allows a
diagnostic program to get more detailed information about the
cause of a read or write error, and to examine the contents of the
65C02’s registers after a CONTROL call with control code = $05.
The returned status list has this form:

STAT LIST DFB
DFB
DFB
DFB

DFB

DFB
DFB
DFB

$00
Error
Retries
$00
A_Value
call
X Value
Y Value
P_Value

Descriptions of the Smartport calls

Soft Error byte (see below)
Number of retries (see below)

Acc value after a CONTROL EXECUTE

X value after EXECUTE
Y value after EXECUTE
Processor status value after EXECUTE

131

The Error byte returned by a STATUS call with status code = $05
contains the following bits:

Bit Description

0

0

1 = address field mark or checksum error

1 = data field checksum error

1 = data field bitslip mark mismatch

1 = seek error; unexpected track value found
in address field

(SSRGS Y e]

1 0

0 0

‘The Retries byte returned by a STATUS call with status code = $05
specfies the number of address fields that had to be passed before
the operation was completed. This information could be used, for
example, to determine the number of passes necessary to read a
data field correctly: If Retries is found to be greater than the number
of sectors on the target track, then more than one pass was required.

The last four bytes of the status list are set only after a CONTROL call
with control code = $05, and are 0 after any other call (STATUS
calls do not clear the status bytes).

Possible errors
The following errors can be returned by the STATUS call:

$01 BadCmd An unimplemented command was issued
$04 BadPCnt Bad call parameter count
$06 BusErr Communications error
$21 BadCtl Invalid status code
$30-$3F Device-specific errors
READ BLOCK
Command $01
number
Parameter $03 (parameter count)
list $03 (parameter count)

Unit number

Data buffer Qlow byte, high byte)
Block number (low byte, mid byte, high byte)

132 Chapter 6: Block Device I/O

The READ BLOCK call reads one 512-byte block into memory from

the block device
of data is placed

specified by the unit-number parameter. The block
in a buffer starting at the address specified by the

data-buffer parameter.

Parameter descriptions

Parameter
count
1-byte value

Unit number
1-byte value

Data buffer
2-byte value

Block number
3-byte value

Possible errors

Three for this call.

The Smartport assigns each device a unique
number during initialization (on startup and cold
reset). The numbers are in the range $01-$7E and
are assigned according to the devices’ positions in
the daisy chain. A unit number of $00 in the
STATUS call returns the number of devices
connected to the Smartport.

Points to the buffer into which the data are read.
The buffer must be 512 or more bytes in length.

The logical address of a block of data to be read.
There is no general connection between block
numbers and the layout of tracks and sectors on
the disk. The translation from logical to physical
blocks is performed by the device. (The most
significant byte is O for all devices currently in use.)

The following errors can be returned by the READ BLOCK call:

$01 BadCmd An unimplemented command was issued
$04 BadPCnt Bad call parameter count

$06 BusErr Communications error

$27 IOError 1/O error

$28 NoDrive No device connected

$2D BadBlock Invalid block number

$2F OffLine

Device off-line or no disk in drive

Descriptions of the Smartport calls 133

WRITE BLOCK

Command
number

Purdmohc
list

$02

$03 (parameter count)

Unit number

Data buffer Jow byte, high byte)

Block number (low byte, mid byte, high byte)

The WRITE BLOCK call writes one 512-byte block from memory to
the disk device specified by the unit-number parameter. The block
in memory starts at the address specified by the data-buffer

parameter.

Parameter descriptions

Parameter
count
1-byte value

Unit number
1-byte value

Data buffer
2-byte value

Block number
3-byte value

134 Chapter é: Block Device |/O

Three for this call.

The Smartport assigns each device a unique
number during initialization (on startup and cold
reset). The numbers are in the range $01-$7E and
are assigned according to the devices’ positions in
the daisy chain. A unit number of $00 in the
STATUS call returns the number of devices
connected to the Smartport.

Points to the buffer from which the data are to be
written.

The logical address of a block of data to be written,
There is no general connection between block
numbers and the layout of tracks and sectors on
the disk. The translation from logical to physical
blocks is performed by the device. (The most
significant byte is O for all devices currently in use.)

Possible errors
The following errors can be returned by the WRITE BLOCK call:

$01 BadCmd An unimplemented command was issued
$04 BadPCnt Bad call parameter count

$06 BusErr Communications error

$27 IOError 1/O error

$28 NoDrive No device connected

$2B NoWrite Disk write protected

$2D BadBlock Invalid block number

$2F OffLine Device off-line or no disk in drive
FORMAT

Command $03

number

Parameter $01 (parameter count)

list Unit number

The FORMAT call prepares all blocks on the recording medium of a
block device for reading and writing. The formatting done by this
call is specific to each device and is not linked to any operating
system; for example bitmaps and catalogs are not written by this
call.

Parameter descriptions

Parameter
count

1-byte value One for this call.

Unit number

1-byte value The Smartport assigns each device a unique
number during initialization (on startup and cold
reset). The numbers are in the range $01-$7E and
are assigned according to the devices’ positions in
the daisy chain. A unit number of $00 in the
STATUS call returns the number of devices
connected to the Smartport.

Descriptions of the Smartport calls 135

Possible errors
The following errors can be returned by the FORMAT call:

$01 BadCmd An unimplemented command was issued
$04 BadPCnt Bad call parameter count

$06 BusErr Communications error

$27 IOError I/O error

$28 NoDrive No device connected

$2B NoWrite Disk write protected

$2F OffLine Device off-line or no disk in drive

CONTROL

Command $04
number

Parameter $03 (parameter count)

list Unit number
Control list (low byte, high byte)
Control code

The CONTROL call sends control information to the device. The
information can be of a general nature (such as resets or interrupts),
or device-specific (such as Download to UniDisk 3.5 RAM).

Important A CONTROL call to unit number $00 sends control Information to
the Smariport itself. See the discussions of control code = $00
and control code = $01, below.

Parameter descriptions

Parameter
count
1-byte value Three for this call.

Unit number

1-byte value The Smartport assigns each device a unique
number during initialization (on startup and cold
reset). The numbers are in the range $01-$7E and
are assigned according to the devices’ positions in
the daisy chain. A unit number of $00 in the
STATUS call returns the number of devices
connected to the Smartport. Use a unit
number of $00 in the CONTROL call to send
control information to the Smartport itself.

136 Chapter é: Block Device 1/O

Important

Control list
2-byte value

Points to the buffer containing the control
information. The first two bytes (the count bytes,
low byte first) of the control list specify the number
of bytes in the list (not including the count bytes);
the remainder of the list contains the control
information passed to the device.

Every CONTROL call must have a control list; if no control
Information is being passed, then the control list consists of the
count bytes only:

CTRL_LIST DW $00

Control code
1-byte value

The number of the control request being made.
Control codes are in the range $00-$FF. The
following requests are not device specific:

Code Control function

$00 Reset the device

$01 Set device control block (DCB)

$02 Set newline status (character devices only)
$03 Service device interrupt

Control requests to unit number $00 are sent to the
Smartport itself:

Code Control function

$00 Enable interrupts from Smartport

$01 Disable interrupts from Smartport

Specific devices may respond to some or all of
these additional control requests:

Code Control function

$04 Eject disk

$05 Run a 65C02 subroutine
$06 Set download address
$07 Download to device RAM

Descriptions of the Smartport calls 137

138

Control code = $00 performs a warm reset of the device and
generally returns “housekeeping” values to some reset value. The
control list for this call is device dependent.

The control list for this call for UniDisk 3.5 devices is

CTRL_LIST DW $00 No parameters are passed.

A CONTROL call with control code = $00 and unit number = $00
enables interrupts from the Smartport. This informs the firmware
that external interrupts are possible, and directs it to call the user’s
interrupt handler if an interrupt occurs. It also turns on the ACIA for
port 1.

When the user’s interrupt handler identifies an external interrupt,
you can determine if it came from the Smartport by making a
STATUS call with unit number = $00 and control code = $00. See
Appendix E for more information on handling interrupts.

Control code = $01 alters the contents of the device control

block (DCB). The DCB is used to set global aspects of a device's
operating environment. Each device has a default setting for the
DCB, set on initialization. Because the length of the DCB is device
dependent, you should first read in the DCB with the STATUS call,
then alter the bits of interest, and finally, use the same byte string as
the control block for the CONTROL call. The first byte (the count
byte) of the DCB gives the number of bytes in the control block (not
including the count byte), so the length never exceeds 257 bytes,
including the count byte.

Note that because UniDisk 3.5 has no DCB, a Set DCB CONTROL
call to UniDisk 3.5 returns an error (BadCtl $21).

A CONTROL call with control code = $01 and unit number = $00
disables interrupts from the Smartport. This call turns off the ACIA
for port 1 and sets the least significant bit of the ACIA control
register to 0.

Control code = $02 sets a character device to newline enabled or
newline disabled.

Chapter 6: Block Device I/O

Warning

Control code = $03 sends a device service interrupt. This code is to
be used as needed for interrupt-driven devices.

Control code = $04 ejects a disk. This code is to be used for devices
that support an auto-eject feature. This code causes UniDisk 3.5 to
auto-eject a disk. There are no parameters in the control list, and
no errors are returned if the disk ejected correctly or there was no
disk in the drive. Error code $27 (IOError) is returned if the eject
failed—that is, if a disk is still in the drive. The control list for
UniDisk 3.5 is

CTRL_LIST DW $00 No parameters are passed.

Control codes $05 and higher are reserved; use of some of
these codes can cause your system to crash.

Possible errors ‘
The following errors can be returned by the CONTROL call:

$01 BadCmd An unimplemented command was
issued

$04 BadPCnt Bad call parameter count

$06 BusErr Communications error

$21 BadCtl Invalid control code

$22 BadCtlParm Invalid parameter list

$30-$3F Device-specific errors

INIT

Command $05

number

Parameter $01 (parameter count)
list $00 Cunit number)

The INIT call resets all intelligent devices attached to the Smartport.
The Smartport goes through an initialization sequence, cold-
resetting all devices and sending each its unit number. This call is
made automatically on startup; an application should never have to
make this call.

Descriptions of the Smartport calls 139

Parameter descriptions

Parameter
count
1-byte value One for this call.

Unit number
1-byte value The unit number used in this call is always $00.

Possible errors
The following errors can be returned by the INIT call:

$01 BadCmd An unimplemented command was issued
$04 BadPCnt Bad call parameter count

$06 BusErr Communications error
$28 NoDrive No device connected
OPEN

Command $06

number

Parameter $01 (parameter count)
list Unit number

The OPEN call prepares a character device for reading or writing.

Note that since UniDisk 3.5 is a block device, it does not accept this
call. An attempt to use an OPEN call with UniDisk 3.5 will result in
an error (BadCmd $01).

Parameter descriptions

Parameter
count

1-byte value One for this call.

Unit number

1-byte value The Smartport assigns each device a unique
number during initialization (on startup and cold
reset). The numbers are in the range $01-$7E and
are assigned according to the devices’ positions in
the daisy chain. A unit number of $00 in the
STATUS call returns the number of devices
connected to the Smartport.

140 Chapter 6: Block Device |/O

Possible errors
The following errors can be returned by the OPEN call:

$01 BadCmd An unimplemented command was issued
$04 BadPCnt Bad call parameter count

$06 BusErr Communications error

$28 NoDrive No device connected

$2F OffLine Device off-line or no disk in drive
CLOSE

Command $07

number

Parameter $01 (parameter count)

list Unit number

The CLOSE call tells a character device that a sequence of reads or
writes is over.

Note that since UniDisk 3.5 is a block device, it does not accept this
call. An attempt to use a CLOSE call with UniDisk 3.5 will result in an
error (BadCmd $01).

Parameter descriptions

Parameter
count
1-byte value One for this call.

Unit number

1-byte value The Smartport assigns each device a unique
number during initialization (on startup and cold
reset). The numbers are in the range $01-$7E and
are assigned according to the devices’ positions in
the daisy chain. A unit number of $00 in the
STATUS call returns the number of devices
connected to the Smartport.

Descriptions of the Smartport calls 141

Possible errors
The following errors can be returned by the CLOSE call:

$01 BadCmd An unimplemented command was issued
$04 BadPCnt Bad call parameter count

$06 BusErr Communications error

$28 NoDrive No device connected

$2F OffLine Device off-line or no disk in drive
READ

Command $08

number

Parameter $04 (parameter count)
list Unit number '
Buffer pointer (low byte, high byte)
Byte count (low byte, high byte)
Address pointer (low byte, mid byte, high byte)

The READ call reads into memory the number of bytes specified by
the byte-count parameter. The bytes are placed in a buffer starting
at the address specified by the buffer-pointer parameter.

Parameter descriptions

Parameter
count
1-byte value Four for this call.

Unit number

1-byte value The Smartport assigns each device a unique
number during initialization (on startup and cold
reset). The numbers are in the range $01-$7E and
are assigned according to the devices’ positions in
the daisy chain. A unit number of $00 in the
STATUS call returns the number of devices
connected to the Smartport.

Buffer pointer

2-byte point Points to the buffer into which the data is read.
The buffer must be large enough to contain the
number of bytes requested by the byte-count
parameter.

142 Chapter 6: Block Device I/O

Byte count
2-byte value Specifies the number of bytes to be transferred.

Address

pointer

3-byte value Specifies the address to start reading from. The
meaning of this parameter depends on the device
being read.

Possible errors
The following errors can be returned by the READ call:

$01 BadCmd An unimplemented command was issued
$04 BadPCnt Bad call parameter count

$06 BusErr Communications error

$27 IOEtrror I/0O error

$28 NoDrive No device connected

$2D BadBlock Invalid bl(_)ck number

$2F OffLine Device off-line or no disk in drive
WRITE

Command $09

number

Parameter $04 (parameter count)-
list Unit number
Buffer pointer (low byte, high byte)
Byte count (low byte, high byte)
Address pointer (low byte, mid byte, high
byte)

The WRITE call writes from memory the number of bytes specified
by the byte-count parameter to the specified unit. The bytes in
memory start at the address indicdated by the buffer-pointer
parameter. The meaning of the address pointer depends on the
type of device (see parameter descriptions).

Descriptions of the Smartport calls 143

144

Parameter descriptions

Parameter
count ,
1-byte value Four for this call.

Unit number

1-byte value The Smartport assigns each device a unique
number during initialization (on startup and cold
reset). The numbers are in the range $01-$7E and
are assigned according to the devices’ positions in
the daisy chain. A unit number of $00 in the
STATUS call returns the number of devices
connected to the Protocol Converter.

Buffer pointer
2-byte value Points to the buffer from which the data is to be
written.

Byte count
2-byte value Specifies the number of bytes to be transferred.

Address

pointer

3-byte value Specifies the address to start writing from. The
meaning of this parameter depends on
the device being written to.

Possible errors
The following errors can be returned by the WRITE call:

$01 BadCmd An unimplemented command was issued
$04 BadPCnt Bad call parameter count

$06 BusErr Communications error

$27 IOError 1/O error

$28 NoDrive No device connected

$2D BadBlock Invalid block number

$2F OffLine Device off-line or no disk in drive

Chapter é: Block Device 1/O

0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0300:
0300;
0300:
0300:
0300:

00086

0007

FDED
FDBE

0000

0300

0300:20 43 03

0303:B0 1C
0305:
0305:
0305:

0321

0 d o s W N

W wwwwwwwwbwhRNDNRDNMNDMODNDNRODNMNNERRPRRRRPRREPERFE B
©® oD WP O WU WwhNhEFE OO s WO YW

An example: issuing a Smartport call

Here is an example of a program that issues a STATUS call to the
Smartport to obtain information about a device.

The code for the Smartport in the version of the Apple Ilc that

supports UniDisk 3.5 always begins at address $C500; however, to

ensure compatibility with the Apple lle, your programs should
always do a search for the Smartport, as in this example.

*
*
*
* This example shows how to find
* and use a PC interface. A search
* is made for a PC, and when one is
* found, a vector is set up which
* points to the PC entry. Then a
* Device Information Block STATUS call
* 1s made, and if successful, the name
* string embedded in the DIB is output
* to the screen. Only the first device
* in the chain is accessed.
*
*

MSB ON
*
*
ZPTempL equ 50006 ;s Temporary zero
*: page storage
ZPTempH equ $0007
*
COut equ SFDED ;Console output
CROut equ S$FDBE ;Carriage return
*
StatusCmd equ 0

*
*

org $300
*

* Find a Smartport in one of the

* slots.
*
jsr FindPC
bes Error
*
* Now make the DIB call to the first guy

An example: lssuing a Smartport call

145

0305:20 67 03 39 jsr Dispatch

0308:00 40 dfb StatusCmd

0309:6A 03 41 dw DParms

030B:BO 14 0321 42 bes Error

030D: 43 *

030D: 44 * Got the DIB; now print the name string
030D: 45 *

030D:A2 00 46 1dx #0

030F: 030F 47 morechars equ *

030F:BD 74 03 48 lda DIBName, X

0312:09 80 49 ora #580 ;COut wants high
0314 50 * Bit set
0314: 51 * 0314:20 ED FD 52 jsr COut
0317:E8 53 inx

0318:EC 73 03 54 cpx DIBNameLen

031B:90 F2 030F 55 blt morechars

031D: 56 *

031D:20 8E FD 57 jsr CROut ;Finish it off
0320: 58 * with a return
0320: 59 *

0320:60 60 rts

0321: 61 *

0321: 62 *

0321: 0321 63 Error equ *

0321: 64 *

0321: 65 * There’s either no PC around, or there
0321: 66 * was no Unit #1... give message

0321: 67 *

0321:A2 00 68 ldx #0

0323: 0323 69 errl equ o

0323:BD 2F 03 70 lda Message, x

0326:F0 06 032E 71 beq errout

0328:20 ED FD 72 jsr COut

032B:E8 73 inx

032C:DO0 F5 0323 74 bne errl

032E: 15 *

032E: 032E 76 errout equ *

032E:60 77 rts

032F: 78 *

032F:CE CF A0 DO 79 Message asc 'NO PC OR NO DEVICE'
0341:8D 00 80 dfb $8D, 0

0343: 81 *

0343: 82 *

0343: 0343 83 FindPC equ *

0343: 84 *

0343: 85 * Search slot 7 to slot 1 looking for
0343: 86 * signature bytes

0343: 87 *

0343:A2 07 88 1ldx #7 ;Do for seven
0345: 89 * slots

146 Chapter 6: Block Device |/O

0345:A9
0347:85
0349:A9
034B:85
034D:
034D:
034D:A0
034F:
034F':
034F:Bl
0351:D9
0354:
0354:F0
0356:
0356:C6
0358:CA
0359:D0
035B:
035B:
035B:
035B:
035B:
035B:38
035C:60
035D:
035D:
035D:
035D:
035D:
035D:
035D:
035D
035D:
035D:88
035E:88
035F:
035F:10
0361:
0361:
0361:
0361:
0361:
0361:
0361:
0361:A9
0363:85
0365:A0
0367:
0367:B1
0369:

c7
07
00
06

07

06

70

07

07

F2

EE

FF
06
00

06

034D

034F

03

035D

034D

035D

034F

0361

90

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

*

lda #sc7
sta ZPTempH
1lda #500
sta ZPTempL

newslot equ %
1dy #7
*
again equ *
lda (ZPTempl) ,y
cmp sigtab,y ;One of four
* byte signature
beq maybe ;Found one
* signature byte
dec ZPTempH
dex
bne newslot
*
* If we get here, it’s because we couldn’t
* find a Smartport.
* Exit with the carry set.
*
sec
rts
*
* If we get here, it means that one or
* more of the signature bytes
* for this card are what we’re looking
* for. Decrement the byte
* counter and branch back to verify any
* remaining bytes.
*
maybe equ X
dey
dey ;If N=1 then
* all sig bytes okay
bpl again
*
* Found a Smartport interface.
* Set up the call address.
* We already have the high byte ($CN);
* we just need the low byte.
*
foundPC equ *

lda #SFF
sta ZPTempL
1dy #0 ;For

indirect load
lda (ZPTempL) ,y »Get the
byte

An example: issuing a Smartport call

147

0369:;
0369:
0369:
0369:
0369;
0369:18
036A:69
036C:85
036E:
036E:
036E:
036E:
036E:18
036F:60
0370:
0370:
0370:
0370:
0370:
0370:
0370:
0370:FF
0374:FF
0378:
0378:
0378:
0378:6C
037B:
037B:
037B:
037B:
037B:03
037C:
037C:01
037D:80
037F:03
0380:
0380:
0380:
0380:00
0381:00
0384:00
0385;
0395:00
0396:00
0397:00
0399:
0399:

148

03
06

20 FF 00
03 FF 00

0378
06 00

037B

03

0380

00 00

0010

00

140 *

141 * Now the Acc has the low order ProDOS
142 * entry point. The PC entry is

143 * three locations past this...

144 *

145 clc

146 ade #3

147 sta ZPTempL

148 *

149 * Now ZPTempL has the PC entry point.
150 * Return with carry clear.

151 *

152 cle

153 ks

154 #*

155 *

156 * These are the PC signature bytes in
157 * their relative order.

158 * The S$FF bytes are filler bytes and
159 * are not compared.

160 *

161 sigtab dfb $FF, $20, SFF, $00

162 dfb $FF, $03, $FF, $00

163 *

164 *

165 Dispatch equ *

166 jmp (ZPTempL) ;Simulate
167 * an indirect JSR to PC
168 *

169 *

170 DParms equ *

171 DPParmCt dfb 3 ;Status
172 * calls have three parameters
173 DPUnit dfb 1

174 DPBuffer dw DIB

175 DPStatCcde dfb 3

176 *

177 *

178 DIB equ *

179 DIBStatBytel dfb 0

180 DIBDevSize dfb 0,0,0

181 DIBNameLen dfb 0

182 DIBName ds 16,0

183 DIBType dfb 0

184 DIBSubType dfb 0

185 DIBVersion dw 0

186 *

187 *

Chapter é: Block Device |/O

Summary of commands and parameiers

The following is a summary of Smartport calls. In each case, byte 0
of the command parameter list (CmdLst) specifies the number of
parameters in the command list (not including byte 0). Parameters
that require more than one byte (the status list pointer, for
example) are entered low byte first. The meaning of the address-
pointer parameter is device specific. See the sections on the
individual calls in this chapter for a discussion of each parameter.

Command STATUS READBLOCK WRITEBLOCK FORMAT CONTROL
CmdNum $00 $01 $02 $03 $04
CmdList Byte
0 $03 $03 $03 $01 $03
1 Unit Num Unit Num Unit Num Unit Num Unit Num
2 Stat List Ptr Buffer Ptr Buffer Ptr Ctl List Ptr
3
4 Stat Code Ctl Code
b Block Num Block Num
6 ,
Command INIT OPEN CLOSE READ WRITE
CmdNum $05 $06 $07 $08 $09
CmdList Byte
0 501 $01 $01 $04 $04
1 00 Unit Num Unit Num Unit Num Unit Num
2 Buffer Ptr Buffer Ptr
3
4 Byte Count Byte Count
b
6
i Address Ptr Address Ptr
8
Unused bytes]
Figure 6-1

Summary of Smartport calls

Summary of commands and parameters 149

Summary of error codes

The following is a2 summary of Smartport call error codes, including
a brief description of the possible causes for each. If there is no
error, the C flag (in the processor status register of the 65C02
microprocessor) is cleared (0) and the accumulator (the A register)
contains 0s: If the call was unsuccessful, the C flag is set (1) and the
A register contains the error code.

$00
$01

$04

$06

$11

$21

$22

150 Chapter 6: Block Device |/O

BadCmd

BadPCnt

BusErr

BadUnit

BadcCitl

BadCtlParm

No error.

A nonexistent command was issued.
Check the command number in the
Smartport call.

Bad call parameter count. The call
parameter list was not properly
constructed. Make sure the parameter
list has the correct number of
parameters.

A communications error between the
device controller and the host. Make
sure that RAM is both read-enabled
and write-enabled. Check the
hardware (cables and connectors)
between the device and the host.
Check for noise sources. Make sure the
cable is properly shielded.

Unit number $00 was used in a call
other than STATUS, CONTROL, or
INIT.

The control_ or status cede is not
supported by the device.

The control parameter list contains
invalid information. Make sure each
value is within the range allowed for
that parameter.

$27

$28

$2B

$2D

$2F

$30-$3F

$50-$7F

IOError

NoDrive

NoWrite

BadBlock

OffLine

DevSpec

NonFatal

The device encountered an 1/O error
when trying to read or write to the
recording medium. Make sure that the
medium in the device is formatted
and not defective and that the device
is operating correctly.

The device is not connected. This can
occur if the device is not connected
but its controller is, or if there is no
device with the unit number specified.
The medium in the device is write
protected.

The block number is outside the range
allowed for the medium in the device.
Note that this range depends on the
type of device and the typé of medium
in the device (single-sided versus
double-sided disk, for example).

Device off-line or no disk in drive.
Check the cables and connections.
Make sure that the medium is present
in the drive and that the drive is
functioning correctly.

Errors that differ from device to
device. See the technical manual for
the device in question for details.
$40-$4F. Reserved for future
expansion. ‘

A device-specific soft error. The
operation completed successfully, but
some exception condition was
detected. See the technical manual for
the device in question for details.

Summary of error codes 151

Chapter 7

Serial 1/O
Port 1

183

Serial port 1 is one of two serial I/O ports available on the

Apple Ilc. It is intended primarily as an output port for RS-232
devices, such as printers and plotters. It can be changed to a serial
communication port (like port 2) by using the System Utilities disk
or from a program.

Warning Although the Apple lic serial ports are similar to the Apple lle
Super Serial Card, there are Important differences. Refer to
Appendix F for a summary of these differences.

Table 7-1 summarizes the characteristics of this port if used as a
printer/plotter port, and is a guide to the other information in this
chapter, If you change port 1 to a communication port, refer to the
descriptions in Chapter 8, and use 1 instead of 2 for the port
number when required.

The serial port back panel connectors are described in Chapter 11.

Table 7-1

Serlal port 1 characteristics

Port number Serial port 1.

Commands Keyboard command: PR#1.

BASIC command: PR#1.

Monitor command: 1 Control-P
(does not work if there is an operating
system in RAM).

All other commands: See Table 7-2.

Initial characteristics See “Characteristics of Port 1 at
Startup.”

Hardware page See Table 7-3.

locations

Monitor firmware None.

routines

1/0 firmware See Table 7-4.

entry points

Use of screen holes See Table 7-5.

Use of other pages None.

154 Chapter 7: Serial I/O Port 1

Refer to Table 7-4 for the
standard firmware entry points
that Pascal 1.1 and 1.2 use.

UniDisk 3.5

Using serial port 1

You can access the firmware from BASIC in the usual way—that is,
by issuing Control-D (if DOS or ProDOS is in RAM) and PR#1.
Subsequent output is directed to the printer (or other device)
connected to serial port 1.

To direct Pascal output to the printer, you can use either #6: or
PRINTER:.

Your programs can also access the port by changing the value of
CSW (see Chapter 3).

Table 7-2 lists the commands you can use with serial port 1, either
from a program or from the keyboard, after you issue PR#1.

Commands followed by an asterisk in Table 7-2 (with the
exception of L) are available only on the version of the
Apple lic that supports UniDisk 3.5. These commands can be
toggled by following them directly with E (enable) or D
(disable).

Each command must be preceded by Control-I (the command
character). As soon as you issue the command character, the serial
port firmware displays a flashing question mark cursor to indicate it
is awaiting a command. You do not have to press Return after
commands that you have entered from the keyboard, or send the
return character from your program if it is sending commands to
the port. You can type more than one command on a line, but each
must be preceded by the command character.

Table 7-2
Printer port commands

Command Description

nnn Sets new line width of nnn (from 1 through 255).This
command must be followed by N (see below) or by a
carriage return,

nnB Sets baud rate to value corresponding to nn:
nn Rate nn Rate nn Rate
| 50 6 300 11 3600
2 75 7 600 12 4800
3 110 (109.92) 8 1200 13 7200
4 135 (134.58) 9 1800 14 9600
5 150 10 2400 15 1920

Using serial port 1 155

Table 7-2 (continued)
_ Printer port commands

Command

Description

C‘

nD

Ft

Li

M.

156 Chapter 7: Serial 1/O Port 1

When enabled, this command causes a carriage
return character to be sent automatically whenever
the column count exceeds the printer line width. The
command is normally enabled.

Sets data format to values corresponding to n:

n Data Stop n Data Stop

bits bits bits bits
0 8 1 4 8 2
1 7 1 5 7 2
2 6 1 6 6 2
3 5 1 7 5 2

When this command is enabled, your Apple Ilc
accepts data from the keyboard as well as from the
serial port. You can use this to disable the keyboard
before receiving or sending data to prevent accidental
keystrokes from disrupting the data flow. Be sure that
your program reenables the keyboard when the data
transfer is complete. This command is available only
from BASIC and is normally enabled.

Echoes printer output on the screen.
Disables automatic line feed after carriage return.

Generates line feed after carriage return. Normally,
this command is enabled. Disabling it has the same
effect as the K command.

When this command is enabled, all incoming line
feed characters are masked (removed from the data
stream). Normally this command is enabled.

Table 7-2 (continued)
Printer port commands

Command

Description

nnnN

nP

X‘

Changes line width to nnn (from 1 through 255;

nnn is optional); does not echo printer output on the
screen. Note: ON does not disable automatic
generation of carriage return; to do so, use

Z command, put 0 directly in location $0579, or use
the System Utilities disk.

Sets parity corresponding to n:

Parity

None
Odd MARK (1)
None None

Even 7 SPACE (0)

Parity
None

W N=O 3
A\NW A~ 3

Resets port 1 and exits from serial port 1
firmware.

Sends a 233-millisecond BREAK character (used with
some printers to synchronize with serial ports).

When enabled, this command turns on the
XON/XOFF protocol: the Apple IIc looks for the
XOFF ($13) character and responds by halting
transmission until an XON ($11) is received.
Normally this command is disabled.

Zaps (ignores) further command characters until
Control-Reset or PR#1. Does not format output or
insert carriage returns into output stream.

Note: The commands themselves are letter commands, not control

characters.

* Command (with the exception of L) is available only on the version of
the Apple Ilc that supports UniDisk 3.5. Command can be toggled: If
you follow the command with E (with no intervening space), the
command is enabled. If you follow the command with D (with no
intervening space), command is disabled. The L command is available
on the earlier Apple Ilc, but cannot be toggled there.

Using serial port 1 157

158

Warning

The serial port 1 command character is set as Control-I when the
Apple IIc is turned on. You can change it to a different control
character by sending the current control character followed
immediately by the new control character you want. This is useful if
you want to be able to send Control-I to the printer without firmware
intervention. For example, to change the command character from
Control-I to Control-V, send Control-I Control-V either from the
keyboard or from a program. (Control-V and Control-W are the
recommended substitute control characters.) To change the
command character back again, send Control-V Control-I. Don't
slip any spaces between the control characters that you send.

Do not use Control-A, -B, -C, -H, -J, -L, -M, or -Y: Apple lic
firmware may Intercept these control characters, causing
unpredictable results.

The following are examples of valid commands and command
sequences. These examples all show commands being entered from
the keyboard, but your programs can send the characters just as
well. Remember to issue a PR#1 before starting to send commands
to serial port 1.

To echo output to the display screen:

Control-I 1

To set line width 72, disable line feed, and echo:
Control-I1 K Control-I 7 2 N

To change control character to Control-V:
Control-I Control-V Return

To set up the serial port to allow sending Control-I as part of a
character stream:

Control-V (command) Return

Chapter 7: Serial I/O Port 1

ACIA stands for asynchronous

communication Interface

adapter, a serlal I/O chip. Note In
Chapter 11 that some of the bit

assignments for this port
from those for port 2,

differ

Warning

Characteristics of port 1 at startup
After power-up, the printer firmware sets the following
configuration:

0O 9600 baud

O eight data bits, no parity bits, two stop bits

O 80-column line width; no echo to display screen

D firmware supplies line feed after carriage return

O command character is set to Control-I (see below)

These values are stored in the auxiliary memory screen holes

(Table 7-5). You can change some of these settings from the
keyboard by typing PR#1, the command character, and one of the
commands listed in Table 7-2. How port characteristics change as a
result of various activities is described under “Changing Port 1
Characteristics” later in this chapter.

Hardware page locations for port 1

Table 7-3 lists for serial port 1 the addresses and bit assignments of
its hardware registers on page $C0. The registers are internal to a
6551 ACIA; their bit assignments are described in Chapter 11.

This table Is for your information only. To avoid having problems
with the system, you should never try to directly access the
hardware. Instead. use the Apple lic’s built-in firmware in your
programs.

Table 7-3
Port 1 hardware page locations

Location Description

$C090-$C097 Reserved

$C098 ACIA transmit/receive data register
$C099 ACIA status register

$C09A ACIA command register

$C09B ACIA control register

$C09C-$COSF Reserved

Hardware page locations for port 1 159

The ACIA register bits are
defined in Chapter 11.

1/0 firmware support for port 1

Table 7-4 lists the locations and values of the 1/O firmware protocol
table. This standardized protocol is available for use by any
application program. Chapter 3 describes how to use this protocol.

Table 7-4
Port 1 1/O firmware protocol

Address Value Description

$C105 $38 Pascal ID byte.
$C107 $18 Pascal ID byte.
$C10B $01 Generic signature byte of firmware cards.
$C10C $31 Same ID as for Super Serial Card.
$C10D $ii $Clii is entry point of initialization routine (PInit).
$C10E $rr $Clrr is entry point of read routine (PRead).
$CI0F $ww $Clww is entry point of write routine (PWrite).
$C110 $ss $Clss is entry point of the status routine (PStatus).
$C111 non- No optional routines.

zero

Screen hole locations for port 1

Table 7-5 lists the screen hole locations that serial port 1 uses. Note
that the auxiliary memory locations are reserved for startup value
settings, which are listed and interpreted in the table.

Table 7-5
Port 1 screen hole locations

Auxiliary memory screen holes (firmware loads values at power-up)

Location Description
$0478 $9E (ACIA control reg: eight data + two stop bits,
9600 baud)

$0479 $0B (ACIA command reg: no parity)
$047A $40 (flags: no echo, auto LF after CR, serial port)
Bit Interpretation

7 Echo output on display (0 = no echo)
6 Generate LF after CR (0 = no LF)
51 Always = 0 (reserved)
0 = communication port; 0 = serial printer port

160 Chapter 7: Serial 1/O Port 1

Table 7-5 (continued)
Port 1 screen hole locations

Auxiliary memory screen holes (firmware loads values at power-up)

Location
$047B

Description

$50 (printer width: 80 columns)

Bit Interpretation '

7-0 Printer width (0 = do not insert CR)

Main memory screen holes

Location
$0479
$04F9
$0579
$05F9
$0679

$06F9
$0779

$07F9

Description

Reserved

Reserved

Printer width (1-255; 0 = disable formatting)
Temporary storage location

Bit 7 = 1 while the firmware is parsing a command
string

Current command character (initially Control-I)

Bit 7 = 1 if echo to display is on; bit 6 = 1 if firmware is
to generate a line feed after carriage return

Current printer column

Changing port 1 characteristics

Figure 7-1 is a diagram of where the port characteristics are stored
and moved under different circumstances. You can see the
following from the figure:

O When the power is first turned on, the Monitor reset firmware
moves the predefined set of port characteristics listed earlier in
this chapter from ROM into the auxiliary memory screen holes
listed in Table 7-5.

O If you specify new characteristics using the System Utilities disk,
the SUD software changes the values in the auxiliary memory
screen holes. Your programs can do the same thing.

Changing port 1 characteristics 161

O The values stored in the auxiliary memory screen holes are
affected by power-on reset, but not by either Open Apple-
Control-Reset or a simple Control-Reset. This feature is
provided so that a port that has been reconfigured will remain
that way while some other program (such as an application
program) is started up. (See Figure 7-1.)

O PR#1 causes the firmware to move the characteristics stored in
the auxiliary memory screen holes into the main memory screen
holes.

O A program can change values in the main memory screen holes
directly. However, the only value guaranteed to be in the same
place for the entire Apple II series is the line length in main
memory location $0579.

O The firmware uses the port as it is defined in the main memory
screen holes at any given time. You should use the commands
listed in Table 7-2 to change them.

System Utilities Disk Printer Port
PIN Number Selection Commands
(See Appendix H) (See Table 7-2)

Power On
Reset

\ \ 4
Port 1 Port 1 Port 1
v |°' ' Auxiliary RAM Main RAM
Fi 4 ueLsolé\ — Screen Holes Screen Holes
tiwarg Losas (See Table 7-5) (See Table 7-5)
“Linewidth=0 | Reserved Screen Holes|

Direct Control
of Interrupt Features
(See Appendix E)

Optional Direct
Program Control

(CoNTROL)-(RESET)

Power On
Reset

Figure 7-1
Diagram of port 1 characteristics storage

162 Chapter 7: Serial |/O Port 1

Data format and baud rate

Serial data transfer consists of a string of 1’s and 0’s sent down a wire
at a prearranged rate of transmission, called the baud rate.

Before transfer begins, both sender and receiver look for a
continuous value of 1: this is called the carrier (Figure 7-2). When
the value goes to 0, the receiver presumes it is a start bit—that is, the
bit that designates the beginning of a character of data. If it lasts
longer than a bit could possibly last, it is considered a BREAK
signal, which some printers use for synchronization.

If the first 0 proves to be a bit, it is interpreted as the start bit. Next
come the seven or eight data bits (six is seldom used with
computers), low-order bit first. If parity is on, it comes next in the
message. Finally, one or two stop bits appear. The stop bits have a
value of 1, like the carrier. The next start bit begins transfer of the
next character of data.

The parity bit provides a simple check of data validity. Odd parity
means the sender counts the number of 1’s among the data bits, and
sends the appropriate parity bit to make the total number of 1's

odd. With even parity, the sender adds the appropriate parity bit to
make the total number of 1 bits even. MARK parity is always a 1 bit;
SPACE parity is always a 0. The receiver can then check that the
parity bit is correct.

If the baud rate is 300 and the data format is one start bit plus

seven data bits plus one parity bit plus one stop bit (totaling ten bits
transmitted for each byte of data sent), then the actual transfer rate
is about 30 characters per second.

" No
= 1or MARK 7 Odd 1
— - 1 Start + Data + { Even -} Parity + Stop
— 8 MARK 2
0 or SPACE LSPACE
LSB MSB Carrier
1= T T r—---
1lof1 1]0 ofl1]o0]1 1
0=—— 1
Start Odd Stop Next
Bit Parity Bit Start

Bit
ASCIl letter M = $4D; sent as 8 data, odd parity, 1 stop bit

Figure 7-2
Data format

Changing port 1 characteristics 163

164

Carriage return and line feed

If you are using a typewriter and you push the carriage all the way to
the right (in other words, position the printing mechanism at the
left margin), you have performed a carriage return. On the other
hand, turning the platen so the paper moves to the next line (or
using the index key on an electric typewriter) is called a line feed.
Most typewriters perform a line feed automatically after a carriage
return, and so the two seem to be one—but they are not.

Carriage return and line feed are separate ASCII codes. Carriage
return is sometimes denoted CR: it is ASCII code 13 ($0D). Line
feed, sometimes denoted LF, is ASCII code 10 ($0A). Down Arrow
on the Apple Ilc keyboard generates a LF.

Some printers can supply a line feed automatically after detecting a
carriage return; others cannot. If the printer does not supply a line
feed after a carriage return and it is not supplied in the data stream,
the printer keeps printing over and over on the same line. On the
other hand, if both the printer and the Apple IIc firmware supply LF
after CR, double line-spacing results.

If the print head keeps moving too far to the right across the page
and then prints many characters on top of one another on the right,
then the firmware should be instructed to furnish CR after a certain
line width has been reached. If the printer prints too short a line
before moving to the next line, then probably the firmware is using
too small a line width.

If the printer misses characters at the beginning of each line but
otherwise prints correctly, there is probably not enough time for
the print mechanism to return to the left margin in response to CR.
You must use a lower baud rate with such a printer.

Chapter 7: Serial I/O Port 1

Sending special characters

If you want to send special characters (control characters) to the
printer without having them intercepted and executed by the

Apple Ilc firmware, use the Z command (see Table 7-2). If the only
special character that causes a problem is the command character
(normally Control-1 for port 1), you can change just the command
character instead of using the zap (Z) command. If you use the zap
command, the firmware does no formatting; that is, it does not
check line width or insert carriage returns or line feeds. This may be
necessary to send graphics to a printer or plotter.

Displaying output on the screen

You can display printer output on the screen, but if the printer line
width exceeds the 40 or 80 columns you have selected for display,
you should turn off video display.

Changing port 1 characteristics 165

Chapter 8

Serial 1/O
Port 2

167

Serial port 2 is one of two serial I/O ports available on the
Apple Ilc. It is intended primarily as a communication port for
modems. You can change it to a serial printer port (like port 1)
using the System Utilities disk or from a program.

Warning Although the Apple lic serial ports are similar to the Apple lle
Super Serlal Card, there are Important differences. Refer fo
Appendix F for a summary of these differences.

Table 8-1 summarizes the characteristics of this port and is a guide
to the other information in this chapter. If you change port 2 to a
serial printer port, refer to the descriptions in Chapter 7 and use 2
instead of 1 for the port number when required.

The serial port connectors are described in Chapter 11.

Table 8-1

Serial port 2 characteristics

Port number Serial port 2.
Commands Keyboard commands:

IN#2 before Table 8-2 commands,
IN#2 to accept port 2 input,

PR#1 to echo input to printer,
PR#2 to echo input back to port 2.

BASIC commands: same.

Monitor command: 2 Control-P
(does not work if there is an operating
system in RAM). '

All other cbmmands: see Table 8-2.

Initial characteristics See “Characteristics of Port 2 at Startup.”

Hardware page See Table 8-3.
locations

Monitor firmware None.
routines

1/0 firmware See Table 8-4.
entry points

168 Chapter 8: Serial I/O Port 2

Important

Refer to Table 8-4 for the
standard firmware entry points
that Pascal 1.1 and 1.2 use.

UniDisk 3.5

Table 8-1 (continued)
Serlal port 2 characteristics

Use of screen holes See Table 8-5.

Use of other pages In terminal mode, firmware uses auxiliary
memory locations $0800-$087F to store
keyboard input, and $0880-$08FF as a
serial input buffer.

Using serial port 2

You can access the firmware from BASIC in the usual way—that is,
by issuing Control-D (if DOS or ProDOS is in RAM) followed by
IN#2 or PR#2. Subsequent input and output are routed through the
modem (or other device) connected to serial port 2.

In terminal mode, the modem port commands listed in Table 8-2
must follow Control-D and IN#2 (not PR#2) and the command
character (which Is usually Control-A).

To transfer files to the modem under Pascal, specify REMOUT:
or #8:. To transfer files from the modem under Pascal, specify
REMIN: or #7:.

Table 8-2 lists the commands you can use with serial port 2, either
from a program or from the keyboard, after you issue IN#2.

Commands followed by an asterisk in Table 8-2 (with the
exception of L) are available only on the version of the
Appile lic that supports UniDisk 3.5. These commands can be
toggled by following them directly with E (enable) or D
(disable).

Each command must be preceded by Control-A (the command
character). As soon as you issue the command character, the serial
port firmware displays a flashing question mark cursor to indicate it
is awaiting a command. If you press Return, you get the current
video cursor again. You do not have to press Return (or send a
return character) after commands. You can type more than one
command on a line, but each must be preceded by the command
character.

Using serial port 2 169

Table 8-2

Modem port commands

Command

Description

nnn

nnB

Ct

nD

F‘

L#

170 Chapter 8: Serial 1/O Port 2

Sets new line width of nnn (from 1 through 255); this
must be followed immediately by N (see below) or by
carriage return.

Sets baud rate to value corresponding to nn:

nn Rate nn Rate nn Rate

1 50 6 300 11 3600
2 75 7 600 12 4800
3 110 (109.92) 8 1200 13 7200
4 135 (134.58) 9 1800 14 9600
5 150 10 2400 15 19200

When enabled, this command causes a carriage
return character to be sent automatically whenever the
column count exceeds the printer line width. The
command is normally enabled.

Sets data format to values corresponding to n:

n Data Stop n Data Stop

bits bits bits bits
0 8 1 4 8 2
1 7 1 5 7 2
2 6 1 6 6 2
3 5 1 7 5 2

When this command is enabled, your Apple Ilc
accepts data from the keyboard as well as from the
serial port. You can use this to disable the keyboard
before receiving or sending data to prevent accidental
keystrokes from disrupting the data flow. Be sure that
your program reenables the keyboard when the data
transfer is complete. This command is available only
from BASIC and is normally enabled.

Echoes output on the screen.
Disables automatic line feed after carriage return.

Generates line feed after carriage return. Normally,
this command is enabled. Disabling it has the same
effect as the K command.

Table 8-2 (continued)
Modem port commands

Command

Description

Mt

nnnN

nP

X‘

Control-T

When this command in enabled, all incoming line
feed characters are masked (removed from the data
stream). Normally this command is enabled.

Sets line width to nnn (from 1 through 255); does not
echo output on the screen. Note: ON does not disable
automatic generation of carriage return; to do so, use
the Z command, put 0 directly in location $057A, or
use the System Utilities disk.

Sets parity corresponding to n:
Parity Parity

none
MARK (1)
none

SPACE (®

n
0 none
1 odd

2 none
3 even

NO\W A 3

Quits terminal mode.

Resets port 2 and exits from serial port 2
firmware.

Sends a 233—mi11isecond BREAK character.

Enters terminal mode. Use this command after IN#2
only. Also, if you follow this command by PR#2, the
Apple Ilc echoes input to output. (If the other device
does so too, the first character loops endlessly,

locking up the system. Use Control-Reset to get out.)

When enabled, this command turns on the
XON/XOFF protocol: the Apple IIc luoks for the
XOFF ($13) character and responds by halting
transmission until an XON ($11) is received.
Normally this command is disabled.

Zaps (ignores) further command characters until
Control-Reset. Does not format output or insert
carriage returns into output stream.

This command from a remote device puts the
Apple Ilc in terminal mode if IN#2 is already in effect.
It is the same as Control-A T typed locally.

Using serial port 2 171

172

Warning

Table 8-2 (continued)
Modem port commands

Command Description

Control-R This command from a remote device undoes the
terminal mode command. If IN#2 and PR#2 are in
effect, the remote keyboard and display become the
input and output devices of the local Apple Ilc. It is
the same as Control-A Q typed locally.

Note: The commands themselves are letter commands, not control

characters.

* Command (with the exception of L) available only on the version of the
Apple IIc that supports UniDisk 3.5. Command can be toggled: If you
follow the command with E (with no intervening space) the command is
enabled. If you follow the command with D (with no intervening space)
the command is disabled. The L command is available on the earlier
Apple Ilc, but it cannot be toggled there.

When the Apple Ilc is turned on, the serial port 2 command
character is defined as a Control-A. You can change it to a different
control character by typing the current control character followed
immediately by the new control character you want. This is useful if
you want to be able to send Control-A to the output device without
firmware intervention.

For example, to change the command character from Control-A to
Control-V, send Control-A Control-V either from the keyboard or
from a program. (Control-V and Control-W are the recommended
substitute control characters.) To change the command character
back again, send Control-V Control-A.

Do not use Control-B, -C, -H, -l. -J, -L, -M, or -Y: Apple lic
firmware may Intercept these control characters, causing
unpredictable results.

The following are examples of valid commands and command
sequences. These examples show commands being entered from
the keyboard, but your programs can send the characters just as
well.

To enable echo to the screen:
Control-A I
To send a break character to a remote device:

Control-A B

Chapter 8: Serial 1/O Port 2

Warning

To change the control character to Control-V (for example, so you
can send Control-A as part of a character stream):

Control-A Control-V Control-V(command)

Characteristics of port 2 at startup

After power-up, the firmware sets the following configuration:
300 baud
eight data bits, no parity bits, one stop bit

0

o

O firmware does not supply line feed after carriage return

O firmware does not insert carriage returns into output stream
O

firmware does not echo output to the display screen
0O command character is set to Control-A

These values are stored in the auxiliary memory screen holes

(Table 8-5). You can change some of these settings from the
keyboard using the command character followed by one of the
commands listed in Table 8-2. How port characteristics change as a
result of various activities is described later in this chapter.

If you change any of these values using keyboard commands or
commands from a program, subsequent accesses to the port
firmware (even by another program) use the new settings instead of
the power-up values. This allows you to change the settings once at
system startup and get the desired configuration for subsequent
uses.

Hardware page locations for port 2

Table 8-3 lists for serial port 2 the addresses of its hardware registers
on page $C0. The registers are internal to a 6551 ACIA; their bit
assignments are described in Chapter 11.

This table is for your Information only. To avoid having problems
with your system, you should never try to directly access the
hardware. Instead. use the Apple lic’s built-in firnware in your
programs.

Hardware page locations for port 2 173

Table 8-3
Port 2 hardware page locations

Location Description
$COA0-$COA7 Reserved
$COAS8 ACIA transmit/receive data register
$COA9 ACIA status register
$COAA ACIA command register
Note in Chapter 11 that some ' p
of the bit assignments for this $COAB ACIA control register
port differ from those for port 1. $COAC-$COAF Reserved

1/0 firmware support for port 2

Table 8-4 lists the values in the 1/O firmware protocol table for
serial port 2. This standardized protocol is available for use by any
application program. Chapter 3 describes how to use this protocol.

Table 8-4
Port 2 1/O firmware protocol

Address Value Description

$C205 $38 Pascal ID byte.
$C207 $18 Pascal ID byte.
$C20B $01 Generic signature byte of firmware cards.
$C20C $31 Same ID as for Super Serial Card.
$C20D $ii $C2ii is entry point of initialization routine (PInit).
$C20E $rr $C2rr is entry point of read routine (PRead).
$C20F $ww $C2ww is entry point of write routine (PWrite).
$C210 $ss $C2ss is entry point of the status routine (PStatus).
$C211 non- No optional routines.

zero

Screen hole locations for port 2

The ACIA register bits are Table 8-5 lists the screen hole locations that serial port 2 uses. Note
defined in Chapter 11. that the auxiliary memory locations are reserved for startup value
settings, which are listed and interpreted in the table.

174 Chapter 8: Serial 1/O Port 2

Table 8-5
Port 2 screen hole Iocoﬂons'

Auxiliary memory screen holes (firmware loads values af power-up)

Location Description
$047C $16 (ACIA control reg: eight data + one stop bit,
300 baud)

$047D $0B (ACIA command reg: no parity)
$047E $01 (flags: no echo, no auto LF after CR,
communication port)
Bit Interpretation
7 Echo output on display (0 = no echo)
6 Generate LF after CR (0 = no LF)
5-1 Always = 0 (reserved)
0 1 = communication port; 0 = serial
printer port
$047F $00 (line length: do not add any CR to output stream)
Bit Interpretation _
7-0 Line length (0 = do not insert CR)

Main rnémory screen holes

Location Description

$047A Reserved

$04FA Reserved

$057A Line length (1—255; 0 = disable formatting)
$05FA Temporary storage location

$067A Bit 7 = 1 if and only if the firmware is currently parsing
a command string

$06FA Current command character (initially Control-I)

$077A Bit 7 = 1 if echo to display is on; bit 6 = 1 if firmware is
to generate a line feed afier carriage return

$07FA Current column

Screen hole locations for port 2 175

176

Changing port 2 characteristics

Figure 8-1 is a diagram of where the port characteristics are stored
and moved under different circumstances. You can see the
following from the figure:

O When the power is first turned on, the Monitor reset firmware
moves the predefined set of port characteristics listed in Table 8-
2 from ROM into the auxiliary memory screen holes listed in
Table 8-5.

O If you specify new characteristics using the System Utilities disk,
the utility software changes the values in the auxiliary memory
screen holes.

0O The values stored in the auxiliary memory screen holes are
affected by power-on reset, but not by either Open Apple-
Control-Reset or a simple Control-Reset. This feature is
provided so that a port that has been reconfigured will remain
that way while some other program (such as an application
program) is started up.

O IN#2 causes the firmware to move the characteristics stored in the
auxiliary memory screen holes into the main memory screen
holes.

O A program can change values in the main memory screen holes
directly. However, the only value guaranteed to be in the same
place for the entire Apple II series is the line length in main
memory location $057A.

O The firmware uses the port as it is defined in the main memory
screen holes at any given time. You should use the commands
listed in Table 8-2 to change these characteristics.

Chapter 8: Serial 1/O Port 2

System Utilities Disk
PIN Number Selection

Communication Port

Commands

(See Appendix H) (See Table 8-2)
Reset 4 IN#2 Y
Port 2
Port 2 Port 2 Main RAM
Values in Auxiliary RAM Screen Holes
Firmware Locations Screen Holes (See Table 8-5)
(SeeTables-sy | | _ V- T -

Reserved Screen Hole:

Direct Control
of Interrupt Features
(See Appendix E)

Figure 8-1
Diagram of port 2 characteristics storage

Data format and baud rate

Chapter 7 describes data format and baud rate, and explains how
they apply to printers. Refer to that chapter for definitions of terms.

A noteworthy characteristic of data communication is its
strangeness: sometimes the oddest changes make a given
communication arrangement work or not work. You must keep this
notion firmly in mind when working with serial port 2.

For example, modem communication involves quite a few elements
(Figure 8-2):

O the Apple IIc and its firmware, with the baud rate, data format,
and other characteristics you have selected

O the cable from the Apple Ilc to the modem
O the modem
O possibly an acoustic coupler for a telephone handset

Changing port 2 characteristics 177

g8
=
(=]

i| DDoo
pooo

J 1

Telephone
and Modem Mainframe

O the telephone lines, with their switching equipment, boosters,
and noise

O some combination of modem, cable, and remote computer or
terminal

As you can imagine, some method is required for successful data
transmission. If you have problems, change only one variable at a
time and then cycle through the other variables one at a time. Take
nothing for granted. The data format advertised for an information
service, for example, may be different from the one you end up
using with the Apple Ilc.

Modem

J L J L J L]

Local DTE Local DCE Transmission Line Remote DCE Remote DTE
(Data Terminal (Data Communication
Equipment) Equipment)

Figure 8-2

Devices In a typical communication setup

178 Chapter 8: Serial I/O Port 2

-or a further description of what
'erminal mode does and how to
get into and out of it, refer to
he last section of this chapter.

Carriage return and line feed

If you are communicating with a computer or terminal, carriage
return and line feed may or may not be involved. Start off without
generating them, and turn on automatic generation only as needed.
They are described as used with printers in Chapter 7.

Routing_input and output

This section discusses the possible ways that serial port 2 can route
information. Sometimes the cause of communication problems is
that information is not going where you think it is, or it is and you
cannot see evidence of the fact. Figures 8-3 through 8-6 show some
of the patterns of information flow you can select.

It is best to read all this material as a unit; questions that arise while
you read one description may be answered elsewhere.

The simplest serial port 2 command is IN#2 (Figure 8-3). Port 2
becomes the input device. Data coming into the port gets passed to
the input buffer (page $02 of main memory). Applesoft firmware
and system software can see the data and carry out commands in the
normal way.

Of course, you can also use just the PR#2 command—for example,
if you want to send a listing to the modem.

To use port 2 for data communication, you ordinarily put it into
terminal mode. Following IN#2, pressing Control-A gets the
attention of the port 2 firmware, which displays a blinking question
mark (?) as a prompt. Now type T to put the computer in terminal
mode. In this mode, the firmware displays a blinking underscore
character (_) as a prompt.

In the discussion that follows, local refers to your Apple Ilc.
Remote refers to some other device, usually in a distant location
and at the other end of a communication link. The remote device
can be any ASCII-generating unit: a terminal or a computer.

If a remote computer is another Apple IIc or an Apple 1I series
machine with a Super Serial Card in it, then most of the commands
described here apply to it as well.

Changing port 2 characteristics 179

(

Printer

Figure 8-3
Effect of IN#2

Display

Communication

V44

Device

ﬁ
|4
1 vid 2
|
Port 1 Port 2
FW FW
MON |-
4
Keyboard

Half-duplex operation

In half-duplex operation, information can flow from A to B or
from B to A, but in only one direction at a time. In a half-duplex
setup, the host does not echo back to the terminal what the terminal
sends it. For half-duplex operation, use IN#2 and Control-A T
(Figure 8-4) whether the Apple Ilc is the host or the terminal.

180 Chapter 8: Serial I/O Port 2

7”7

Remote
Communication
Device

Remote
Terminal
or Computer

IN#2 plus Control-A T is the best way to set up the computer for
auto-answer operation. The T command allows port 2 firmware to
exchange information with the local modem without interference
from the local firmware or system software. (The remote device can
always cancel the T command with Control-R if necessary, and
restore terminal mode with Control-T.) Avoiding PR#2 at this point
means that the Apple Ilc can operate as a half-duplex terminal,
half-duplex host, or full-duplex terminal. (The remote device can
also issue Control-A PR#2 if PR#2 is required at the local
computer.)

Display
(] D = Remote
Communication o
Printer (Device f,‘ Communication
Device
1 vid 2 A
A
?(PR#1) t---\
1 M 31y \
Port 1 |@=====o Port 2
FW FW
Remote
Terminal
MON | or Computer
Keyboard
Figure 8-4

Effect of IN#2 and T command, half duplex

In half-duplex operation, the output hook is available for other
uses. For example, you can issue PR#1 to print incoming messages
from port 2. Use the Control-A I command to display information
on the screen.

Changing port 2 characteristics 181

Printer

Figure 8-5

Full-duplex operation

In full-duplex operation, information can flow from A to B and
from B to A simultaneously. Typically, one of the computers (the
host computer) echoes its input to output, so the other computer
(the terminal) can easily verify that the communication is taking
place.

Figure 8-5 shows the ﬂow of information when the Apple IIc is a full-
duplex terminal. (The setup commands, IN#2 and Control-A T, are
the same as for half duplex.)

Display
icati Remote
. | Communication /4 ‘ ote:
(Device 2/ Commuqlcatuon
Device
1 vid [T]2 ‘ p\
L '
(PR#1) 0 = 1! |
Plg\';:l1 = P::\r;lz Echo
r' Remote
v Terminal
MON | or Computer
Keyboard

Effect of IN#2 and T command., full-duplex terminal

If your Apple IIc is the terminal in full-duplex operation, use the

N command to turn off echoing input to the screen. If the Apple Ic
does echo input to the screen in this setup, everything you type will
appear twice: once from the Apple IIc and once from the host
computer.

182 Chapter 8: Serlal /O Port 2

In this mode of operation, if you echo input to the printer you can
get a printed record of both sides of the communication session:
the input from the host, and the Apple Ilc output as echoed by the
host.

Figure 8-6 shows the flow of information when the Apple IIc is a full-
duplex host. In this case, the local Apple IIc must echo input to
output for the remote device. The setup commands include PR#2 in
this case.

Display

q D Communication P24 Remote
Printer - / Device 27 Communication
Device
1 vid [T]2 A
-} |
, 03] ¥
Port 1 Port 2 (No Echo)
FW FW
Remote
Echo Terminal
MON or Computer
Keyboard
Figure 8-6

Effect of IN#2, PR#2, and Tcommand, full-duplex host

Warning

If the Apple lic echoes input to output and the other computer
does too, then the first subsequent keypress will echo back and
forth endlessly and lock up the Apple lic. This will require a
Control-Reset to get out.

If you echo Input to output when using an information service,
the host will end up seeing the echo of what it sent you as
though you had typed it.

Changing port 2 characteristics 183

184

Warning

In this arrangement, the local output hook is not available for using
the printer or other device. To display keyboard and port 2 input
on the screen, issue Control-A L.

Terminal mode

Terminal mode makes the Apple Ilc act like 2 dumb terminal—one
that just sends and receives information, but does not process it.
Input and output flow through special serial I/O buffers on page $08
of auxiliary memory. Applesoft firmware and system software
cannot see or interpret the data: only the serial port 2 firmware
deals with it.

In most terminal mode setups, the firmware will not display port 2
input unless you use the Control-A I command.

When using terminal mode, $0800-S08FF of auxiliary RAM is
used for buffering. Any data stored there will be overwritten
when terminal mode is enabled.

Control-A T turns on terminal mode, and Control-A Q turns it off.

The remote device can go into terminal mode, and then turn off the
local Apple Iic’s terminal mode with the Control-R command. If it
then issues Control-A PR#2, local output will go to the remote
device. The remote keyboard and display then become the input
and output devices of the local Apple IIc processor. This is remote
mode.

In remote mode, the local Apple IIc does not use the serial I/O
buffers (as it does in terminal mode); therefore, local firmware and
system software detect and interpret all input and output data. So,
for example, if you type CATALOG at the remote device keyboard,
the local Apple Ilc will execute the command and list the disk
catalog on the remote device’s display. (In terminal mode, the
local computer would simply display the word CATALOG on its
screen.)

The remote device can turn the local Apple IIc’s terminal mode
back on with Control-T. Control-A T issued at the remote device
only turns on the remote device’s terminal mode, unless the -
command character there has already been changed to something
else.

Chapter 8: Serial 1/O Port 2

Chapter 9

Mouse and
Game Input

185

186

Warning

This chapter describes the Apple IIc’s mouse port and hand
controller (game) input capabilities. The mouse and hand
controllers use the same 9-pin connector on the back panel; the
firmware uses the port as directed by keyboard or program
commands.

Mouse input

Table 9-1 summarizes the mouse port’s characteristics and guides
you to other information in this part of the chapter.

If you want your programs that use the mouse on the Apple lle
and other Apple Il series computers to work with the Apple lic,
always use the 1/O firmware entry points listed in Tables 9-4
and 9-5, rather than dealing directly with the mouse hardware
and RAM locations.

The mouse back panel connector is described in Chapter 11.

Table 9-1

Mouse Input port characteristics

Port number Mouse input port 4.
BASIC commands Turn on mouse:

PRINT CHR$(4)“PR#4”:PRINT CHR$(1)

Turn off mouse interrupts:
PRINT“PR#4”:PRINT CHR$(0)

Turn on graphics character set: See
“MouseText” in Chapter 5.

i

Initial characteristics After a reset, all mouse interrupts are off
and the rising edge of X0 and YO are
selected for interrupts.

Hardware page See Table 9-2.
locations

Monitor firmware None.

routines

1/0 firmware See Tables 9-3 and 9-4.
entry points

Use of screen holes See Table 9-5.

Chapter 9: Mouse and Game Input

- Memory expansion

The memory expansion version of the Apple lic places the
mouse at input port 7 and the memory expansion card at
port 4. Thus, all "PR4" entries become "PR7“ entries.

Mouse connector signals

The mouse uses the same DB-9 connector as the hand controllers.
However, the interpretation of the signals arriving on the pins
differs depending on the commands and signals received.

Figure 11-37 shows the names of the pin assignments when a mouse
is connected.

Mouse operating modes

This section tells what the mouse operating modes are for. Later
sections of this chapter describe how to set the various mouse
operating modes.

Your program should call the ServeMouse routine to determine the
source of an interrupt as soon as it receives one, in all the interrupt
modes except transparent mode.

Transparent mode

In transparent mode, your program must read screen holes to check
for mouse movement. An interrupt routine in the Apple IIc
firmware updates mouse position counters each time the mouse is
moved, then returns control to the main program task. The findings
of the interrupt routine are placed in the screen holes for your
program to find. Table 9-5 lists the screen holes with the
information that your program should look for.

This is the only mouse mode available to BASIC programs.

Movement interrupt mode

On the Apple Ilc, a signal called VBInt can interrupt the processor
whenever a video vertical blanking signal occurs. This can make it
easier for your programs to smoothly move the mouse cursor in
response to mouse movements.

Mouse input 187

“MouseText” in Chapter §
contains recommendations for
using MouseText characters
with a mouse.

In movement interrupt mode, the mouse firmware arms VBlInt
whenever the mouse is moved at least one count in any direction.
When VBlInt occurs, program control passes to the vector address
contained at locations $03FE and $03FF; the interrupt handler in
your program can then update the cursor smoothly to its next
screen position.

Your program’s interrupt handler must first call ServeMouse
(Table 9-3) to see if the mouse caused the interrupt. It should then
call ReadMouse to get mouse status and its current X-Y position.
The routine can also change the mouse mode and position if
desired.

The maximum amount of mouse movement that can occur between
successive VBIInt interrupts is limited to the distance someone can
move a mouse in one-sixtieth of a second.

Button interrupt mode

- The Apple IIc mouse-button hardware location does not generate

interrupts. However, a program can simulate mouse-button
interrupts by polling the button whenever VBIInt occurs, and acting
on the interrupt whenever the button state has changed. This lets
your program provide fast response to the mouse movement
without too much program overhead.

Movement/button interrupt mode

The movement/button interrupt mode is a combination of the two
modes just described. It provides the best response possible without
constant polling of the mouse position and button. Your program
can effectively process a main task concurrently with cursor and
menu updating, as well as menu-selected command processing.

Vertical blanking active modes

The vertical blanking active modes are the same as the four just
described except that they allow VBL interrupts to be sent to the
user.

188 Chapter 9: Mouse and Game Input

Appendix E explains how the
firmware handles interrupts.

Warning

Mouse soft switches

The soft switches assigned to the mouse interface are shown in
Table 9-2. On power-up or reset, the hardware selects the rising
edge of X0 and YO (mouse movement signals) and masks out all
mouse interrupts.

Table 9-2 Is included here for your information only. You should
use the bullt-in firmware to access the mouse; doing so Is much
easier than writing your own mouse interrupt handler and
guarantees compatiblility with all other Apple li-series
computers.

Table 9-2

Mouse soft switches

Name Action Hex Function

IOUDis w $CO7E On: Disable IOU access for

addresses $C058 to $COSF;
enable access to DHiRes
switch*

IOUDis w $CO7F Off: Enable 10U access for
addresses $C058 to $COSF;
disable access to DHiRes

switch*

RdIOUDis R7 $CO7E Read IOUDis switch (1 = off)t

DisXY R/W $C058 Disable (mask) X0 and Y0
movement interruptst -

EnbXY R/W $C059 Enable (allow) X0 and Y0
movement interruptst

RAXYMsk R7 $C040 Read status of X0/Y0 interrupt
mask (1 = mask on)

RstXY R $C048 Reset X0/YO0 interrupt flags

XO0Edge R/W $C05 Select rising edge of X0 for
interruptt

XOEdge R/W $COSD Select falling edge of X0 for
interruptt

RAXOEdge R7 $C042 Read status of X0 edge selector
Q1 = falling)

RstXInt R $Co15 Reset mouse X0 interrupt flag

Mouse input 189

190

Table 9-2 (continued)
Mouse soft switches

Name Action Hex Function
YOEdge R/W $CO5E Select rising edge of YO for
- interruptt

YOEdge R/W $CO5F Select falling edge of YO for
interrupt}

RAYOEdge R7 $C043 Read status of YO edge selector
(1 = falling)

RstYInt R $C017 Reset mouse YO interrupt flag

DisVBI R/W $COSA Disable (mask) VBL
interruptst

EnVBI R/W $C05B Enable (allow) VBL interrupts

RdVBIMsk R7 $C041 Read status of VBL interrupt
mask (1 = mask on)

RstVBI R $C019 Read and then reset VBlInt
flag :

PTrig R/W $C070 Reset VBIInt flag; trigger
paddle timer

RdBtn0 R7 $C061 Read first mouse button status
(1 = pressed)§

Rd63 R7 $C063 Read second mouse
button status (0 = pressed)q

MouX1 R7 $C066 Read status of X1 (mouse
X direction) (1 = high)

MouY1 R7 $C067 Read status of Y1 (mouse

Y direction) (1 = high)

* When IOUDis is on, $C058-$CO5F do not affect mouse, and $COSE
and $COSF become DHiRes (Table 5-8).

t Read or write to $C07x also resets VBIInt and triggers paddle timers.

t These work only if IOUDis is off.

§ This location is also the Open Apple key (Table 4-1).

q This is also the location of the Shift-key mod (Appendix F).

Mouse firmware sets interrupts in response to mode settings under
program control. The vertical blanking interrupt (VBIInt) is armed
if the mouse button is pushed or moves at least a count of 1 in the
X0 or YO coordinates. Read $C070 to reset the VBL interrupt.
Because a VBL occurs every sixtieth of a second, that is the
maximum time that can elapse before the resulting interrupt can be
acknowledged and acted upon.

Software can also select which edge of X0 and YO information will
cause the XlInt or Ylnt.

Chapter 9: Mouse and Game Input

Important

UniDisk 3.5

Memory expansion

When an interrupt has occurred, you can read the direction of the
mouse’s X1 movement by reading address $C066 bit 7, and
Y1 movement by reading address $C067 bit 7.

A program can read the status of the soft switches by reading one of
the locations $C040-$C043 and then testing data bit 7. The soft
switches are described in Table 9-2.

The section on mouse input in Chapter 11 explains what X0, Y0,
X1, Y1 are and what they mean with respect to mouse movement.

If you write your own mouse interrupt handler, it should enable the
main bank-switched memory, set up its own IRQ vectors at
addresses $FFFE and $FFFF, keep track of video modes and the
alternate stack, and check for the interrupt source in the same
manner as the mouse firmware listed in Appendix I, beginning at
address $C400.

The listing in Appendix | provides source code only for the
memory expansion version of the Apple lic. Mouse code starts
at $C700 in the new ROM. There are Iinstructions for obtaining
listings for the original and UniDisk 3.5 versions in Appendix I.

The 32K ROM includes a new feature for programs that need to
use mouse Interrupts for their own purposes. If your program sets
bit 7 of the mouse port mode byte at $07FC ($C7FF in the
memory expansion lic) to 1, mouse movement interrupts will be
passed to the interrupt handler of your program. VBL interrupts
will still be handled by the Apple lic’s firmware. You should use
this feature only if the mouse firmware can’t keep up with your
needs.

1/0 firmware support for mouse input

The memory expansion version of the Apple lic places the
mouse at $C700 and the memory expansion card at $C400. This
means that the mouse Is supported on page $C7 in the new
Apple lic, so change all $C4 and $40 addresses to $C7 and $70.

Mouse input 191

192

Memory expansion

The Apple IIc supports the mouse with firmware starting at address
$C400. This firmware is necessary because the mouse requires fast,
transparent interrupt processing to work effectively.

In assembly language you can use direct firmware support for
sophisticated mouse applications. To enable the mouse, first load a
mode byte into the accumulator (and $C4 in X, $40 in Y) and then
do a JSR to the firmware routine called SetMouse (Table 9-3). Valid
mode bytes are the following: '

$00 Turns mouse off

$01 Sets transparent mode

$03 Sets movement interrupt mod

$05 Sets button interrupt mode

$07 Sets movement or button interrupt mode

$08 Turns mouse off, VBIInt active

$09 Sets transparent mode, VBlInt active

$0B Sets movement interrupt mode, VBIlInt active

$0D Sets button interrupt mode, VBlInt active

$OF Sets movement or button interrupt mode, VBIInt active

The firmware then initializes the mouse. To read the current
position and status of the mouse, first load $C4 into the X register,
load $40 into the Y register, save processor status, disable
interrupts, and then JSR to the firmware routine called ReadMouse
(Table 9-3), which stores the information in the port 4 screen holes
(Table 9-5).

Table 9-3 lists the mouse port firmware routine offsets. Each
address contains the low byte of the entry point of the routine
described. The calling setup for all routines (except ServeMouse) is
the same: the X register must contain $C4, and the Y register must
contain $40. When the routine has finished, the A, X, and

Y register contents are undefined.

The memory expansion version of the Apple lic places the
mouse at $C700 and the memory expansion card at $C400.
Thus, all mouse firmware routines start at a $C7XX address,
instead of SC4XX.

Chapter 9: Mouse and Game Input

Table 9-3
Mouse firmware routines

Location Offset for Description

$C412 SetMouse Sets the mouse mode to the value in
the accumulator.
Input: A register contains mode (see
$07FC, Table 9-5) ($07FF in new
Apple Ilo).
Output: Carry bit = 0 means mode
was legal; carry bit = 1 means mode
was not legal.

$C413 ServeMouse Services mouse interrupt if needed.
Input: X, Y, A registers—doesn’t
matter.

Output: Carry bit = 0 means mouse
caused the interrupt; carry bit = 1
means something else caused it.

This routine updates $077C ($077F in
new Apple IIc) to show which event
caused the interrupt (values in

Table 9-5).

$C414 ReadMouse Updates screen holes to show current
mouse X-Y position and button
status; clears VBlInt, button and
movement interrupt bits in the status
byte. Doesn't reenable interrupts
until after retrieving position values.
Qutput: Carry bit = 0.

$C415 ClearMouse Sets the mouse position to 0, though
not necessatily within clamping
boundaries; leaves button and
interrupt bits in status byte
unchanged.
Output: Carry bit = 0.

$C416 PosMouse Sets the mouse coordinates to new
values.
" Input: X and Y screen holes contain
new X and Y positions.
Qutput: Carry bit = 0.

Mouse input 193

Table 9-3 (continued)
Mouse firmware routines

Location Offset for Description

$C417 ClampMouse Sets new clamping boundaries (see
Table 9-5). Does not affect mouse
position or update mouse position
screen holes; use ReadMouse to do
that.
Input: A register = 0 means set new
X boundaries; A register = 1 means
set new Y boundaries.
Output: Carry bit = 0.

$C418 HomeMouse Sets the internal mouse position to
the upper-left corner of the clamping
window. Does not update mouse
position screen holes; use
ReadMouse to do that.

$C419 InitMouse Sets startup internal values; does not
update mouse-position screen holes.
Output: Carry bit = 0.

Here is a sample sequence of events and calls:

1. Four screen holes contain the mouse’s X and Y coordinates, and
one contains the status of the last mouse movement (Table 9-5).

2. Call InitMouse.

3. Inhibit interrupts, set up the boundaries you want, then call
ClampMouse.

4. Use PosMouse, HomeMouse, or ClearMouse to position the
mouse where you want it.

5. Put the mouse mode (see address $07FC in Table 9-5) that you
want to use in the accumulator, then call SetMouse (use address
$07FF for the new Apple IIc).

6. If you have set one of the interrupt modes, then when an interrupt
arrives, call ServeMouse to determine the source of the interrupt.

7. Disable interrupts and call ReadMouse. Retrieve the position
values, then reenable interrupts.

194 Chapter 9: Mouse and Game Input

Memory expansion

Memory expansion

Pascal support

Table 9-4 lists the locations and values of the I/O firmware protocol
that Pascal 1.1 and later versions use. However, Pascal must use a
special attach driver to support the mouse.

The memory expansion version of the Apple lic places the
mouse at $C700 and the memory expansion card at $C400.
Thus, all mouse firmware routines start at a SC7XX address,
instead of $C4XX.

Table 9-4 -
Mouse port |/O firmware protocol

Address Value Description

$C405 $38 Pascal ID byte
$C407 $18 Pascal ID byte

$C40B $01 Generic signature byte of firmware cards

$C40C $20 2 = X-Y pointing device; 0 = identification
code

$C40D Initialization routine (not implemented;

returns error code)

$C40E Standard read routine (not implemented;
returns error code)

$C40F Standard write routine (not implemented;
returns error code)

$C410 Standard status routine (not implemented;
returns error code)

$C411 $00 Optional routines follow
$C4FB $D6 A mouse identification byte

BASIC and assembly-language support

The memory expansion version of the Apple lic places the
mouse at $C700 and the memory expansion card at $C400. This
means that all "PR4" or “IN4" calls change to “PR7" or “IN7”
calls.

Mouse input 195

196

Important

Important

In BASIC you must turn the mouse on by printing PR#4 and then
CHR$(1) before you can get input from the mouse. This sets
transparent mode. After that, reenable video output with PR#3 and
take subsequent input from the mouse by issuing IN#4. The first
input statement after that ANPUT X,Y,S) initializes and enables the
mouse and returns a three-element string

+XXXX, +yyyy, +st
representing the x-coordinate, y-coordinate, and status digits.

The coordinates will be integers between 0 and +1023. These are
called the clamping boundaries of the mouse.

The sign preceding the status digits is normally positive; it becomes
negative when you press a key on the keyboard.

The first digit, s, of the status is 0. The second digit, t, of the status
is 1 if the mouse button is still pressed, 2 if it was just pressed, 3 if it
was just released, and 4 if it is still released.

To disable the mouse, use these statements:

PRINT CHRS (4) “PR#4”
PRINT CHR$(0)
PRINT CHR(4) “PR#3”

Change dll 4’s to 7’s for the memory expansion version,

Screen holes

Table 9-5 lists the screen holes that the mouse firmware uses. Note
that the mouse firmware reserves port 5 screen holes for its own use.
Also, the auxiliary page counterparts of the port 4 addresses are
reserved for startup values.

Some screen holes are different for the Apple lle mouse. Refer to
Appendix F.

Chapter 9: Mouse and Game Input

Table 9-5
Mouse port screen hole locations

Scratch area

Location Description

$0478 Low byte of clamping minimum
$04F8 Low byte of clamping maximum
$0578 High byte of clamping mimimum
$05F8 High byte of clamping maximum

Port 4 screen holes

Location ' Description

$047C Low byte of X coordinate
$04FC Low byte of Y coordinate
$057C High byte of X coordinate
$05FC High byte of Y coordinate
$067C Reserved

$06FC Reserved

$077C Status byte

Bit 1 Equals

7 Button down
6 Button was down on last read and still down
5 Movement since last read
4 Reserved
3 Interrupt from VBIInt
2 Interrupt from button
1 Interrupt from movement
0 Reserved
$07FC Mode byte (current mode; mask out bits 4-7 when
testing)
Bit 1 Equals
7-4 Reserved
3 VBlInt active
2 VBL interrupt on button
1 VBL interrupt on movement
0 Mouse active

Port 5 screen holes

Reserved

Mouse input

197

198

Memeory expansion

Important

The screen hole addresses for the mouse in the Apple lic that
supports the memory expansion card all end with F, Instead of
C: this Is because the mouse has moved to slot 7 from slot 4. For
example, the low byte of the X coordinate Is stored at $047C in
the original and UniDisk 3.5 lic’s, while it Is stored at $047F in the
memory expansion lic.

Using the mouse as a hand controller

You can use the mouse as if it were a set of hand controllers or an X-
Y pointing device in port 4. If you turn the mouse on, the Monitor

hand controller (game paddle) routines take input from the mouse.
This is possible because the mouse and the hand controllers all use
the same back panel connector.

You can run a BASIC program that uses the Pdl function to read
from the mouse by doing the following, either from the keyboard or
from a program:

1. Start up the system with the BASIC program that uses paddles.
2. Type PR#4 and press Return to tum on the mouse.

3. Press Control-A Return to initialize the mouse.

4. Type PR#0 and press Return to restore output to the screen.
5. Run the program.

Play the game using the mouse instead of the paddles.

Many copy-protected games do not work with a mouse. In
addition, many games don’t use built-in firmware for the
paddies.

Game input

The Apple TIc supports game paddles, joysticks, and other hand
controllers connected to the DB-9 connector on its back panel.
Table 9-6 is a summary of game input characteristics.

Chapter 9: Mouse and Game Input

Complete electrical
specifications of these inputs
are given in Chapter 11;
Table 11-22 shows the
connector pin numbers.

Table 9-6
Game Input characteristics

Port number None.
Commands None.
Initial characteristics Game inputs cannot be disabled.

Hardware page locations

$C061 Switch input 0 and Open Apple.

$C062 Switch input 1 and Solid Apple.

$C063 Mouse button (sense is opposite that of $C061 to
distinguish it from paddle button).

$C064 Analog input (paddie) 0.

$C065 Analog input (paddle) 1.

$C070 Trigger paddle timer.

Monitor firmware routines

Location Name Description
$FB1E PRead Reads a paddle position.

1/0O firmware entry points
None.

Use of screen holes
None.

The hand controller connector signals

Several inputs are available to programs or devices from the 9-pin
D-type miniature connector on the back of the Apple Ilc: two 1-bit
inputs, or switches, and two analog inputs.

When you connect a pair of hand controllers to the 9-pin
connector, the rotary controllers use two analog inputs, and the
pushbuttons use two 1-bit inputs. However, you can also use these
inputs for many other jobs. For example, two analog inputs can be
used with a two-axis joystick.)

Game input 199

Switch inputs (Sw0 and Sw1)

The two 1-bit inputs can be connected to the output of another
electronic device that meets the electrical requirements described
in Chapter 11, or to a pushbutton. When you read a byte from one
of these locations, only the high-order bit—bit 7—is valid
information; the rest of the byte is undefined. From machine
language, you can do a Branch Plus or Branch Minus on the state of
bit 7. From BASIC, you can read the switch with a PEEK and
compare the value with 128. If the value is 128 or greater, the switch
is on.

The memory locations for these switches are $C061, $C062, and
$C063 (decimal locations 49249 through 49251), as shown in

Table 9-6. Switch 0 and switch 1 are permanently connected to
Open Apple and Solid Apple on the keyboard; these are the ones
connected to the buttons on the hand controllers. Location $C063
is a second address for the mouse button, so that a program can
distinguish it from an Open Apple keypress. When the mouse
button is pressed, $C063 (bit 7) goes from 1 to 0, and $C061 (bit 7)
goes from 0 to 1. ‘

Analog inputs (PdI0 and PdI1)

The two analog inputs are designed for use with 150-KQ variable
resistors or potentiometers. The variable resistance is connected
between the +5V supply and each input, so that it makes up part of a
timing circuit. The circuit changes state when its time constant has
elapsed, and the time constant varies as the resistance varies. Your
program can measure this time by counting in a loop until the
circuit changes state, or times out.

A program must first reset the timing circuits before it can read the
analog inputs. Accessing memory location $C070 does this. As
soon as you reset the timing circuits, the high bits of the bytes at
locations $C064 through $C067 are set to 1. If you PEEK at them
from BASIC (locations 49252 through 49255), the values will be 128
or greater. Within about three milliseconds, these bits will change
back to 0—byte values less than 128—and remain there until you
reset the timing circuits again. The exact amount of time each of the
bits remains high is directly proportional to the resistance
connected to the corresponding input. If these inputs are open—no
resistances are connected—the corresponding bits may remain
high indefinitely.

200 Chapter 9: Mouse and Game Input

Warning

Monitor support for game input

To read the analog inputs from machine language, you can use a
program loop that resets the timers and then increments a counter
until the bit at the appropriate memory location changes to 0, or
you can use the built-in routine PRead. BASIC and other high-level
languages also include convenient means of reading the analog
inputs—refer to your language manuals. You can read and reread
the same paddle at arbitrarily short intervals. However, you must
wait at least three milliseconds between reading one paddle and
reading a different paddle.

The Monitor routine PRead (at address $FB1E) places in the

Y register a number between $00 and $FF that represents the
position of a hand controller. You pass the number of the hand
controller in the X register.

If the hand controller number you furnish In the X register does
not equal 0 or 1, strange things may happen.

The paddie and vertical blanking both use $C070. Disable
Interrupts before calling PRead if you are reading the paddles
and using VBL Interrupts.

Game input 201

Chapter 10

Using the
Monitor

203

The positive and negative
declmal equivalents of Monitor
locations are listed In

Appendix C. In addition,
Appendix H contalns conversion
tables from one numbering
system to another. Appendix E
gives further details on how fo
use Apple lic firmware from
BASIC programs.

Important

The System Monitor is a set of subroutines in the Apple Ilc firmware
that provides a standard interface to the built-in I/O devices
described in Chapter 1. Many of the I/O subroutines described in
Chapters 3 through 9 are part of the System Monitor.

DOS (but not ProDOS) and the BASIC interpreters (Appendix E)
use these subroutines by direct calls to their starting locations. You
can call the standard subroutines from your programs in the same
fashion. The starting addresses for all of the standard subroutines
are listed in Appendix C.

You can perform most of the Monitor functions directly from the
keyboard. This chapter tells you how to use the Monitor

D to look at one or more memory locations
O to change the contents of any location

O to write small programs in machine language to be executed
directly by the Apple Ilc

O to move and compare blocks of memory
O to invoke other programs from the Monitor

lnvoi(ing the Monitor

The System Monitor starts at memory location $FF69 (-151). To
invoke the Monitor, you make a CALL —151 statement to this
location from the keyboard or from a BASIC program. When the
Monitor is running, its prompting character, an asterisk (%),
appears on the left side of the display screen, followed by a cursor.

To use the Monitor, you type commands at the keyboard. When you
have finished using the Monitor, you return to the BASIC language
you were previously using by pressing Control-Reset, by pressing
Control-C and then Return, or by typing 3D0G, which executes the
resident program—usually Applesoft—whose address is stored in a
jump instruction at location $03DO0.

If ProDOS (or DOS) Is connected via the standard 1/O links
(Chapter 3), then you can Issue commands to It from the
Monltor. Under this arrangement, errors will return control to
BASIC rather than to the Monitor.,

If you want to have Control-Reset return you to the Monitor, load
the values $69, $FF, and $5A (decimal 105, 255, and 90) into the
three locations starting at address $03F2 (decimal 1010, the reset-
vector address and the power-up byte).

204 Chapter 10: Using the Monitor

Warning

Syntax of Monitor ::ommands

To give a command to the Monitor, you type a line on the
keyboard, then press Return. The Monitor accepts the line using the
standard I/O subroutine GetLn described in Chapter 3. A Monitor
command can be up to 255 characters in length, ending with a
carriage return. It can include three kinds of information:
addresses, data values, and command characters. You type
addresses and data values in hexadecimal notation.

When the command you type calls for an address, the Monitor
accepts any group of hexadecimal digits. If there are fewer than four
digits in the group, it adds leading 0’s; if there are more than four
hexadecimal digits, the Monitor uses only the last four digits. It
follows a similar procedure when the command syntax calls for two-
digit data values.

Each command you type consists of one command character,
usually the first letter of the command name. The Monitor
recognizes 22 different command characters. Some of them are
punctuation marks, some are letters (uppercase or lowercase), and
some are control characters. '

% Note: Although the Monitor recognizes and interprets them,
control characters typed on an input line do not appear on the
screen.

This chapter contains examples of Monitor command use. Some of
the data values displayed by your Apple Iic may differ from the
values printed in these examples, because they are variables stored
in RAM.

Monitor memory commands

When you use the Monitor to examine and change the contents of
memory, it keeps track of the address of the last location whose
value you inquired about and the address of the location that is next
to have its value changed. These are called the last opened location
and the next changeable location.

Because locations $C000 through $COFF contain special
hardware circulits, Issuing any command that reads or writes on
this page can have unpredictable, and perhaps disastrous,
results. ' '

Monitor memory commands 205

206

Examining memory contents

When you type the address of 2 memory location and press Return,
the Monitor responds with the address you typed, a dash, a space,
and the value stored at that location, like this:

*E000
E000- 4C
*33
0033- AA

*

Each time the Monitor displays the value stored at a location, it
saves that address as the last opened location and as the next
changeable location.

Memory dump

When you type a period () followed by an address, and then press
Return, the Monitor displays a memory dump: the data values
stored at all the memory locations from the one following the last
opened location to the location whose address you typed following
the period. The Monitor saves the last location displayed as both
the last opened location and the next changeable location. In these
examples, the amount of data displayed by the Monitor depends on
how much larger the address after the period is than the last opened
location. '

*20
0020- 00

*.28

0021- 28 00 18 OF OC 00 00
0028- A8 06 DO 07

*300

0300- 99

*,315

0301~ B9 00 08 OA OA OA 99
0308- 00 08 C8 DO F4 A6 2B A9
0310- 09 85 27 AD CC 03

*,32A

0316- 85 41

0318- 84 40 BA 4A 4A 4A 4A 09
0320- CO 85 3F A9 5D 85 3E 20
0328- 43 03 20

*

Chapter 10: Using the Monitor

When the Monitor performs a memory dump, it starts at the
address immediately following the last opened location and
displays that address and the data value stored there. It then
displays the values of successive locations up to and including the
location whose address you typed, but only up to eight values on a
line. When it reaches a location whose address is a multiple of
8—that is, one that ends with an 8 or a 0—it displays that address as
the beginning of a new line, then continues displaying more values.

After the Monitor has displayed the value at the location whose
address you specified in the command, it stops the memory dump
and sets that location as both the last opened location and the next
changeable location. If the address specified on the input line is less
than the address of the last opened location, the Monitor displays
only the address and value of the location following the last opened
location.

You can combine the two commands, opening a location and
dumping memory, by concatenating them: type the first address, a
period, and the second address. This combination of two addresses
separated by a period is called a memory range.

*300.32F

0300- 99 B9 00 08 OA OA OA 99
0308- 00 08 C8 DO F4 A6 2B A9
0310~ 09 85 27 AD CC 03 85 41
0318- B84 40 B8A 4A 4A 4A 4A 09
0320- CO 85 3F A9 5D 85 3E 20
0328- 43 03 20 46 03 A5 3D 4D
*30.40

0030- AA 00 FF AA 05 C2 05 C2
0038- 1B FD DO 03 3C 00 40 00
0040- 30

*E015.E025

E015- 4C ED FD

E018- A9 20 C5 24 BO 0C A9 8D
E020- A0 07 20 ED FD A9

*

Monitor memory commands 207

208

Warning

Pressing Return by itself makes the Monitor display one line of a
memory dump; that is, a memory dump from the location
following the last opened location to the next multiple-of-eight
boundary. The Monitor saves the address of the last location
displayed as both the last opened location and the next changeable
location.

*5

0005- 00
*Return

00 00

*Return

0008- 00 00 00 00 00 00 00 00
*32

0032- FF
*Return

AA 00 C2 05 Cc2
*Return

0038- 1B FD DO 03 3C 00 3F 00
*

Changing memory contents

The section on memory dumping showed you how to display values
stored in the Apple IIc's memory; this section shows you how to
change these values. You can change any location in RAM; you can
change the characteristics and treatment of an output device by
changing the contents of locations assigned to it; and you can
change a soft switch setting by referencing its set and reset
addresses.

Use these commands carefully. If you change the zero-page
locations used by the Interpreter or operating system
(Appendix B). you may lose programs or data stored in memory.

Changing one byte

The previous commands keep track of the next changeable
location; these commands make use of it. In the next example, you
open location 0, then type a colon followed by a value.

*0

0000~ 4C
* 3 5F

Chapter 10: Using the Monitor

The contents of the next changeable location have just been
changed to the value you typed, as you can see by examining that
location:

*0
0000- S5F
*

You can also combine opening and changing into one operation by
typing an address followed by a colon and a value. In the next
example, you type the address again to verify the change.

*302:42
*302
0302- 42

¥*

When you change the contents of a location, the value that was
contained in that location is replaced by the new value, which will
remain until you or some program replaces it with another value.

< ASCII input mode: The Monitor has a tool to make entering
values a little easier: ASCII input mode. ASCII input mode lets
you enter ASCII characters as well as their hexadecimal ASCII
equivalents. This means that 'A is the same as C1 and 'B is the
same as C2 to the Monitor. The ASCII value for any character
following an apostrophe is used by the Monitor. For example,
to enter the string “Good morning!” at $0300 in memory, type

*300:'G 'o 'o 'd ' 'm 'c 'r 'n 'L 'n 'g "!

Note that each character to be placed in memory is delimited
by a leading and a trailing space. The only exception to this rule
is that the last character in the line is followed by a return
character instead of a space.

Changing consecutive locations

You don't have to type a separate command with an address, a
colon, a value, and press Return for each location you want to
change. You can change the values of up to 85 consecutive locations
at a time—or even more, if you omit leading 0’s from the
values—by typing only the initial address and colon followed by all
the values separated by spaces; end with Return. The Monitor stores
the consecutive values in consecutive locations, starting at the
location whose address you typed. After it has processed the string
of values, it takes the location following the last changed location as
the next changeable location. Thus, you can continue changing
consecutive locations, without typing an address on the next input
line, by typing another colon and more values.

Monitor memory commands 209

210

In these examples, you first change some locations, then examine
them to verify the changes.

*300:69 01 20 ED FD 4C 03
*300

0300- 69

*Return

01 20 ED FD 4C 00 03

*10:0 1 2 3

*:14 5 617

*10.17

0010- 00 01 02 03 04 05 06 07

*

Moving data in memory

You can copy a contiguous block of data from one area in the

Apple IIc’s memory to another in RAM by using the Monitor's
MOVE command. To move a range of memory, you must tell the
Monitor both where the data is now situated in memory—the source
locations—and where you want the copy to go—the destination
locations.

The format of the complete MOVE command looks like this:
{destination} < {star}} . {end M

The destination is the address where you want the first of the moved
data to go. The less-than symbol (<) separates the destination
address from the starting and ending addresses of the block of data
to be moved. The period between two addresses is the Monitor’s
standard notation for specifying address ranges. If the second
address in the source range specification is less than the first, then
only one value (that of the first location in the range) will be moved.

When you type the actual command, replace the words in braces
with hexadecimal addresses, and omit the braces and spaces.

Chapter 10: Using the Monitor

See “Advanced Operations” for
an Iinteresting application of this
feature.

Here are some examples of memory moves. First, you examine the
values stored in one range of memory, then store several values in
another range of memory. The actual MOVE commands end

with M.

*0.F

0000- 5F 00 05 07 00 00 00 00
0008- 00 00 00 00 00 00 00 00
*300:A9 8D 20 ED FD A9 45 20 DA FD 4C 00 03
*300,30C

0300- A9 8D 20 ED FD A9 45 20
0308- DA FD 4C 00 03
*0<300.30C M

*0.C

0000- A9 8D 20 ED FD A9 45 20
0008- DA FD 4C 00 03

*310<8.A M

*310.312

0310- DA FD 4C

*2<7.9 M

*0.C

0000- A9 8D 20 DA FD A9 45 20

0008- DA FD 4C 00 03
*

The Monitor moves a copy of the data stored in the source range of
locations to the destination locations. The values in the source
range are left undisturbed. The Monitor remembers the last
location in the source range as the last opened location, and the
first location in the source range as the next changeable location.

If the destination address of the MOVE command is inside the
source range of addresses, then strange things happen: the
locations between the beginning of the source range and the
destination address are treated as a subrange and the values in this
subrange are replicated throughout the source range. Try it.

Comparing data in memory

You can use the VERIFY command to compare two ranges of
memory using the same format you use to move a range of memory
from one place to another. In fact, the VERIFY command can be
used immediately after a MOVE to make sure that the move was
successful.

The VERIFY command, like the MOVE command, needs a range
and a destination. The syntax of the VERIFY command is

{destination} < {star} . {end} V

Monitor memory commands 21

212

The Monitor compares the values in the source locations with the
values in the locations beginning at the destination address. If any
values don’t match, the Monitor displays the address at which the
discrepancy was found and the two values that differ. In the
example, you store data values in the range of locations from

0 to $0D, copy them to locations starting at $0300 with the MOVE
command, and then compare them using the VERIFY command.
When you use the VERIFY command after you change the value at
location 6 to $E4, it detects the change.

*0:D7 F2 E9 F4 F4 E5 EE A0 E2 F9 A0 C3 C4 C5
*300<0.D M

*300<0.,D V

*6:E4

*300<0.,D V

0006-E4 (EE)
*

If the VERIFY command finds a discrepancy, it displays the address
of the location in the source range whose value differs from its
counterpart in the destination range. If there is no discrepancy,
VERIFY displays nothing. The VERIFY command leaves the values
in both ranges unchanged. The last opened location is the last
location in the source range, and the next changeable location is
the first location in the source range, just as in the MOVE
command. If the ending address of the range is less than the starting
address, the values of only the first locations in the ranges are
compared. Like the MOVE command, the VERIFY command does
unusual things if the destination address is within the source range;
see “Advanced Operations” later in this chapter.

Monitor register commands

Even though the actual contents of the 65C02’s internal registers are
changing as you use the Monitor, you can examine the values that
the registers contained at the time the Monitor gained control,
either because you called it or because the program you are
debugging stopped at a break (BRK). You can also store new
register values that will be used when you execute a program from
the Monitor using the GO command, described below.

Chapter 10: Using the Monltor

Changing registers

When you call the Monitor, it stores the contents of the 65C02
registers in memory. The registers are stored in the order A, X, Y,
P (processor status register), and S (stack pointer), starting at
location $45. When you give the Monitor a GO command, the
Monitor loads the registers from these five locations before it
executes the first instruction in your program.

Examining registers

Pressing Control-E and then Return invokes the Monitor’s
EXAMINE command, which displays the stored register values and
sets the location containing the contents of the A register as the next
changeable location. After using the EXAMINE command, you can
change the values in these locations by typing a colon and then
typing the new values separated by spaces. In the following
example, you display the registers, change the first two, and then
display them again to verify the change.

*Control-E

M=00 A=0A X=FF Y=D8 P=B0 S=F8
*:BO 02

*Control-E

M=00 A=B0O0 X=02 Y=D8 P=B0O S=F8

*

In the EXAMINE command’s display, M shows the current memory
state register contents. The memory state register is location $44,
and its interpretation is given in Appendix E.

Miscellaneous Monitor commands

Monitor commands discussed in this section let you do the
following:

O change the video display format from normal to inverse and
back

O assign input and output to various devices

O leave the Monitor and return to the currently loaded operating
system (DOS 3.3 or ProDOS) or BASIC

Miscellaneous Monitor commands 213

The COut subroutine Is
described in Chapter 3.

See Appendix D.

Important

Display inverse and normal

You can control the setting of the inverse-normal mask location
used by the COut subroutine from the Monitor so that all the
Monitor's output will be in inverse format. The INVERSE

command (D) sets the mask so that all subsequent inputs and outputs
are displayed in inverse format. To switch the Monitor’s output back
to normal format, use the NORMAL command (N).

*0,F

0000- OA OB OC OD OE OF DO 04
0008- C6 01 FO 08 CA DO Fé A6
*]

*0.F

0000~ OA OB OC OD OE OF DO 04
0008- C6 01 FO 08 CA DO Fé6 A6
*N

*0.F

0000- OA OB OC 0D OE OF DO 04

0008- C6 01 FO 08 CA DO F6 A6
*

Back to BASIC

If you are using one of the Apple disk operating systems (ProDOS or
DOS), press Control-Reset or type 3D0G to return to the language
you were using, with your program and variables intact.

If you type 3D0G, make sure that the third character you type
Is a zero, not a letter O. The letter G Is the Monitor's GO
command.

If there is no operating system in RAM, use the BASIC command
Control-B to leave the Monitor and enter the BASIC interpreter that
was active when you entered the Monitor. (Normally this is
Applesoft BASIC.) Any program or variables that you previously
had in BASIC will be lost. If you want to reenter BASIC with your
previous program and variables intact, use the CONTINUE BASIC
command (Control-C).

214 Chapter 10: Using the Monitor

Chapter 3 lists the Apple lic port
numbers avallable.

For more Information on the
way those commands work,
refer to “The Standard I/O
Links™ in Chapter 3.

Redirecting input and output

The Control-P command diverts all output normally destined for
the screen (port 0) to a device attached to one of the other ports,
from 1 to 7. The format of the command is

{port numben} Control-P

A Control-P command to port number 0 switches the stream of
output characters back to the Apple Ilc's video display. However,
use Escape Control-Q if the enhanced video firmware is active
(solid-block cursor).

Control-K controls the input stream in much the same way that
Control-P controls the output stream. The format for the command
is

{port number} Control-K

Pressing O Control-K directs the Monitor to accept input from the
Apple Ilc's built-in keyboard.

The Control-P and Control-K commands are the exact equivalents
of the BASIC (but not DOS and ProDOS) commands PR# and IN#,

Hexadecimal arithmetic

You can use the Monitor as a one-byte hexadecimal addition and
subtraction calculator. Just type a line in one of these formats
followed by Return:

{valug + {value} Return {valuel — {value} Return

The Appie Iic performs the arithmetic and displays the result, as
shown in these examples.

*20+13
=33
*4A-C
=3E

*

Miscelldneous Monitor commands 215

216

Advanced operations

This section describes some ways of using the Monitor commands
to speed up your work.

Multiple-command lines

You can put as many Monitor commands on a single line as you
like, as long as you separate them with spaces, and the total number
of characters in the line is less than 254. Adjacent single-letter
commands such as L, S, I, and N need not be separated by spaces.

You can freely intermix all of the commands except the STORE ()
command. Because the Monitor takes all values following a colon
and places them in consecutive memory locations, the last value in
a STORE must be followed by a letter command before another
address is encountered. You can use the NORMAL command as the
required letter command in such cases; it usually has no effect and
can be used anywhere.

In the following example, you display a range of memory, change
it, and display it again, all with one line of commands.

*300.307 300:18 69 1 N 300.302
0300- 00 00 00 00 00 00 00 00

0300- 18 69 01
*

If the Monitor encounters a character in the input line that it does
not recognize as either a hexadecimal digit or a valid command
character, it executes all the commands on the input line up to that
character, then stops with a beep and ignores the remainder of the
input line.

Filling memory

The MOVE command can be used to replicate a pattern of values
throughout a range of memory. To do this, first store the pattern in
the first locations in the range

*300:11 22 33

*

Chapter 10: Using the Monitor

Remember the number of values in the pattern: in this case, it
is three. Use the number to compute addresses for the MOVE
command, like this:

{start+numben < {start} . {end-numbert M

This MOVE command first replicates the pattern at the locations
immediately following the original pattern, then replicates that
pattern following itself, and so on until it fills the entire range.

*303<300.32D M

*300.32F

0300- 11 22 33 11 22 33 11 22
0308- 33 11 22 33 11 22 33 11
0310- 22 33 11 22 33 11 22 33
0318- 11 22 33 11 22 33 11 22
0320- 33 11 22 33 11 22 33 11
0328- 22 33 11 22 33 11 22 33

*

You can use the VERIFY command to check whether a pattern
repeats itself through memory. This is especially useful to verify that
a given range of memory locations all contain the same value. In

. this example, to see the VERIFY command detect the discrepancy,
you first fill the memory range from $0300 to $0320 with 0’s and
verify it, then change one location and verify again:

*300:0
*301<300.31F M
*301<300.31F V

*304:02
*301<300.31F V
0303-00 (02)
0304-02 (00)

*

Repeating commands

You can create a command line that repeats one or more
commands over and over. You do this by beginning the part of the
command line that you want to repeat with a letter command, such
as N, and ending it with the sequence 34:n, where n is a
hexadecimal number that specifies the position in the line of the
command where you want to start repeating; for the first character
in the line, n=0. The value for n must be followed with a space in
order for the loop to work properly.

Advanced operations 217

218

This trick takes advantage of the fact that the Monitor uses an index
register to step through the input buffer, starting at location $0200.
Each time the Monitor executes a command, it stores the value of
the index at location $34; when that command is finished, the
Monitor reloads the index register with the value at location $34. By
making the last command change the value at location $34, you
change this index so that the Monitor picks up the next command
character from an earlier point in the buffer.

The only way to stop a loop like this is to press Control-Reset; that is
how this example ends.

*N 300 302 34:0N

0300- 11
0302- 33
0300- 11
0302- 33
0300- 11
0302- 33
0300- 11
0302- 33
0300- 11
0302- 33
0300- 11
0302- 33
030

*

Creating your own commands

The USER command (Control-Y) forces the Monitor to jump to
memory location $03F8. You can put a JMP instruction there that
jumps to your own machine-language program. Your program can
then examine the Monitor’s registers and pointers or the input
buffer itself to obtain its data. For example, here is a program that
displays everything on the input line after the Control-Y. The
program starts at location $0300; the command line that starts with
$03F8 stores a jump to $0300 at location $03F8.

*300:A4 34 B9 00 02 20 ED FD C8 C9 8D DO F5 4C 69 FF
*3F8:4C 00 03
*Control-Y THIS IS A TEST

THIS IS A TEST
*

Chapter 10: Using the Monitor

Machine-language programs

The main reason to program in machine language is to get more
speed and sometimes to also save memory space. A program in
machine language can run much faster than the same program
written in high-level languages such as BASIC or Pascal, but the
machine-language version usually takes a lot longer to write. There
are other reasons to use machine language: you might want your
program to do something that isn’t included in your high-level
language, or you might just enjoy the challenge of using machine
language to work directly on the bits and bytes.

& Note: If you have never used machine language before, you'll
need to learn the 65C02 instructions listed in Appendix A. To
become proficient at programming in machine language,
you'll have to spend some time at it, and study one of the books
on 65C02 programming listed in the bibliography.

You can get a hexadecimal dump of your program or move it
around in memory using the commands described in the previous
sections. The Monitor commands in this section are intended
specifically for you to use in creating, writing, and debugging
machine-language programs.

Running a program

The Monitor command to start execution of your machine-
language program is the GO command. When you type an address
and press G, the Apple IIc starts executing machine-language
instructions starting at the specified location. If you just press G,
execution starts at the last opened location. The Monitor treats this
program as a subroutine: it should end with an RTS (return from
subroutine) instruction to transfer control back to the Monitor.

The Monitor has some special features that make it easier for you to
write and debug machine-language programs, but before you get
into that, here is a small machine-language program that you can
run using only the simple Monitor commands already described.
The program in the example merely displays the letters A

through Z: you store it starting at location $0300, examine it to be
sure you typed it correctly, then type 3D0G to start it running,

*300:A9 C1 20 ED FD 18 69 1 C9 DB DO F6 60
*300.30C

0300- A9 C1 20 ED FD 18 69 01

0308- C9 DB DO F6 60

*300 G

ABCDEFGHIJKLMNOPQRSTUVWXYZ

*

Machine-language programs 219

220

Disassembled programs

Machine-language code in hexadecimal isn't the easiest thing in the
world to read and understand. To make this job a little easier,
machine-language programs are usually written in assembly
language and converted into machine-language code by programs
called assemblers.

Programs like the Monitor’s LIST command are called
disassemblers. This command displays machine-language code
in assembly-language form. Instead of unformatted hexadecimal
gibberish, the LIST command displays each instruction on a
separate line, with a three-letter instruction name, or mnemonic,
and a formatted hexadecimal operand. The LIST command also
converts the relative addresses used in branch instructions to
absolute addresses.

The Monitor LIST command has the format
{location} L

The LIST command starts at the specified location and displays as
much memory as it takes to make up a screenful (20 lines) of
instructions, as shown in the following example:

*300 L

0300- A9 C1 LDA #sc1
0302- 20 ED FD JSR $FDED
0305- 18 cLc

0306- 69 01 ADC #s01
0308- C9 DB CMP #SDB
030A- DO F6 BNE $0302
030C- 60 RTS

030D- 00 BRK

030E- 00 BRK

030F- 00 BRK

0310- 00 BRK

0311- 00 BRK

0312- 00 BRK

0313- 00 BRK

0314~ 00 BRK

0315~ 00 BRK

0316- 00 BRK

0317- 00 BRK

0318- 00 BRK

0319- 00 BRK

*

Chapter 10: Using the Monitor

Important

The first seven lines of this example are the assembly-language form
of the program you typed in the previous example. The rest of the
lines are BRK instructions only if this part of memory has 0’s in it:
other values will be disassembled as other instructions.

The Monitor saves the address that you specify in the LIST
command, but not as the last opened location used by the other
commands. Instead, the Monitor saves this address as the program
counter, which it uses only to point to locations within programs.
Whenever the Monitor performs a LIST command, it sets the
program counter to point to the location immediately following the
last location displayed on the screen, so that if you type another
LIST command it displays another screenful of instructions, starting
where the previous display left off.

The STEP and TRACE commands

This section applies only to the UniDisk 3.5 and memory
expansion versions of the Apple lic.

STEP and TRACE are Monitor facilities for debugging assembly-
language programs. The STEP command decodes, displays, and
executes one instruction at a time, and the TRACE command steps
continuously through a program, stopping when a BRK instruction
is executed or Solid Apple is pressed. You can press Open Apple to
slow down the trace to one step per second.

Each STEP command causes the Monitor to execute the instruction
in memory pointed to by the program counter. The instruction is
displayed in its disassembled form, then executed. The contents of
the 65C02’s internal registers are displayed after the instruction is
executed. After execution, the program counter is incremented to
point to the next instruction in the program.

Here is an example of the STEP command, using the following
program:

$0300: LDX #02
$0302: LDA $00,X
$0304: STA $10,X
$0306: DEX
$0307: STA $C030
$030A: BPL $0302
$030C: BRK

The STEP and TRACE commands 221

222

To step through this program, first call the Monitor by typing
CALL -151 and pressing Return, and then from the Monitor type
3005 (to start the STEP routine at address $0300). Type S to
advance each additional step through the program. The Monitor
keeps the program counter and the last opened address separate
from one another, so you can examine or change the contents of
memory while you are stepping through your program. Here’s what
happens when you step through the program above, examining the
contents of location $0012 after the third step. Note that in this
example, what you type appears just after the * prompt, and the
information on the next two lines—that begin without the *
prompt—is what the computer displays on the screen in response.

*3008

0300- A2 02 LDX #02

M=CA A=0A X=02 Y=D8 P=30 S=F8
*S

0302- B5 00 LDA $00,X
M=CA A=0C X=02 Y=D8 P=30 S=F8
5

0304- 95 10 STA $10,X
M=CA A=0C X=02 Y=D8 P=30 S=F8
*12

0012- 0OC

*S

0306~ CA DEX

M=CA A=0C X=01 Y=D8 P=30 S=F8
*s

0307- 8D 30 CO STA $C030
M=CA A=0C X=01 Y=D8 P=30 S=F8
*s

030A- 10 F6 BPL $0302
M=CA A=0C X=01 Y=D8 P=30 S=F8
*5

0302- B5 00 LDA $00,X
M=CA A=0B X=01 Y=D8 P=30 S=F8
*S

0304- 95 10 STA $10,X
M=CA A=0B X=01 Y=D8 P=30 S=F8

*

The TRACE command is a continuous version of the STEP
command,; it stops stepping through the program only when you
press Solid Apple, or when it encounters a BRK instruction in the
program. Press Open Apple to slow the trace to one step per
second.

Chapter 10: Using the Monitor

Important Keep the following cautions in mind when using the STEP and
TRACE Monitor commands:

o If the program ends with an RTS instruction, the TRACE
routine will continue to run indefinitely until stopped with
Solid Apple.

O You can’t step or trace through routines that use the same
zero page locations as the Monitor.

The Mini-Assembler

Important This section applies only to the UniDisk 3.5 and myemory
expansion versions of the Apple lic.

Without an assembler, you have to write your machine-language
program, take the hexadecimal values for the opcodes and
operands, and store them in memory using the Monitor commands
described earlier in this chapter.

The Mini-Assembler lets you enter machine-language programs
directly from the keyboard of your Apple. ASCII characters can be
entered in Mini-Assembler programs, exactly as you enter them in
the Monitor. ‘

Note that the Mini-Assembler doesn’t accept labels; you must use
actual values and addresses.

Starting the Mini-Assembler

To start the Mini-Assembler, first invoke the Monitor by typing
CALL -151 and pressing Return, and then from the Monitor,
type ! followed by Return. The Monitor prompt character then
changes from * to !.

When you finish using the Mini-Assembler, press Return from a
blank line to return to the Monitor.

To enter code into memory, type the address, a colon, and the
instruction. For example, after entering the Mini-Assembler, you

could type
1300:STA CO030

The Mini-Assembler 223

224

You can enter a series of instructions by typing a space, followed by
the instruction, followed by Return:

!1300:STA C030
! LDA #A0
! INX

Each succeeding instruction is placed in the next available memory
location. As you type in instructions, each is replaced by the
starting address of the instruction, the hexadecimal value(s) of the
instruction, followed by mnemonics describing the instruction. For
example, the sequence of instructions given above would produce
the following on your screen:

0300- 8D 30 CO STA $CO030
0303- A9 A0 LDA #SA0
0305- E8 INX

When you're ready to execute your program, press Return to leave
the Mini-Assembler and return to the Monitor. Monitor commands
can't be executed directly from the Mini-Assembler.

Using the Mini-Assembler

The Mini-Assembler saves one address, that of the program
counter. Before you start to type a program, you must set the
program counter to point to the location where you want the Mini-
Assembler to store your program. Do this by typing the address
followed by a colon.

After the colon, type the mnemonic for the first instruction in your
program, followed by a space and the operand of the instruction.
Now press Return. The Mini-Assembler converts the line you typed
into hexadecimal, stores it in memory beginning at the location of
the program counter, and then disassembles it again and displays
the disassembled line. It then displays a prompt on the next line.

Now the Mini-Assembler is ready to accept the second instruction
in your program. To tell it that you want the next instruction to
follow the first, don’t type an address or a colon: just type a space
and the next instruction’s mnemonic and operand, then press
Return. The Mini-Assembler assembles that line and waits for
another.

Chapter 10: Using the Monitor

If the line you type has an error in it, the Mini-Assembler beeps
loudly and displays a caret (*) under or near the offending
character in the input line. Most common errors are the result of
typographical mistakes: misspelled mnemonics, missing
parentheses, and so forth. The Mini-Assembler also rejects the
input line if you forget the space before or after a mnemonic or
include an extraneous character in a hexadecimal value or address.
If the destination address of a branch instruction is out of the range
of the branch (more than 127 locations distant from the address of
the instruction), the Mini-Assembler flags this as an error.

< Dollar signs: In this manual, dollar signs ($) in addresses
signify that the addresses are in hexadecimal notation. The
dollar signs are ignored by the Mini-Assembler and can be
omitted in programs.

1300:LDX #02

0300- A2 02 LDX #3502

! LDA $00,X

0302- B5 00 LDA $00,X
! STA $10,X

0304 95 10 STA $10,X
! DEX

0306- CA DEX

! STA $C030

0307- 8D 30 CO STA $C030
! BPL $0302

030A- 10 F6 BPL $0302
! BRK

030C- 00 BRK

To leave the Mini-Assembler and reenter the Monitor, press Return
at a blank line.

Your assembly-language program is now stored in memory. You
can display it with the LIST command:

*300L

0300- A2 02 LDX #$02
0302- B5 00 LDA $00,X
0304- 95 10 STA $10,X
0306- CA DEX

0307- 8D 30 CO STA $C030
030A- 10 F6 BPL $0302
030C- 00 BRK

030D- 00 BRK

030E- 00 BRK

030F- 00 BRK

0310- 00 BRK

The Mini-Assembler 225

Table 10-1

Mini-Assembler address formats
Addressing Format

mode

Accumulator 4

Implied *

Immediate #${value)
Absolute ${address)
Zero page ${address)
Indexed zero ${addresst X
page ${address},Y
Indexed ${address} X
absolute ${address)Y
Relative ${address)
Indexed (${address},X)
indirect

Indirect (${address),Y)
indexed

Absolute (${address))
indirect

* These instructions have no

operands.

0311- 00 BRK

0312- 00 BRK
0313- 00 BRK
0314- 00 BRK
0316- 00 BRK
0316~ 00 BRK
0317- 00 BRK
0318- 00 BRK
0319- 00 BRK

Mini-Assembler instruction formats

The Apple Ilc Mini-Assembler recognizes 66 mnemonics and 15
addressing formats. The mnemonics are standard, as used in the
Synertek Programming Manual (Apple part number A2L0003),
but the addressing formats are somewhat different, as shown in
Table 10-1.

An address consists of one or more hexadecimal digits. The Mini-
Assembler interprets addresses the same way the Monitor does: if
an address has fewer than four digits, the Mini-Assembler adds
leading 0’s; if the address has more than four digits, then it uses
only the last four.

There is no syntactical distinction between the absolute and zero-
page addressing modes. If you give an instruction to the Mini-
Assembler that can be used in both absolute and zero-page mode,
the Mini-Assembler assembles that instruction in absolute mode if
the operand for that instruction is greater than $FF, and it
assembles it in zero-page mode if the operand is less than $0100.

Instructions in accumulator mode and implied addressing mode
need no operands.

Branch instructions, which use the relative addressing mode,
require the target address of the branch. The Mini-Assembler
calculates the relative distance to use in the instruction
automatically. If the target address is more than 127 locations
distant from the instruction, the Mini-Assembler sounds a bell
(beep), displays a caret (*) under the target address, and does not
assemble the line,

If you give the Mini-Assembler the mnemonic for an instruction
and an operand, and the addressing mode of the operand cannot
be used with the instruction you entered, then the Mini-Assembler
will not accept the line.

226 Chapter 10: Using the Monitor

Summary of Monitor commands

Here is a summary of the Monitor commands, showing the syntax
diagram for each one.

Examining memory

{adrsiReturn Displays the value contained in one
location.

{adrs1}.{adrs2}Return Displays the values contained in all
locations between {adrs1} and {adrs2}

Return Displays the values in up to eight locations
following the last opened location.

{adrsiL Lists disassembled code starting at {adrs}
and continuing until the screen is full.

Changing the contents of memory

{adrsy:{valMval}... STORE command. Stores the values in
consecutive memory locations starting at
{adrs).

{vallvall... Stores values in memory starting at the

next changeable location.

Moving and comparing

{desti<{start}.{endiM MOVE command. Copies the values in
the range {stard.{end} into the range
beginning at {des#.

{desti<{startt.{lend}V VERIFY command. Compares the values
in the range {stan}.{end} to those in the
range beginning at {des#.

Summary of Monitor commands 227

The Register command

Control-E

EXAMINE command. Displays the
locations where the contents of the
65C02’s registers are stored and opens
them for changing.

Miscellaneous Monitor commands

I

N

Control-B

Control-C

{vah+{val}

{val}—{val}

\

{portiControl-P

Escape Control-Q

{porgControl-K

Control-Y

Chapter 10: Using the Monitor

INVERSE command. Sets inverse display
mode.

NORMAL command. Sets normal display
mode.

BASIC command. Enters the language
currently active (normally Applesoft).

CONTINUE BASIC command. Returns to
the language currently active (normally
Applesoft).

Adds the two values and prints the
hexadecimal result.

Subtracts the second value from the first
and prints the result.

Redirects output to the device connected
to port number {pord. If {porf=0, sends
output to the video display. Use only
when the enhanced video firmware is not
active (checkerboard cursor).

Redirects output to video display when
enhanced video firmware is active (solid
block cursor).

Takes input from the device connected to
port number {pord. If {porf}=0, accepts
input from the keyboard.

USER command. Jumps to the
machine-language subroutine at
location $03F8.

Running and listing programs

{adrstG Transfers control to the machine-
language program beginning at {adrs}.

{adrsiL Disassembles and displays 20 instructions
starting at {adrs}. Subsequent L’s display
20 more instructions each.

Summary of Monitor commands 229

Chapter 11

Hardware
Implementation

231

Table 11-1

Environmental specifications
Operating 10° to 40° C
temperature (50° to 104° F)
Relative 20% to 95%
humidity

Most of this manual describes functions—what the Apple Ilc does.
This chapter, on the other hand, describes objects—the pieces of
hardware the Apple IIc uses to carry out its functions. If you are
designing a device to connect to the Apple Ilc back panel, or if you
just want to know more about how the Apple IIc is built, you should
study this chapter.

Environmental specifications

The Apple Ilc is quite sturdy when used in the way it was intended: as
a transportable computer, made for use in an indoor environment.
You can carry it by its handle from room to room, but for longer
trips you should use its carrying case or some other protective
container (such as an attaché case). Table 11-1 defines the
conditions under which the Apple Iic is designed to function
properly.

You should treat the Apple Ilc with the same kind of care as any
other electrical appliance; protect it from physical abuse, and be
careful not to bump it against furniture when you move it around.
Put it in an attache case or other protective covering if you carry it
outside. You should also protect the mechanical keyboard and the
electrical connectors inside the case from spilled liquids,
particularly those with dissolved contaminants, such as soups, fruit
juices, and carbonated soft drinks.

In normal operation (with the handle locked in its down position),
enough air flows through the openings in the case to keep the insides
from getting too hot. If you do overheat your Apple Ilc—for
example, by blocking the upper or lower ventilation openings—the
first symptom will be erratic operation, such as unexpectedly
changed data. (The memory devices in the Apple Ilc are especially
sensitive to heat.) Letting the machine cool down by turning it off
for a while and unblocking the vents before using it again will bring it
back to normal operation. The only exception to this is if you have
gotten your Apple IIc too hot and physically damaged some
internal component.

Disks are another heat-sensitive element of the system. If the built-
in drive becomes too hot, a disk within can warp or even melt. A
melted or warped disk can’t be used again.

232 Chapter 11: Hardware Implementation

Power requirements

The electrical power used by the Apple Ilc—and everything that
draws power from it—is limited by the capacities of the computer’s
power supply and internal voltage converter. This section describes
these limits for the USA external power supply. Appendix G
describes them for models built for other countries. The internal
voltage converter is the same on all models.

The external power supply

If you purchased your Apple IIc outside the USA, consult
Appendix G for external power supply characteristics.

The external power supply operates on normal household AC
power and provides DC power to the Apple Ilc internal converter.
The basic specifications of the external power supply are listed in
Table 11-2. The Apple Iic external power supply’s cord must be
plugged into a three-wire 115-volt (nominal) outlet. A two-wire
outlet is not properly grounded—using it will damage the external
power supply and perhaps the Apple Ilc as well. The line voltage
must be in the range given in Table 11-2.

Warning Important safety Instructions: This product Is equipped with a
three-wire grounding-type plug—a plug having a third
(grounding) pin. This plug will only fit into a grounding-type
AC outlet. This Is a safety feature,

If you are unable to insert the plug Into the outlet, contact a
licensed electriclan to replace the outlet and, If necessary,
install a grounding conductor.

Do not defeat the purpose of the grounding-type plug.

Table 11-2
Power supply specifications

Line voltage 105 to 129 VAC, 60 Hz

Maximum power 25W
consumption

Supply voltage +15 VDC (nominal)
Supply current 1.2 A (nominal)

Power requirements 233

The external power connector

The external power supply is attached to the internal converter by
means of a 7-pin DIN connector. The connector pins are identified
in Figure 11-1 and Table 11-3.

Table 11-3
Pin Signal External power connector signals
1 Not connected Pin Signal Description
2,3 Signal ground
4 Shield ground 1,7 Not connected
?1 6 glf’ vggect q 2,3 Ground Common electrical ground
ouER - 4 Chassis Chassis ground
Figure 11-1 56 +15V +15-volt DC input to converter

External power connector

The internal converter

The internal converter in the Apple Ilc operates with a supply
voltage from 9 to 20 volts DC as provided by the external power
supply or its equivalent. The internal converter provides enough
low-voltage electrical power for the built-in electronics plus an
external disk drive attached via the 19-pin connector. The basic
specifications of the internal converter are listed in Table 11-4.
Minus 5 volts is derived from the —12 volts (nominal) provided by
the voltage converter.

Table 11-4
Internal converter specilfications
Input voltage +9 to 20 VDC
Maximum power 25w
consumption
Supply voltages +5V £5%
+12V £10%
=12V £10%
Maximum supply +5V: 15 A
currents +12V: 0.6 A continuous
0.9 A intermittent
1.5 A surge (for < 100 ms)
=12V: 100 mA
(-5V: 50 mA)
Maximum case 60° C (140° F)
temperature

234 Chapter 11: Hardware Implementation

The Apple IIc uses a switching-type internal voltage converter as a
power supply. It is small and lightweight, and it generates less heat
than other types of voltage converters.

The voltage converter works by using the DC voltage input to power
a variable-frequency oscillator. The oscillator drives a small
transformer with several separate windings to produce the different
voltages required. A circuit compares the voltage of the +5-volt
supply with a reference voltage and feeds an error signal back to the
oscillator circuit. The oscillator circuit uses the error signal to
control the duty cycle of its oscillation and keep the output voltages
in their normal ranges.

The converter includes circuitry to protect itself and the other
electronic parts of the Apple Ilc by limiting all three output voltages
whenever it detects one of the following malfunctions:

O any supply voltage short-circuited to ground
O any output voltage outside the normal range
Whenever one of these malfunctions occurs, the protection circuit

varies the duty cycle of the oscillator, and all the output voltages
drop to 0 if they cannot be brought back into their normal range.

Apple llc overall block diagram

Figure 11-2 is an overall block diagram of the Apple Iic. The
following sections contain more detailed diagrams of the major
parts of the machine. A full set of schematic diagrams of the
Apple IIc appears later in this chapter.

Apple lic overall block diagram 235

CHARGEN

Video Bus (VIDDO-5)

*5 =5 lines to/from bus

(low-order unless
otherwise noted)

l Port 2 |

A3 £8 B80LATCH e 3
VIDD8,7
A
Alternate Data Bus (ALT0-7)
[1 1 AD7
,JVS A8 A8 A8 A8 A8 X3 8
80 o
DIR
r— ['_T
Main Auxiliary
RAM RAM
sl |3 “
gl |= 1 ! S
3 z 1 £
g A8 TMG A8 [’ =
< RAM Address Bus (RA0-7) > =
]
f8 L
16) 4
| GLU | r MMU I I 10U I -
AO, 1,4 AO.S-T*S 413 - B8
Address Bus (AD-15)
Data Bus (D0-7)
D7
MUX AT
1
| M lr I Keyboard
| Hand Controls |

Figure 11-2

Apple lic block diagram

236

Chapter 11: Hardware Implementation

CMOS (complementary metal-
oxide semiconductor) Is a way
of making integrated circuits
that require less power to
operate than other technologies
such as NMOS (negative-doped
metal-oxide semiconductor),
used by the 6502,

These instructions are described
in Appendix A.

The 65C02 microprocessor

The Apple IIc uses a CMOS 6502 (designated as 65C02)
microprocessor as its central processing unit (CPU). The 65C02 in
the Apple Ilc runs at a clock rate of 1.023 MHz and performs up to
500,000 8-bit operations per second. '

% Note: The clock rate is not a very good criterion for comparing
different types of microprocessors. The 65C02 has a simpler
instruction cycle than most other microprocessors and it uses
instruction pipelining for faster processing. The speed of the
65C02 with a 1-MHz clock is equivalent to many other types of
microprocessors with clock rates up to 5 MHz.

In addition to requiring less power than earlier NMOS 6502
processors, the 65C02 in the Apple IIc has 27 new instructions.
However, programs that use these additional instructions are not
backward compatible with other Apple II series computers that are
not equipped with a CMOS 6502.

65C02 block diagram

Figure 11-3 is a block diagram of the 65C02 microprocessor.
Table 11-5 contains the general specifications of this chip. The
65C02 has a 16-bit address bus, giving it an address space of

64K bytes. The Apple IIc uses special techniques to address a total
of more than 64K (see Chapter 2).

The 65C02 microprocessor 237

Address
Bus

AQ

m-ﬂ

A2 -t
A3

A4 j
A5 g

A6 e

A7 -t

ABL

A8 =t
AQ -~
A10 -ty
A1l -
A12 -y
A13 g+
Al4 =g

A15 =g

ABH

Internal ADH

Figure 11-3
65C02 block diagram (copyright © 1982 by NCR Corporation; used by permission)

238

Legend:

® B-Bit Line

| = 1-Bit Line

—=f—— Register Section

Index
Register
)

Index
Register
(X}

HAH

Stack Pointer
Register
(S)

Control Section ———— 3=

RES IRQ NMI

P Yy

Interrupt
Logic

Y VY

Internal ADL

—
-

ALU

f;

Accumulator
(A)

f'CL

Internal Data Bus

PCH

* iIIIIiI l iill !

-
D
K

Input Data
Latch (DL)

Data Bus
Butfer

|~af—————————— RDY

3= SYNC

|

A A

il

VVVL
93398528

Chapter 11: Hardware Implementation

l—» ML
Instruction
Decode Timing
) Control
_‘ l
@ Clock [P (In)
Generator
Processor
Status Oscillator
Register (P) & (Out)
i L ®,(Out)
S0
- R/W
Instruction
Register
= D1
= D2
= D3
4 Data Bus
5

Table 11-5
65C02 microprocessor specifications

Type 65C02

Register 8-bit accumulator (A)

complement 8-bit index registers (X,Y)
8-bit stack pointer (S)

8-bit processor status (P)
16-bit program counter (PC)

Data bus 8 bits wide
Address bus 16 bits wide
Address range 65,536 (64K)
Interrupts IRQ (maskable)

NMI (nonmaskable)
BRK (programmed)

Operating voltage +5V (£5%)
Power dissipation S mW (at 1 MHz)

65C02 timing

The Apple IIc’s operation is controlled by a set of synchronous
timing signals, sometimes called clock signals. The Apple IIc uses a
14.318-MHz master timing signal, called 74M, to produce all the
other timing signals. These timing signals perform two major tasks:
controlling the computing functions, and generating the video
display. The timing signals directly involved with the 65C02's
operation are described in this section. Other timing signals are
described later in this chapter.

The relationships of the main 65C02 timing signals are diagrammed
in Figure 11-4, and the signals are listed in Table 11-6. The 65C02
clock signals are @1 and @0, complementary signals at a frequency
of 1.0227 MHz. The Apple IIc signal @0 is similar to the signal @2 in
Appendix A (it isn't identical—it's a tiny bit early).

The 65C02 microprocessor 239

s [T L

MLt

‘ 280 ns |
210 ns

——d. e ==

l¢—— 490 ns —

= [cPUPhase |
l—— 490 ns ——~
] | I

— |-4—1 40 ns (max) 30 ns (min)—

ADDR e |;&
fe—
X

30 ns (min)
75ns (max)——‘ |<— L,

DATA from 65C02 (write)) 4

DATA to 65C02 (read) X ><

Figure 11-4
65C02 timing signals
Table 11-6
65C02 timing slgnal descriptions
Signal Description
14M Master oscillator, 14.318 MHz; also 80-column
dot clock
VID7M Intermediate timing signal and 40-column dot clock
Q3 Intermediate timing signal, 2.045 MHz with
asymmetrical duty cycle
20 Phase 0 of 65C02 clock, 1.0227 MHz; complement of @1
ol Phase 1 of 65C02 clock, 1.0227 MHz; complement of @0

240 Chapter 11: Hardware Implementation

The 65C02’s operations are related to the clock signals in a simple
way: internal during @1, external during @0. The 65C02 puts an
address on the address bus during @¢1. This address is valid not
later than 110 nanoseconds after @1 goes high and remains valid
through all of @0. The 65C02 reads or writes data during 0. If the
65C02 is writing, the read/write signal is low during @0 and the
65C02 puts data on the data bus. The data are valid not later than
75 nanoseconds after @0 goes high. If the 65C02 is reading, the
read/write signal remains high. Data on the data bus must be valid
no later than 50 nanoseconds before the end of g0.

More information about the 65C02 and its instruction set is in
Appendix A.

The custom integrated circuits

Most of the circuitry that controls memory and I/O addressing in
the Apple Ilc is in five custom integrated circuits:

O the memory management unit (MMU)
D the input-output unit (IOU)
O the timing generator (TMG)
O the general logic unit (GLU)
m]

the disk controller unit, also known as the Integrated Woz
Machine (IWM)

The soft switches that control the various I/O and addressing modes
of the Apple Ilc are addressable flags inside the MMU, 10U,

and GLU. The functions of the MMU and IOU are not as
independent as their names suggest; working together, they
generate all the addressing signals. For example, the MMU
generates the RAM address signals for the CPU, while the IOU
generates similar RAM address signals for the video display and
most I/O hardware addresses.

The memory management unit (MMU)

The circuitry inside the MMU implements these soft switches:
O Page 2 display (Page2) (described in Chapter 5)

0O high-resolution mode (HiRes) (Chapter 5)

O store to 80-column display (80Store) (Chapter 5)

O select bank 2 (Bank2) (Chapter 2)

The custom integrated circults 241

Important
GND 1 J 40| A1
AO| 2 39| A2
@0 | 3 38| A3
Q3| 4 37| A4
PRAS* | 5 36 | A5
RAO| 6 35 | A6
RA1| 7 34 | A7
RA2| 8 33 | A8
RA3| 9 32 | A9
RA4 | 10 31 | A10
RA5 | 11 30 | AN
RAG | 12 29 | A12
RA7 | 13 28 | A13
R/W* | 14 27 | A4
INH* | 15 26 | A15
coex* | 16 25 | +5V
EN8O* | 17 24 | SELIO*
KBD* | 18 23 | CASEN*
ROMEN2* | 19 22 | co7x*
ROMEN1* | 20 21 | MD7
Figure 11-5
MMU plinouts

0O enable bank-switched RAM (EnlCRAM) (Chapter 2)
O read auxiliary memory (RAMRd) (Chapter 2)

O write auxiliary memory (RAMWTt) (Chapter 2)

O auxiliary stack and zero page (AltZP) (Chapter 2)

O reset mouse Y interrupt (RstYInt) (Chapter 9)

O reset mouse X interrupt (RstXInt) (Chapter 9)

These switches are available on MMU pin 21, which is connected to
bit 7 on the data bus. Figure 11-5 shows the MMU pinouts;
Table 11-7 describes the signals.

A signal name followed by an asterisk Is active low—that Is, it Is
true when the signal is at a TIL high (+5V) level.

The 64K dynamic RAMs used in the Apple IIc use a multiplexed
address, as described later in this chapter. The MMU generates this
multiplexed address for memory reading and writing by the

65C02 CPU.

Table 11-7

MMU signal descriptions

Pin Signal Description

1 GND Power and signal common

2 A0 65C02 address input

3 20 Clock phase 0 input

4 Q3 Timing signal input

5 PRAS* Memory row-address strobe

6-13 RAO-RA7 Multiplexed address output

14 R/W* 65C02 read-write control signal

15 INH* Inhibits main memory (tied to +5V)

16 C06X* Causes $C06x outputs to go to 0 during @0

17 EN80* Enables auxiliary RAM

18 KBD* Enables keyboard data bits 0-6

19 ROMEN2* Enables ROM (tied to ROMEN1*)

20 ROMEN1* Enables ROM (tied to ROMEN2*)

21 MD7 State of MMU flags on data bus bit 7

22 Co7X Causes $C07x outputs to go to 0 during @0

23 CASEN* Enables main RAM

24 SELIO* Goes to 0 during @0 for any access to
$CO page except $C08x, Bx, Cx, or Fx

25 +5V Power

2640 A15-A1 65C02 address input

242 Chapter 11: Hardware Implementation

GND | 1
GR| 2

SEGA | 3

SEGB | 4

ve | 5

socoL* | 6
casso | 7

SPKR | 8

MD7 | 9

YMOVE | 10
(NC) | 11

(NC) | 12
PDLO/XMOVE | 18
R/W* | 14
RESET* | 15

IRQ* | 16

RAO | 17

RA1 | 18

RA2 | 19

RA3 | 20

Figure 11-6
10U plnouts

HO
SYNG*
WNDW*
GLRGAT*
RA10"
RAQ*
VIDD6
VIDD7?
KSTRB
AKD
IOUSELIO"

The input/output unit (I0U)
Input/output unit (IOU) implements the following soft switches, all
described in Chapters 2 and 3:

O Page 2 display (Page2)
high-resolution mode (HiRes)
text mode (TEXT)

mixed mode (MIXED)

80-column display (80Col)
character-set select (AliChar)
any-key-down (AKD)

mouse movement (X0, YO0)

O vertical blanking interrupt (VBIInt)

O 0D 0O 0O Qo g a

These switches are available on IOU pin 9, which is connected to
bit 7 on the data bus. Figure 11-6 shows the IOU pinouts; Table 11-8
describes the signals.

The 64K dynamic RAMs used in the Apple Ilc require a multiplexed
address, as described later in this chapter. The IOU generates this
multiplexed address during clock phase 1 for the data transfers
required for display and memory refresh. The way this address is
generated is described under “The Video Counters” in this chapter.

Table 11-8
10U signal descriptions
Pin Signal Description
GND Power and signal common
GR Graphics mode enable
3 SEGA In text mode, works with VC (see pin 5)
and SEGB to determine character row
address
4 SEGB In text mode, works with VC (see pin 5)

and SEGA,; in graphics mode, selects
high resolution when low, low resolution
when high

5 vC Displays vertical counter bit: in text
mode, SEGA, SEGB, and VC determine
which of the eight rows of a character’s
dot pattern to display; in low resolution,
selects upper or lower block defined by a

byte

The custom integrated circuits 243

Table 11-8 (continued)
10U signal descriptions

Pin Signal Description
6 80COL* 80-column video enable
CASSO Reserved
SPKR Speaker output signal
MD7 Internal IOU flags for data bus (bit 7)
10 YMOVE Detects mouse movement along Y axis
11 N.C. Not used
12 N.C. Not used
13 PDLO/XMOVE Detects mouse movement along X axis
14 R/W* 65C02 read-write control signal
15 RESET* Power on and reset output
16 IRQ* Maskable interrupt line to 65C02
17-24 RAO-RA7 Video refresh multiplexed RAM address
(phase 1)
25 PRAS* Row-address strobe (phase 0)
26 20 Master clock phase 0
27 Q3 Intermediate timing signal
28 +5V Power
29 A6 Address bit 6 from 65C02
30 IOUSELIO* Derived from the SELIO* output for MMU
pin 24
31 AKD Any-key-down signal
32 KSTRB Keyboard strobe signal

33,34 VIDD7,VIDD6 Video display data bits
35,36 RA9*,RA10* Video display control bits

37 CLRGAT* Color-burst gate (enable)

38 WNDW* Displays blanking signal

39 SYNC* Displays synchronization signal

40 HO Displays horizontal timing signal (low bit

of character counter)

244 Chapter 11: Hardware Implementation

14M

™
CREF
HO
VIDD7
SEGB
TEXT
CASEN*
8ocoL*
GND

COWOOW~NOOUGHWON =

—_

d

19
18
17
16
15
14
13
12
11

Figure 11-7
TMG pinouts

+5V
PRAS*
(N.C))
PCAS*
Q3

20

o1
VID7M
LDPS*
TMGEN*

The timing generator (TMG)

A custom timing generator chip (TMG) generates several timing
and control signals in the Apple IIc. The TMG pinouts are shown in
Figure 11-7; the signals are listed in Table 11-9.

Table 11-9

TMG signal descriptions

Pin Signal Description

1 14M 14.318-MHz master timing signal input
2 ™ 7.159-MHz timing signal

3 CREF 3.5795-MHz color reference timing signal
4 HO Horizontal video timing signal

5 VIDD7 Video data bit 7

6 SEGB Video timing signal

7 TEXT Video display text-modes enable

8 CASEN* RAM enable (CAS enable)

9 80COL* Enables 80-column display mode

10 GND Power and signal common

11 TMGEN* Enables master timing

12 LDPS* Video shift-register load enable

13 VID7M Video dot clock enable, 7 MHz or continuous 0
14 a1 Phase 1 system clock

15 20 Phase 0 system clock

16 Q3 Intermediate timing and strobe signal
17 PCAS* RAM column-address strobe

18 N.C. Reserved for testing

19 PRAS* RAM row-address strobe

20 +5V Power

The general logic unit (GLU)

The general logic unit is a single chip that contains the
miscellaneous logic required for the system. It provides

0O all RAM read/write timing

(]

double high-resolution enable/disable

O soft-switch status registers

O write command registers

0 IOU control for mouse interrupts

O double high-resolution soft switches

The custom integrated circuits 245

um| 1~ 24
AO| 2 23
A3| 3 22
A4l 4 21
A5| 5 20
A6| 6 19
AT| 7 18
o0 | 8 17

SELIO* | 9 16
GR|[10 15

RESET* | 11 14
GND | 12 13

Figure 11-8

GLU pinouts

246

+5V
SER*
IOUHOLE
DISK*
™
CREF
(N.C.)
(N.C.)
TEXT
R/W*
MD7
GLUEN*

The GLU'’s pin assignments are shown in Figure 11-8 and its signals
are listed in Table 11-10.

Table 11-10

GLU signal descriptions

Pin Signal Description

1 14M Master clock (14.318 MHz)

2,3-7 AQ,A3-A7 Address lines to select least significant byte
of addresses on CO page

8 @0 Phase 0 of 1.0227-MHz processor sync
clock

9 SELIO* Device select for selecting most significant
byte of the address

10 GR Graphics mode select line

11 RESET* Master reset for system; resets GLU

12 GND Ground reference and negative supply

13 GLUEN* Enables GLU

14 MD7 Indicates status of MMU flags on data bus
bit 7

15 R/W* Read/write qualifier input from processor

16 TEXT Signal used to generate video timing in
double high-resolution or not-graphics

17,18 N.C. Not used

19 CREF Color reference signal

20 7™ 7-MHz clock output

21 DISK* Disk controller device select output

22 IOUHOLE Controls IOUSELIO

25 SER* Serial controller device select output

24 +5V +5 volt supply

Chapter 11: Hardware Implementation

For further information on GCR,
refer to "Disk 1/0O.”

SEEKPHO | 1

SEEKPH2 [2

AO| 3

Al] 4

A2| 5

A3]| 6

DISK* | 7

WRDATA| 8

WRREQ* | 9

Do | 10

D1 11

D2 | 12

D3| 13

GND | 14

Figure 11-9

IWM pinouts

C

27
26
25
24
23
22
21
20
19
18
17
16
15

SEEKPH1
SEEKPH3
+5V

Q3

™
RESET*
RDDATA
WRPROT
DR1*
DR2*

D7

D6

D5

D4

The disk controller unit ((WM)

The TWM (for Integrated Woz Machine) is a disk controller that
includes, on a single chip, all the capabilities of the disk controller
card originally designed by Steve Wozniak in 1977.

Right after reset, the IWM is an integrated GCR (group code
recording) disk drive controller. It also has a status register, mode
register, and multiple operating modes. It provides both
synchronous and asynchronous modes, and a fast mode with a data
rate twice that of normal disk I/O speeds. Figure 11-9 shows the
IWM pin assignments; Table 11-11 describes the TWM signals.

Table 11-11

IWM signal descriptions

Pin Signal Description

1 SEEKPHO Stepper motor control phase 0, one of four
programmable disk drive motor phase
outputs.

2 SEEKPH2 Stepper motor control phase 2.

3 A0 The data input to the state bit selected
by Al to A3.

4-6 Al-A3 These three inputs select one of the eight
bits in the state register to be updated.

7 DISK* Device enable. The falling edge of

DISK* latches information on Al to A3.
The rising edge of either Q3 or DISK*
qualifies write register data.

8 WRDATA The serial data output. Each 1-bit causes a
transition on this output.

9 WRREQ* This signal is a programmable buffered
output line.

10-13 D0-D3 DO to D7 make up the bidirectional data
bus.

14 GND Ground reference and negative supply.

15-18 D4-D7 The remaining bits of the bidirectional
data bus.

19 DR2* Drive 2 select.

The custom integrated circuits 247

Table 11-11 (continued)
IWM signal descriptions

Pin Signal Description

20 DR1* Drive 1 select.

21 WRPROT Write-protect input; this can be polled via
bit 7 of the status register.

22 RDDATA Serial data input line. The TWM
synchronizes the falling transition of each
pulse.

23 RESET* IWM reset: places all IWM outputs in their

inactive state and sets all state and mode
register bits to 0.

24 7™ 7-MHz clock input.

25 Q3 A 2.0-MHz clock input used to qualify the
timing of the serial data being written or
read.

26 +5V The +5 volt supply.

27 SEEKPH3 Stepper motor control phase 3.

28 SEEKPH1 Stepper motor control phase 1.

Memory addressing

The 65C02 microprocessor can directly address 65,536 locations.
The Apple IIc uses this entire address space, and then some: some
areas in memory are used for more than one function. The
following sections describe the memory devices used in the

Apple Iic and the way they are addressed. Input and output also use
portions of the memory address space; refer to Chapter 2 for
information.

Figure 11-10 illustrates the Apple IIc’s overall memory bus
organization and memory selection signals.

% Note: Some Apple IIc’s have ROMs with 27xx designations,
some have 23xx, They are functionally equivalent.

248 Chapter 11: Hardware Implementation

+5v| 1 o 28 | +5V
At2] 2 27 | (N.C)
A7| 3 26 | A13
A6 | 4 25 | A8
A5] 5 24 | A9
A4l B 23 | A1
A3| 7 22 | OE*
A2| 8 21 | A10
Al 9 20 | CE*
A0 | 10 19 | D7
Do | 11 18 | D6
D1] 12 17 | DS
D2 | 13 16 | D4
GND | 14 15 | D3
Figure 11-11

23128 ROM pinouts (in type
23256 ROM, pin #27 Is Al14)

UniDisk 3.5

Memeory expansion

16 8

K—— 65002 —

14
— MONROM [4

ROMEN 2
RAS® © a0 o1
/\ me-l CAS* E T -Ll
. i
3 "
2 £> Maln RAM [5 £ :) VIDEO
5 LATCH
2
8
s FD -
6 AT 2 &
1 8 @ a &
) MmU 5 +| sobiR i
[X —_— | eneo § lff',
2 2)
= o
o]
3
-8—5 Auxiliary g LI
A § == soLaton
BB : ?
z
v v R/W*80 T PRAS* Il 1T
Q3 20 o1
Figure 11-10

Memory bus organization

ROM addressing

In the Apple Ilc the following programs are permanently stored in a
type 23128 16K-by-8-bit ROM (Figure 11-11):

O Applesoft editor and interpreter
O Monitor

O enhanced video firmware

The verslon of the Apple lic that supports the UniDisk 3.5 uses a
23256 32K-by-8-bit ROM. It needs the exira space for the
Protocol Converter, Minl-Assembler, and other added functions
that it supports.

The Apple lic that supports the memory expansion card also
uses the 23256 ROM IC,

Memory addressing 249

kar| 1~ 24
KAB| 2 23
KA5| 3 22
KA4| 4 21
KA3| 5 20
KA2| 6 19
KA1| 7 18
KAO| 8 17
Do| 9 16
D1]| 10 15
D2 | 11 14
GND | 12 13
Figure 11-12

2316 ROM pinouts

+5Vv
KA8
CAPS
+5V
KBD*
LANGSW
GND
(N.C)
D6
D5
D4
D3

Memory expansion

(

+5V
A12
A7
A6
A5
A4
A3
A2
Al
A0| 10
oo| M
01] 12
02113
GND | 14

OO~ A0 =

28
27
26
25
24
23
22
21
20
19
18
17
16
15

Figure 11-13
2364 pinouts

250

+5V
+5V
+5V
A8
A9
A1
GND
A10
WNDW*
o7
06
05
04
03

The ROM is enabled by two signals called ROMENI and ROMENZ.
(In the Apple IIc, ROMEN1 and ROMEN2 are electrically
connected.) The segment of the ROM enabled by ROMEN1
occupies the memory address space from $C100 through $DFFF.
The address space from $C300 through $C3FF and much of $C800
through $CFFF contains the enhanced video firmware.

These ROM address allocations are approximately true (some space
sharing takes place):

O ROM addresses $C000 through $COFF are never available.

0O ROM addresses $C100 and $C200 are entry points to firmware for
serial ports 1 and 2, respectively.

O ROM address $C400 is the entry point to mouse interface
support.

0 ROM addresses $C500 through $CSFF are reserved.

0 ROM address $C600 is the entry point to firmware for the built-in
and external disk drives. The built-in drive is considered slot 6
drive 1 or its equivalent. The external drive is considered slot 6
drive 2.

O ROM addresses starting at $C700 support (from the Monitor) the
external drive as if it were slot 7 drive 1, for external-drive startup
only.

D Addresses $D000 through $F7FF contain the Applesoft BASIC

interpreter; addresses $F800 through $FFFF contain the Monitor
firmware.

The Apple lic that supports the memory expansion card has a
ROM map that is different from that given for the original and
UniDisk 3.5 lic. The memory expansion ROM map is provided in
Appendix |.

The other ROMs in the Apple Ilc are a type 2316 ROM (Figure 11-12)
used for the keyboard character decoder, and a type 2364 ROM
(Figure 11-13) used for character sets for the video display. This
2364 ROM is rather large because it includes a section of straight-
through bit-mapping for the graphics modes. This way, graphics
display video can pass through the same circuits as text without
additional switching circuitry.

Chapter 11: Hardware Implementation

+5V | 1 Yot 16
MDx | 2 15
R/W* | 3 14
RAS* | 4 13
RA7| 5 12
RA5 | 6 1
RAB | 7 10
+5v)| 8 9
Figure 11-14

64K RAM pinouts

GND
CAS*
MDx
RA1
RA4
RA3
RA2
RAO

RAM addressing

The RAM (programmable) memory in the Apple IIc is used both for
program and data storage and for the video display. The areas in
RAM that are used for the display are accessed both by the 65C02
microprocessor and by the video display circuits. In some
computers, this dual access results in addressing conflicts (cycle
stealing) that can cause temporary dropouts in the video display.
This problem does not occur in the Apple Ilc, thanks to the way the
microprocessor and the video circuits share the memory.

The memory circuits in the Apple IIc take advantage of the two-
phase system clock to interleave the microprocessor memory
accesses and the display memory accesses so that they never
interfere with each other. The microprocessor reads or writes to
RAM only during @0, and the display circuits read data only
during @1.

Dynamic RAM refreshment

The image on a video display is not permanent; it fades rapidly and
must be refreshed periodically. To refresh the video display, the
Apple Ilc reads the data in the active display page and sends them
to the display. To prevent visible flicker in the display, and to
conform to standard practice for broadcast video, the Apple Ilc
refreshes the display 60 times per second.

The dynamic RAM devices used in the Apple IIc also need a kind of
refreshment, because the data are stored in the form of electric
charges that diminish with time and must be replenished. The
Apple Ilc is designed so that refreshing the display also refreshes
the dynamic RAMs. The next few paragraphs explain how this is
done.

The job of refreshing the dynamic RAM devices is minimized by the
structure of the devices themselves. The individual data cells in
each RAM device are arranged in a rectangular array of rows and
columns. When the device is addressed, the part of the address that
specifies a row is presented first, followed by the address of the
column. Splitting information into parts that follow each other in
time is called multiplexing. Because only half of the address is
needed at one time, multiplexing the address reduces the number
of pins needed for connecting the RAMs (Figure 11-14).

Memory addressing 251

Memory expansion In the Apple lic that supports the memory expansion card, the
16 64Kx1 RAM ICs used for the original and UniDisk 3.5 lic’s are
replaced by 4 64Kx4 ICs.

Table 11-12 Different manufacturers’ 64K RAMs have cell arrays of either
RAM address multiplexing 128 rows by 512 columns or 256 rows by 256 columns. Only the row
portion of the address is used in refreshing the RAMs.

Mux'd Row Column
address address address Now consider how the display is refreshed. As described later in this

chapter, the display circuitry generates a sequence of

RAO A0 A9 8,192 memory addresses in high-resolution mode; in text and low-
RA1 Al A6 resolution modes, this sequence is the 1,024 display-page

RA2 A2 A10 addresses repeated 8 times. The display address cycles through this
RA3 A3 All sequence 60 times a second, or once every 17 milliseconds. The
RA4 A4 Al12 way the low-order address lines are assigned to the RAMs, the row
RAS A5 Al3 address cycles through all 256 possible values once every 2

RA6 A7 Al4 milliseconds (see Table 11-12). This more than satisfies the refresh
RA7 A8 Al5 requirements of the dynamic RAMs.

Dynamic RAM timing

The Apple IIc’s microprocessor clock runs at a speed of 1.023 MHz,
but the interleaving of CPU and display cycles means that the RAM
is being accessed at a 2-MHz rate, or a cycle time of just under

500 nanoseconds. Data for the CPU are strobed by the falling edge
of 0, and display data are strobed by the falling edge of @1, as
shown in Figure 11-15.

The RAM timing looks complicated because the RAM address is
multiplexed, as described previously. The MMU takes care of
multiplexing the address for the CPU cycle, and the IOU performs
the same function for the display cycle. The multiplexed address is
sent to the RAM ICs over the lines RAO-RA7 (Table 11-13). Along
with the other timing signals, the TMG generates two signals that
control the RAM addressing: row-address strobe (RAS) and
column-address strobe (CAS).

252 Chapter 11: Hardware Implementation

Table 11-13
RAM timing signals

Signal Description

20 Clock phase 0 (CPU phase)

w1 Clock phase 1 (display phase)

RAS Row-address strobe

CAS Column-address strobe

Q3 Alternate RAM/column-address strobe

RAO-RA7 Multiplexed address bus
MDO-MD7 Internal data bus

aa T UTUUUL U U UL UL
md L

@—d I 1

0 —-j
° I CPU Phase I—

o1 _l Video Phase l J

ras — | [

11
CAS* ————r————L I I | IL
4 4 Y ;

MDO-MD7 —_— -_—

RAO-RA7

Figure 11-15
RAM timing signals

Memory addressing

253

The keyboard

The Apple IIc’s keyboard is a matrix of key switches connected to an
AY-3600-type keyboard decoder via a ribbon cable and a 26-pin
connector (Figure 11-16). The AY-3600 scans the array of keys over
and over to detect any keys pressed. The scanning rate is set by the
external resistor-capacitor network made up of C46 and R6. The
debounce time is also set externally, by C45.

L4 Address Bus >

CO6X" Data Bus
(MMU))i vAO y Al gA2 < o7 A >

CAPL =
gapL B 8 to 1 MUX
SOCOLSW¢ 0 DO-6
KBD*
To: 65C02 (MMU) >
Iou LA > 2716 MAP
WM CAPS |
GLU
SER1 1 F Keyboard Address Bus
Sﬁﬂz CONTROL _ | KSTRB :IOU))
HIFT A - "
S| . AY-3600-PRO KEY AKD + (I0U)
—_— — — ———— — — — e e ———— —_— e ——_——

Z.”BSEI ; ﬁﬂ/ﬁﬂ ﬂeybaam‘ 18 X,Y Coordinates ﬂstuse Auwer
t FLASH
DISKAGTV (12 Volt Circuits)
(Internal Disk
Connector)
\ \ \ KeyboardGrid \ | \
AR REREE

¢ 9

Figure 11-16
Keyboard circuit diagram

254 Chapter 11: Hardware Implementation

Key

pressed

!
|

The AY-3600's outputs include five bits of key code plus separate
lines for Control, Shift, any-key-down, and keyboard strobe. The
any-key-down and keyboard-strobe lines are connected to the IOU,
which addresses them as soft switches. The key-code line and
Control and Shift are inputs to a separate 2316 ROM. The ROM
translates them to the character codes that are enabled onto the
data bus by signals named KBD*and ENKBD* The KBD* signal is
enabled by the MMU whenever a program reads location $C000, as
described in Chapter 2.

Figure 11-17 illustrates the events that occur when a key is pressed,
when the keypress is detected by a program, and when a key is
pressed and held for more than about a second.

Decode of $C01x in IOU If I0U sees AKD too long,
Key clears keyboard strobe Another key it generates own strobe

released (bit 7 at $G00x) pressed for auto-repeat

' ' } !
| |

Keyboard strobe
to IOU

b

Latched KSTRB
from IOU on $C00x——
bit7

> 0.8t01.07
Y |<—seconds

AKD at $C01x e
bit 7

Figure 11-17
Keyboard signals

The keyboard 255

AUD Is an audio-ampilifier hybrid
clreuit.

The speaker

The Apple IIc’s built-in loudspeaker is controlled by a single bit of
output from the input/output unit JOU), amplified by a hybrid
circuit (Figure 11-18).

+5V

500 Q
Volume
Control

1VSOUND_ To Video Expansion
" Connector (See Fig. 11-25)

SPKR
10U = AUD
+yr7 YYYYL EARQUT2
=€ v
- Binaural
i Jack
- 3 EAROUT1
EAROUT[— A GND
d
q: Speaker
6
GND
Figure 11-18

Speaker circuit diagram

Volume control

There is a 500-ohm variable resistor feeding anywhere from 0 to

5 volts to pin 5 of AUD to control the speaker volume. This
potentiometer controls the volume of both the built-in speaker and
whatever is plugged into the output jack.

Output jack

Next to the volume control, along the lower-left side of the Apple Ilc
case, there is a 3.5-mm audio output jack. Although speaker output
is monaural, the jack accommodates stereo headphone plugs (as
well as monaural), providing sound to both channels. Inserting a
headphone plug into the jack disconnects the built-in speaker.

256 Chapter 11: Hardware Implementation

The video display

The Apple IIc produces a video signal that creates a display on a
standard video monitor or, if you add an RF modulator, on a black-
and-white or color television set. The video signal is a composite
made up of the data that are being displayed plus the horizontal and
vertical synchronization signals that the video monitor uses to
arrange the lines of display data on the screen.

¢ Note: Apple IIc computers manufactured for sale in the USA
generate a video signal that is compatible with the standards set
by the NTSC (National Television Standards Committee).
Apple Iic’s used in European countries require an external
adapter to provide video that is compatible with the standard
used there, which is called PAL (for phase alternating lines).
References to the PAL standard are found in the bibliography at
the end of this manual. This manual describes only the NTSC
version of the video circuits.

The display portion of the video signal is a time-varying voltage
generated from a stream of data bits, where a 1 corresponds to a
voltage that generates a bright dot, and a 0 to a dark dot. The
display bit stream is generated in bursts that correspond to the
horizontal lines of dots on the video screen. The signal named
WNDW™ is low during these bursts.

During the time intervals between bursts of data, nothing is
displayed on the screen, During these intervals, called the
blanking intervals, the display is blank and the WNDW* signal is
high. The synchronization signals, called sync for short, are
produced by making the signal named SYNC*low during portions
of the blanking intervals. The sync pulses are at a voltage equivalent
to blacker-than-black video and don’t show on the screen.

The video counters

The address and timing signals that control the generation of the
video display are all derived from a chain of counters inside the
IOU. Only a few of these counter signals are accessible from outside
the IOU, but they are all important in understanding the operation
of the display generation process, particularly the display memory
addressing described in the next section.

The video display 257

258

The horizontal counter is made up of seven stages: HO, H1,

H2, H3, H4, HS, and HPE*. The input to the horizontal counter is
the 1-MHz signal that controls the reading of data being displayed.
The complete cycle of the horizontal counter consists of 65 states.
The six bits HO through H5 count from 0 to 64, then start over at 0.
Whenever this happens, HPE* forces another count with HO
through H5 held at 0, extending the total count to 65.

The IOU uses the 40 horizontal count values from 25 through 64 in
generating the low-order part of the display data address. The IOU
uses the count values from 0 to 24 to generate the horizontal
blanking, the horizontal sync pulse, and the color-burst gate.

When the horizontal count gets to 65, it signals the end of a line by
triggering the vertical counter. The vertical counter has nine stages:
VA, VB, VC, V0, V1, V2, V3, V4, and V5. When the vertical count
reaches 262, the IOU resets it and starts counting again from 0. Only
the first 192 scanning lines are actually displayed; the IOU uses the
vertical counts from 192 to 262 to generate the vertical blanking and
sync pulse. Nothing is displayed during the vertical blanking
interval. (The vertical line count is 262 rather than the

standard 262.5 because, unlike normal television, the Apple IIc’s
video display is not interlaced.)

Display memory addressing

As described in Chapter S, data bytes are not stored in memory in
the same sequence in which they appear on the display. You can get
an idea of the way the display data are stored by using the Monitor
to set the display to graphics mode, then storing data starting at the
beginning of the display page at hexadecimal $0400 and watching
the effect on the display. If you do this, you should use the graphics
display instead of text to avoid confusion: the text display is also
used for Monitor input and output.

If you want your program to display data by storing them directly
into the display memory, you must first transform the display
coordinates into the appropriate memory addresses, as shown in
Chapter 2. The descriptions that follow will help you understand
how this address transformation is done and why it is necessary.

The address transformation that folds three rows of 40 display bytes
into 128 contiguous memory locations is the same for all display
modes, so it is described first. The differences among the different
display modes are described later in this chapter.

Chapter 11: Hardware Implementation

The requirements for RAM
refreshing are discussed earlier
in this chapter under "RAM
addressing.”

Display address mapping

Consider the simplest display on the Apple IIc, the 40-column text
mode. To address 40 columns requires 6 bits, and to address 24
rows requires another 5 bits, for a total of 11 address bits.
Addressing the display this way would involve 2048 (2 to the 11th
power) bytes of memory to display a mere 960 characters. The 80-
column text mode would require 4096 bytes to display

1920 characters. The leftover chunks of memory that were not
displayed could be used for storing other data, but not easily,
because they would not be contiguous.

Instead of using the horizontal and vertical counts to address
memory directly, the circuitry inside the IOU transforms them into
the new address signals described below. The transformed display
address must meet the following criteria:

O map the 960 bytes of 40-column text into only 1024 bytes
O scan the low-order address to refresh the dynamic RAMs
O continue to refresh the RAMs during video blanking

The transformation involves only horizontal counts H3, H4,

and H5, and vertical counts V3 and V4. Vertical count bits

VA, VB, and VC address the lines making up the characters, and
are not involved in the address transformation. The remaining low-
order count bits, HO, H1, H2, V0, V1, and V2 are used directly,
and are not involved in the transformation. :

The IOU performs an addition that reduces the five significant count
bits to four new signals S0, S1, 52, and S3, where S stands for sum.
Figure 11-19 is a diagram showing the addition in binary form, with
V3 appearing as the carry in and H5 appearing as its

complement H5* A constant value of 1 appears as the low-order
bit of the addend. The carry bit generated with the sum is not used.

If this transformation seems terribly obscure, try it with actual
values. For example, for the upper-left corner of the display, the
vertical count is 0 and the horizontal count is 24: HO, H1, H2,

and H5 are 0’s, and H3 and H4 are 1’s. The value of the sum is 0, so
the memory location for the first character on the display is the first
location in the display page, as you might expect.

The video display 259

Table 11-14
Display memory
addressing
Memory Display
address bit address bit
AQ HO
Al H1
A2 H2
A3 S0
A4 S1
AS S2
A6 53
A7 VO
A8 vi
A9 V2
Al10 *
All *
Al2 *
Al3 *
Al4 *
AlS GND
* For these address bits,

see Table 11-15.

260

V3 Carry in

H5* V3 H4 H3 Augend
v4 H5* V4 1 Addend
S3 S2 S1 S0 Sum
Figure 11-19

Display address transformation

Horizontal bits HO, H1, and H2 and sum bits SO, §1, and 52 make
up the transformed horizontal address (A0 through A6 in

Table 11-14). As the horizontal count increases from 24 to 63, the
value of the sum (83 52 51 S0) increases from 0 to 4 and the
transformed address goes from 0 to 39, relative to the beginning of
the display page.

The low-order three bits of the vertical row counter are VO, V1,

and V2. These bits control address bits A7, A8, and A9, as shown
in Table 11-14, so that rows 0 through 7 start on 128-byte
boundaries. When the vertical row counter reaches 8, V0, V1,

and V2 are 0 again, and V3 changes to 1. If you do the addition in
Figure 11-19 with H equal to 24 (the horizontal count for the first
column displayed) and V equal to 8, the sum is 5 and the horizontal
address is 40: the first character in row 8 is stored in the memory
location 40 bytes from the beginning of the display page.

Table 11-14 shows how the signals from the video counters are
assigned to the address lines. HO, H1, and H2 are horizontal-count
bits, and V0, V1, and V2 are vertical-count bits. S0, S1, §2, and §3
are the folded address bits described above. Table 11-15 shows
memory address bits for the display modes.

Table 11-15

Memory address bits for display modes

Address Text and High resolution and
bit low resolution double high resolution
Al10 80STORE+PAGE?2’ VA

All 80STORE'.PAGE2 VB

Al2 0 vC

Alj3 0 80STORE+PAGE2’
Al4 0 80STORE’.PAGE2

Note: Period (.) means logical AND; prime () means logical NOT.

Chapter 11: Hardware Implementation

Figure 11-20 shows how groups of three 40-character rows are stored
in blocks of 120 contiguous bytes starting on 128-byte address
boundaries. This diagram is another way of describing the display
mapping shown in Figure 5-5. Notice that the three rows in each
block of 120 bytes are not adjacent on the display.

- 128 Bytes >

<—— 40 Bytes—>»1<¢—40 Bytes—>»]€¢——40 Bytes—>1-¢ ! >

Bytes
$400 Row 0 Row 8 Row 16 e
$480 Row 1 Row 9 Row 17 LE
$500 Row 2 Row 10 Row 18 x>
$580 Row 3 Row 11 Row 19 b
$600 Row 4 Row 12 Row 20 *
$680 Row 5 Row 13 Row 21 .
$700 Row 6 Row 14 Row 22 *r
$780 Row 7 Row 15 Row 23 *

Figure 11-20
40-column text display memory (memory locations marked with
a double asterisk ** are screen holes, described in Chapter 2)

Video display modes

The different display modes all use the address-mapping scheme
described later in this chapter, but they use different-sized memory
areas in different locations. This section describes the addressing
schemes and the methods of generating the actual video signals for
the different display modes. Figure 11-21 illustrates the video
display circuits discussed in this section.

The video display 261

VIDD7 _

HO___ o (1o TMG)
80COL*
f———- (To TMG) To RAM
vIDD7 PRAS? [5
> SYNC*
10U >
VIDD6 WNDW> >
GR B
SEGB i
SEROUT _
g ¥ "
o |2|RIE[.13
anasw [<B 218 (8]0 |2 NTSC
Olo |3 |>» @D |3 /
(Keyboard)y ¥ ¥ ¥ ¥ ¥ ¥ Y VID VIDOUT
CHARGEN
o0 o0 SO i — -\) *
T]_l . High-Resolution GND
00 Graphics
\"4 54 SPI
:> VIDEO
LATCH
= Low-Resolution —
J & 3
] [& Graphics o —e
3 S o
& Video Bus 7 93 -y
& : N 43
* I Applell | Applell g =
a & (primary) | (primary) & —e
- o»z? set set —®
D S
LATCH N
Apple lle Apple lle i
T ‘LT | | @tternate) | (alternate) Parallel
,\o’b set set Load
20 ol N /
+ Shift
LANGSW LANGSW !
up down Out
VIDD6 LDPS*
I VID7M N\
> 14M
T™G >
(10U HO CREF .
80COL* SEE -
(10U) ——————— i
1VSOUND_
+
AUD e
GND
/
Figure 11-21

Video display circuits

262

Chapter 11: Hardware Implementation

10}98UUO0D uojsuedx3 08pIA

10308Uu09) uoisuedxg 09pIA

Text displays

The text and low-resolution graphics pages begin at memory
locations $0400 and $0800. Table 11-15 shows how the display-
mode signals control the address bits to produce these addresses.
Address bits A10 and A11 are controlled by the settings of Page2
and 80Store, the display-page and 80-column-video soft switches.
Address bits A12, A13, and A14 are set to 0. Notice that 80Store
active inhibits Page2: there is only one display page in 80-column
mode.

The low-order six bits of each data byte reach the character
generator directly, via the video data bus VID0-VIDS. The two
high-order bits are modified by the IOU to select between the
primary and alternate character sets and are sent to the character
generator on lines RA9 and RA10.

The data for each row of characters are read eight times, once for
each of the eight lines of dots making up the row of characters. The
data bits are sent to the character generator along with VA, VB,
and VC, the low-order bits from the vertical counter. For each
character being displayed, the character generator puts out one of
eight stored bit patterns selected by the three-bit number made up
of VA, VB, and VC.

The bit patterns from the character generator are loaded into the
74166 parallel-to-serial shift register and output as a serial bit stream
that goes to the video output circuit (Figure 11-21). The shift register
is controlled by signals named LDPS* (for load parallel-to-serial
shifter) and VID7M (for video 7 MHz). In 40-column mode, LDPS*
strobes the output of the character generator into the shift register
once each microsecond, and VID7M shifts the bits out at 7 MHz
(Figure 11-22).

The addressing for the 80-column display is exactly the same as for
the 40-column display: the 40 columns of display memory in
auxiliary memory are addressed in parallel with the 40 columns in
main memory. The data from these two memories reach the video
data bus (lines VIDO-VID7) via separate 74LS374 three-state buffers.
These buffers are loaded simultaneously (at the rising edge of @0),
but their outputs are sent to the character generator alternately by
the falling edge of @0 and #1. In 80-column mode, LDPS* loads
data from the character generator into the shift register twice during
each microsecond, once during 80 and once during @1, and
VID7M remains low, enabling the clock continuously at 14M
(Figure 11-23).

The video display 263

|
oiptigigigigigigigigiginigigigigipipin
|

|
o 1 q) CPU Phase é | |
o _ | Video Phase i | 1 [
DATA BUS S 4 \
VIDEO LATCH X) 4
LDPS* AND EN8O* i L]
VIDEO BUS into CHARGEN X X

OUTPUT BUS Into SPI (Shift Register) 4 i 4

SPI Serial Output (VID7M and 14M) I | [| | | | | I I l | I | | |

Figure 11-22
7-MHz video timing signals: 40-column, low-resclution, and high-resclution display

264 Chapter 11: Hardware Implementation

| P—Cruphase 3 I |
o1 — VideoPhase lI | & |
DATA BUS
l !
VIDEO LATCH X D, X Ds
ALTERNATE BUSYX ALT, X
| !
80 LATCH X ALT, X ALT4
LDPS* ,
(EN80* always on) l lU i
VIDEO BUS into CHARGEN X Do N ALT, B,

OUTPUT BUS into SPI (Shift Register)

SPI Serial Output (14M Clock)

Figure 11-23

14-MHz video timing signals: 80-column and double high-resolution display

The video display

265

266

Low-resolution display

In the graphics modes, VA and VB are not used by the character
generator, so the IOU uses lines SEGA and SEGB to transmit HO and
HIRES*, as shown in Table 11-16.

Table 11-16
Character-generator control signals

Display mode SEGA SEGB SEGC
Text VA VB VvC
Graphics HO HIRES* vC

The low-resolution graphics display uses VC to divide the eight
display lines corresponding to a row of characters into two groups
of four lines each. Each row of data bytes is addressed eight times,
the same as in text mode, but each byte is interpreted as two
nibbles. Each nibble selects 1 of 16 colors. During the upper four of
the eight display lines, VC is low and the low-order nibble
determines the color. During the lower four display lines, VC is
high and the high-order nibble determines the color.

The bit patterns that produce the low-resolution colors are read
from the character-generator ROM in the same way the bit patterns
for characters are produced in text mode. The 74166 parallel-to-
serial shift register converts the bit patterns to a serial bit stream for
the video circuits (Figure 11-21).

The video signal generated by the Apple IIc includes a short burst of
3.58-MHz signal that is used by an NTSC color monitor or color

TV set to generate a reference 3.58-MHz color signal. The

Apple IIc’s video signal produces color by interacting with this
3.58-MHz signal inside the monitor or TV set. Different bit patterns
produce different colors by changing the duty cycles and delays of
the bit stream relative to the 3.58-MHz color signal. To produce the
small delays required for so many different colors, the shift register
runs at 14 MHz and shifts out 14 bits during each cycle of the 1-MHz
data clock. To generate a stream of 14 bits from each 8-bit pattern
read from the ROM, the output of the shift register is connected
back to the register’s serial input to repeat the same 8 bits; the last 2
bits are ignored the second time around.

Chapter 11; Hardware Implementation

Each bit pattern is output for the same amount of time as a
character: 1.02 microseconds. Because that is exactly enough time
for three and a half cycles of the 3.58-MHz color signal, the phase
relationship between the bit patterns and the signal changes by a
half cycle for each successive pattern. To compensate for this, the
character generator puts out one of two different bit patterns for
each nibble, depending on the state of HO, the low-order bit of the
horizontal counter.

High-resolution display

The high-resolution graphics pages begin at memory locations
$2000 and $4000 (decimal 8192 and 16384). These page addresses
are selected by address bits A13 and A14. In high-resolution mode,
these address bits are controlled by PAGE2 and 80STORE, the
signals controlled by the display-page (Page2) and 80-column-
video (80Col) soft switches. As in text mode, 80STORE inhibits
addressing of the second page because there is only one page of 80-
column text available for mixed mode.

In high-resolution graphics mode, the display data are still stored
in blocks like the one shown in Figure 11-20, but there are eight of
these blocks. As Tables 11-14 and 11-15 show, vertical counts

VA, VB, and VC are used for address bits A10, All, and A12,
which address eight blocks of 1024 bytes each. Remember that in
the display, VA, VB, and VC count adjacent horizontal lines in
groups of eight, This addressing scheme maps each of those lines
into a different 1024-byte block.

It might help to think of this scheme as a kind of eight-way
multiplexer: it's as if eight text displays were combined to produce a
single high-resolution display, with each text display providing one
line of dots in turn, instead of a row of characters.

The high-resolution bit patterns are produced by the character-
generator ROM. In this mode, the bit patterns simply reproduce the
seven bits of display data. The low-order six bits of data reach the
ROM via the video data bus VID0-VIDS. The IOU sends the other
two data bits to the ROM via RA9 and RA10.

The video display 267

268

The high-resolution colors described in Chapter 2 are produced by
the interaction between the video signal the bit patterns generate
and the 3.58-MHz color signal generated inside the monitor or

TV set. The high-resolution bit patterns are always shifted out at

7 MHz, so each dot corresponds to a half-cycle of the 3.58-MHz
color signal. Any part of the video signal that produces a single
white dot between two black dots, or vice versa, is effectively a short
burst of 3.58 MHz and is therefore displayed as color. In other
words, a bit pattern consisting of alternating 1's and 0’s gets
displayed as a line of color. The high-resolution graphics
subroutines produce the appropriate bit patterns by masking the
data bits with alternating 1's and 0’s.

To produce different colors, the bit patterns must have different
phase relationships to the 3.58-MHz color signal. If alternating 1s
and 0’s produce a certain color, say green, then reversing the
pattern to 0's and 1's will produce the complementary color,
purple. As in the low-resolution mode, each bit pattern
corresponds to three and a half cycles of the color signal, so the
phase relationship between the data bits and the color signal
changes by a half cycle for each successive byte of data. Here,
however, the bit patterns produced by the hardware are the same
for adjacent bytes; the color compensation is performed by the
high-resolution software, which uses different color masks for data
being displayed in even and odd columns.

To produce other colors, bit patterns must have other timing
relationships to the 3.58-MHz color signal. In high-resolution
mode, the Apple Ilc produces two more colors by delaying the
output of the shift register by half a dot (70 ns), depending on the
high-order bit of the data byte being displayed. (The high-order bit
doesn’t actually get displayed as a dot, because at 7 MHz there is
only time to shift out seven of the eight bits.)

As each byte of data is sent from the character generator to the shift
register, high-order data bit D7 is also sent to the TMG. If D7 is off,
the TMG transmits shift-register timing signals LDPS* and VID7M
normally. If D7 is on, the TMG delays LDPS* and VID7M by

70 nanoseconds, the time corresponding to half a dot. The bit
pattern that formerly produced green now produces orange; the
pattern for purple now produces blue.

% A note about timing: For 80-column text, the shift register is
clocked at twice normal speed. When 80-column text is used
with graphics in mixed mode, the TMG controls shift-register
timing signals LDPS* and VID7M so that the graphics portion
of the display works correctly even when the text window is in
80-column mode.

Chapter 11: Hardware Implementation

RGB stands for red, green, and
blue, and identifies a type of
color monitor that uses
independent inputs for the three
primary colors.

For further information about
double high-resolution graphics
display, refer to the Bibliography.

Double high-resolution display

Double high-resolution graphics mode displays two bytes in the
time normally required for one, but it uses high-resolution graphics
Pages 1 and 1X instead of text and low-resolution Pages 1 and 1X.

< Note: There is a second pair of bytes, HRP2 and HRP2X, which
can be used to display a second double high-resolution page.

Double high-resolution graphics mode displays each pair of data
bytes as 14 adjacent dots, 7 from each byte. The high-order bit
(color-select bit) of each byte is ignored. The auxiliary-memory
byte is displayed first, so data from auxiliary memory appear in
columns 0-6, 14-20, and so on, up to columns 547-552. Data from
main memory appear in columns 7-13, 21-27, and so on, up

to 553-559.

As in 80-column text, there are twice as many dots across the
display screen, so the dots are only half as wide. On a TV set or low-
bandwidth (less than 14 MHz) monitor, single dots are dimmer
than normal.

% Note: Except for some expensive RGB-type color monitors,
any video monitor with a bandwidth as high as 14 MHz will be a
monochrome monitor, Monochrome means one color: a
monochrome video monitor can have a screen color of white,
green, orange, or any other single color.

The main memory and auxiliary memory are connected to the
address bus in parallel, so both are activated during the display
cycle. The rising edge of @0 clocks a byte of main memory data into
the video latch, and a byte of auxiliary memory data into the

80 latch (Figure 11-21).

Phi 1 enables output from the (auxiliary) 80 latch, and @0 enables
output from the (main) video latch. Output from both latches goes
to CHARGEN, where GR and SEGB* select high-resolution
graphics. LDPS operates at 2 MHz in this mode, alternately gating
the auxiliary byte and main byte into the parallel-to-serial shift
register. VID7M is active (kept true) for double high-resolution
display mode, so when it is ANDed with 14M, the result is still 14M.
The 14M serial clock signal gates shift register output to VID, the
video display hybrid circuit, for output to the display device.

The video display 269

VID is a video-amplifier hybrid

circuit,

Video output signals

The stream of video data generated by the display circuits described
above goes to a hybrid circuit (VID) that adjusts the signals to the
proper amplitudes and conditions the color burst.

The resulting video signal is an NTSC-compatible composite-video
signal that can be displayed on a standard video monitor. The
signal is similar to the EIA (Electronic Industries Association)
standard positive composite video. This signal is available in two
places in the Apple Ilc (Figure 11-24):

O at the video output connector on the back of the Apple Ilc

O at the video expansion connector (pin 12) on the back panel
(Table 11-17)

Monitor output

The sleeve of the video cutput connector at the center of the

Apple IIc back panel is connected to ground and the tip is
connected to the video output through a resistor network that
altenuates it to about 1 volt and matches its impedance to 75 ohms.
This arrangement is suitable for most video monitors.

)
d
\\
h

@ 1O

\

...........‘...j @ \................-../

I | VIDOUT
I
Back Panel Video Video Output Connector

Expansion Connector (For a Monitor)

(For an RF Modulator

or Special Adaptor)

(See Fig. 11-25)
Figure 11-24

Video output back panel connectors

270

Chapter 11: Hardware Implementation

Warning

Warning

Video expansion output

The back panel of the Apple Ilc has a DB-15 connector for
sophisticated video interfaces external to the computer.

Figure 11-25 shows the pin assignments for this connector;

Table 11-17 describes the signals. In Table 11-17, the column
labeled Deriv indicates what clock signals the video signals are
derived from. LDPS, CREF, and PRAS have a maximum delay of

30 ns from the appropriate 14-MHz rising edge. SEROUT is clocked
out of a 7415166 by the rising edge of 14M and has a maximum delay
of 35 ns. VIDD7 is driven from a 74L5374 and has a maximum delay
of 28 ns from the rising and (if 80-column) falling edges of @1.

To align CREF so it is in the same phase at the beginning of every
line, certain clock signals must be stretched. This stretch is for one
7M cycle (140 ns), and occurs at the end of each video line. All
timing signals except 14M, 7M, and CREF are stretched.

The maximum allowable current drain of +12V regulated power
at the video expansion connector Is 300 milllamps. If the
external device draws more than this, It can damage the
computer or cause the power supply to shut down.

The signals at the DB-15 on the Apple lic are not the same as
those at the DB-15 on the Apple lil. Do not attempt te plug a
cable Intended for one Into the other.

Several of these signals, such as 14 MHz, must be buffered within
about 4 inches (10 cm) of the back panel connector—
preferably inside a contalner directly connected to the back
panel. For technical Information, contact Apple Technical
Support.

The video display 271

Pin Signal Pin Signal

1 TEXT 9 PRAS*

2 14M 10 GR

3 SYNC* 11 SEROUT*

4 SEGB 12 NTSC

5 1IVSOUND 13 GND

6 LDPS* 14 VIDD7

7 WNDW* 15 CREF

8 +12V

Figure 11-25

Video expansion connector pinouts
Table 11-17

Video expansion connector signals

Pin Deriv Signal Description
1 @0 TEXT Video text signal from TMG; set to

inverse of GR, except in double
high-resolution mode

2 14M 14-MHz master timing signal from
the system oscillator

3 Q3 SYNC* Displays horizontal and vertical
synchronization signal from IOU
pin 39

4 PRAS SEGB Displays vertical counter bit from

IOU pin 4; in text mode indicates
second low-order vertical
counter; in graphics mode
indicates low-resolution

5 1VSOUND One-volt sound signal from pin 5
of the audio hybrid circuit (AUD)

6 14M LDPS* Video shift-register load enable
from pin 12 of TMG

7 PRAS WNDW* Active area display blanking;

includes both horizontal and
vertical blanking

272 Chapter 11: Hardware Implementation

Warning

Table 11-17 (continued)
Video expansion connector signals

Pin Deriv Signal Description
8 +12V Regulated +12 volts DC; can drive
300 mA
9 14M PRAS* RAM row-address strobe from
TMG pin 19
10 PRAS GR Graphics mode enable from IOU
pin 2
11 14M SEROUT* Serialized character-generator

output from pin 1 of the 7415166
shift register

12 NTSC Composite NTSC video signal
from VID hybrid chip

13 GND Ground reference and supply

14 @0 VIDD7 From 74LS374 video latch; causes
half-dot shift if high

15 14M CREF Color reference signal from TMG

pin 3; 3.58 MHz

Disk 1/0

Disk I/O—for both the built-in and the external drive—is supported
by the IWM disk controller unit. The external drive is attached via a
DB-19 connector. Figure 11-26 shows this connector. Table 11-18
describes the pin assignments. Supply voltages come from the
power supply; all other signals come from the IWM, described
earlier in this chapter.

The power available at this connector Is for a Disk lic or similar
drive only. Do not use power from the external disk connector
for any other purpose—you may damage the internal voltage
converter. To derlve external power for an attached device,
use one of the other connectors and observe the current limits
given In this manudal.

Disk 1/O 273

274

10 9 8 7 6 5 4 3 2 1
® 0 0606 00 00 0 0
19 18 17 16 15 14 13 12 11
@ o606 060 0 0 0 0

Pin Signal Pin Signal
1,234 GND 13 SEEKPH2
5 —12V 14 SEEKPH3
6 +5V 15 WRREQ*
78 +12V 16 N.C.
9 EXTINT* 17 DR2*
10 WRPROT 18 RDDATA
11 SEEKPHO 19 WRDATA
12 SEEKPH1
Figure 11-26
Disk drive connector
Table 11-18
Disk drive connector signals
Connector
pin Signal Description
1,2,3,4 GND Ground reference and supply
6 +5V +5 volt supply
7,8 +12 +12 volt supply
9 EXTINT* External interrupt
10 WRPROT Write-protect input
11-14 204 Motor phase 0-4 output
15 WRREQ* Write request
17 DR1* Drive 1 select
18 RDDATA Read data input
19 WRDATA Write data output
Serial I/O

The Apple IIc has built into it two 6551 asynchronous
communication interface adapters (ACIA) and supporting input
and output buffers for full-duplex serial communication.

Figure 11-27 is a block diagram of the Apple Ilc serial ports. ACIA
outputs are buffered by a 1448-quad line driver. Similarly, ACIA
inputs are buffered by a 1489-quad line receiver.

Chapter 11: Hardware Implementation

AN

EXTINT*

(From External Disk Drive Connector)

AO': DSFI"«——l
Al
A4y Pin
TxD TD1B, »
A 6551 RTS*® i - DIRIB,_
DO-7 ACIA | BxD RD1B 4
<:> 260" (Serial _DSRIB o
rw | SERT | sER: Output
20 ; | Buffer)
IRQ* BCLK _;
et)
CTS*]
RESET*
2
=l |3
2 2 UM L 7as161 b | aLU
[s] c
c (7]
(73
IRQ*
0 BoLk .
%
T <
* SER* 1489
R/W S
TxD TD2B
(Serial I—)
6551 RTS* Input | DTR2B, 4
DO-7 ACIA RxD
v - Buffer) | ¢ RD2B
SER2 |22 : DSR2B
A0
Al
AS,] DsR*
CTS* lKSTRB (From Keyboard)
RESET# {7
Figure 11-27
Serial port circuits
Serial 1/0

} 1od

¢ Wod

275

Figure 11-28 is a detailed block diagram of the 6551 ACIA. The
registers are described later in this chapter.

Transmit .
Control cT8
¥
Transmit Transmit
) Data) Shift — TxD
Register Register
f—- |RQ*
Status L | Interrupt *
o Register i Logic beh
] +———— DSR*
R/W* ——i
cs Select
(——
and -
» | RxC
C|§’s10 Control Gontrol Baud Rate g
RS Logic Register "| Generator
1 —
RES* — | e——— XTAL2
Receive Receive
Data < Shift = RxD
DBy <—r—s Register Register
1 Data
. Bus K +
DB ! Buffers
7= Command Receive ‘
Reqgister Control e

» DTR*
»> RTS*

Figure 11-28
6551 ACIA block diagram (copyright © 1978 by Synertek Inc.: used by permission)

The 6551 pin assignments are shown in Figure 11-29 and described
in Table 11-19. Note that the two 6551’s are not used in exactly the
same way—each one supports a different set of interrupts.

Port 1 reads external interrupts (EXTINT®) on its Data Set Ready
(DSR) pin. This input is tied to +5V through a 3.3-KQ pullup
resistor.

276 Chapter 11: Hardware Implementation

GND| 1 N 28
A5| 2 27
SER*| 3 26
3ESET*| 4 25
(NC)| 5 24
BCLK| 6 23
NC)| 7 22
RTS*| 8 21
cTs*| 9 20
TxD| 10 19
(N.C)| 11 18
RxD| 12 17
A0| 13 16
Al| 14 15
Figure 11-29
6551 pinouts

R/W™
20
IRQ”
D7
D6
D5
D4
D3
D2
D1
DO
DSR*
DCD*
+5V

Table 11-19
6551 signal descriptions

Pin Signal Description
1 GND Power and signal common ground
2 A4 Address line 4 to select serial port 1
A5 Address line 5 to select serial port 2
3 SER* Serial device select from GLU
4 RESET* Resets both serial ports
5 N.C. Not connected
6 BCLK Baud rate clock from GLU
7 N.C. Not connected
8 RTS* Request to Send output
9 CTS* Clear to Send input (not used on Ilc; tied to
ground)
10 TXD Transmit Data output
11 N.C. Not connected
12 RXD Receive Data input
13,14 AQ,A1 Address lines 0 and 1
15 +5V +5 volt supply
16 DSR DCD* pin; used on Ilc as Data Set Ready
input
17 DSR*pin; used on Ilc as
EXTINT* External interrupt (port 1 ACIA), or
KSTRB Keyboard strobe input (port 2 ACIA,
Appendix E)
18-25 DO0-D7 8-bit data bus
26 IRQ* Interrupt Request input
27 20 Phase 0 clock pulse
28 R/W* Read/write select input

Serial 1/O

277

Pin Port 1 Port 2

1 DTRIB DTR2B
2 TD1B TD2B
3 GND GND

4 RD1B RD2B
5 DSRIB DSR2B
Figure 11-30

Serial port connectors

The back panel connectors for both serial ports are 5-pin DIN jacks.
The pin assignments are shown in Figure 11-30 and described in
Table 11-20.

Table 11-20

Serial port connector signals

Pin Signal Description

1 DTR1B Data Terminal Ready output
DTR2B

2 TD1B Transmit Data output
TD2B
GND Power and signal common
RD1B Read Data input
RD2B

5 DSR1B Data Set Ready input
DSR2B

ACIA control register

Figure 11-31 shows the bit assignments for the ACIA control
register, which the hardware locates at address $C09B for serial
port 1, and $COAB for serial port 2. This register determines the
number of data and stop bits the ACIA will transmit and receive,
and the clock source and baud rate to use for data transfer.

The receiver clock source is derived from the Apple IIc’s TMG chip;
the resulting baud rates are equal to or up to two percent lower than
the nominal rate. (The EIA standard allows plus or minus two
percent variation.) If an Apple Ilc serial port is used with 2 modem
that is two percent above the nominal rate, framing errors can
occur, especially at 1200 baud and above, when using 8 data bits. It
may be necessary to select a lower baud rate for 8-bit binary data
transfers.

278 Chapter 11: Hardware Implementation

Port 1 = $C09B
Port 2 = $COAB
Control Register

[7fels[afaf2]1]0]

Stop Bits L | Baud Rate Generator
0 = 1 stop bit 0J]0)jJO0]O 16x External Clock
1= 2 stop bits ojlo]|o|1 50 baud

1 stop bit if word length
= 8 bits and parity** 01011 0 7?
1% stop bits if word length ojoj1]1 109.92
= 5 bits and no parity 0 1 0 0 134.58
Word Length i 0 L ;22
1
Bit Data Word 0 ! L
6|5 Length 0|1 1 1 600
oj|o 8 1 0[0] O 1200
K 7 1 o0 |1 1800
10 6 1 0|1 0 2400
111 5 11011 1 3600
1 1]1]0]0 4800

Receiver Clock Source 11110 |1 7200
0 = External receiver clock 1 1 1 0 9600
1= Baud rate generator 1 1 1 1 19200

**This allows for 9-bit transmission (8 data plus parity).

7 6 5 4 3 2 1 0
Hardware Reset oj]ojojo]jJOo]JO]JO]O
Program Reset -l1-1-1-1-1-1-1-

Figure 11-31

ACIA control register (copyright © 1978 by Synertek Inc.; used by permission)

Serial 1/O 279

ACIA command register

Figure 11-32 shows the bit assignments for the ACIA command
register, which the hardware locates at address $C09A for serial
port 1, and at $COAA for serial port 2. This register controls
specific transmit and receive functions: parity checking, echoing
input to output, allowing transmit and receive interrupts, and
setting levels for Data Terminal Ready and Request to Send.

Port 1 = $C09A
Port 2 = $COAA
Command Register

[7lelsfafalaf1]o]

Data Terminal Ready

Parity Check Controls
Bit Operation
7161|656
0 Parity disabled—no parity bit

generated, no parity bit received

0 = Disable receiver and all
interrupts (DTR* high)

= Enable receiver and all
interrupts (DTR* low)

Receiver Interrupt Enable

0lo 1 | Odd parity received and transmitted

o1 1 | Even parity received and transmitted

1 E MARK parity bit transmitted;
received parity check disabled

1 1 1 SPACE parity bit transmitted;

received parity check disabled

0 = IRQ* interrupt enabled from bit 3

1= IRQ" interrupt disabled

of status register

Transmitter Controls

Normal Echo Mode

for Receiver

0 = Normal

Bit Transmit RTS* Transmitter
3| 2 Interrupt Level
o0 Disabled High Off
of 1 Enabled Low On
110 Disabled Low On
111 Disabled Low Transmit BRK
1= Echo (bits 2 and 3 must be zero)
5 4 3 1 0
HardwareReset |0 |0 |0 Jo]JoOo]JOf[O0] O
Program Reset -!l-]-]0]J]O0]JO0]O]|O

Figure 11-32

ACIA command register (copyright © 1978 by Synertek Inc.;

280

Chapter 11: Hardware Implementation

used by permission)

ACIA status register

Figure 11-33 shows the bit assignments for the ACIA status register,
which is hard-wired to address $C099 for serial port 1, and $COA9
for serial port 2. This register reports the condition of the
transmit/receive register, errors detected during data transfer, and
the level of the Data Carrier Detect, Data Set Ready, and Interrupt
Request lines.

Port 1 = $C099
|7|6|5|4l3l2 |1 loJ Port 2 = $C0A9
L Status Set By Cleared By
; 0 = No error -
Parity errort 1 = EFfOF Self-clearing
. 0 = No error _y
Framing errort 1 = Error Self-clearing
0 = No error e
Overrunt 4 = EFFSF Self-clearing
Receive Data, |0 = Not full Reading receive
Register full 1= Full data register
Transmit Data, |0 = Not empty [Writing to transmit
Register empty |1 = Empty data register
Not resettable;
R 0 = DCD* low Y
DCD 1 = DCD* high reflects DCD
state
N Not resettable;
DSR* (1) - ggg, ':.wh reflects DSR*
B 9 state
IRQ 0 = No interrupt | Reading status
1 = Interrupt register

1 No interrupt generated for these conditions.
** Cleared automatically after a read of RDR
and the next error-free receipt of data.

Hardware Reset | 0 | O o|0|lO0}j0}|O]0
Program Reset -1 - = === |= |=

Figure 11-33
ACIA status register (copyright © 1978 by Synertek Inc.:
used by permission)

Serial 1/O 281

282

ACIA transmit/receive register

Each ACIA uses the same address—$C098 for serial port 1, $COA8
for serial port 2—as temporary storage for both transmission and
reception of data.

When the register is used for transmitting data, bit 0 is the leading
bit to be transmitted; unused data bits are the high-order bits,
which are ignored.

When the register is used for receiving data, bit 0 is the first bit
received; unused data bits are the high-order bits, which are set
to 0. Parity bits never appear in the receive data register; they are
stripped off after being used for external parity checking.

Mouse input

The mouse is a hand-held X-Y pointing device that can be rolled
along a flat surface. It has an attached pushbutton. This section
describes how mouse movement and direction can be detected and
interpreted.

A mouse has a ball inside its housing that protrudes a small distance
so that its turning corresponds to mouse movements across a table
top. Two wheels inside the housing, set at 90-degree angles to each
other, follow movements of the ball; this causes two disks to rotate.
The disks have rectangular holes arranged near their edges, making
them resemble circular slide mounts used with stereoscopic slide
viewers.

The light from a tiny infrared emitter reaches a photoreceptor
whenever one of the holes on the disk lies between them. An
internal circuit in the mouse causes the resulting voltage to swing
quickly to a 1 or a 0 value as soon as a certain threshold is crossed.
The result is something approximating a square wave (Figure 11-34)
that varies directly with the speed of mouse movement. One of
these indicates the X component (X0) of mouse movement; the
other, the Y component (Y0).

Chapter 11: Hardware Implementation

Movement
Waveform

Mouse

Speed

Figure 11-34

Sample mouse waveform

Under program control, either the rising edge or the falling edge of
each square wave can cause an interrupt, which the firmware
handles by updating a counter. However, the program needs to
know whether to add or to subtract 1 from a counter; that is, it needs
to know the direction of X or Y movement.

There is a second infrared emitter/photoreceptor pair almost
180 degrees opposite the first pair for each disk. These pairs are
positioned in such a way that the square waves they generate are
approximately a quarter-wave offset from their respective
movement waves (Figure 11-35). These waveforms are called
X1 (X direction) and Y7 (Y direction).

+Y

Mouse
\Movement

+X

X0 ja'_
(XMOVE) |_

(>§(1D|R) l.

YO
(YMOVE)

Y1
(YDIR)

Figure 11-35
Mouse movement and direction waveforms

Mouse input 283

Pin Signal

MOUSEID*
+5V

GND

XDIR
XMOVE
(N.C)
MSW*
YDIR
YMOVE

Figure 11-36
Mouse connector

WO OO0 ~JO T =W —

When a rising edge of X0 causes an interrupt, a mouse-driver
program can immediately check whether X1 is 0 (indicating a
movement to the right) or 1 (indicating a movement to the left).
Similarly, the mouse driver can read Y1 immediately after a

YO interrupt to determine whether the mouse moved up or down
one count along the Y axis.

Figure 11-36 shows the pin assignments for the mouse DB-9
connector on the back panel. Table 11-21 gives the signal names
and descriptions.

Table 11-21

Mouse connector signals

Pin Signal Description

1 MOUSEID* Mouse identifier: when active, disables
NES556 hand controller timer

2 +5V Total current drain from this pin must not
exceed 100 mA

3 GND System ground

4 XDIR Mouse X-direction indicator

5 XMOVE Mouse X-movement interrupt

6 N.C. Not connected

7 MSw* Mouse button

8 YDIR Mouse Y-direction indicator

9 YMOVE Mouse Y-movement interrupt

Figure 11-37 shows the mouse and hand controller circuitry with the
mouse circuits emphasized. Figure 11-38 illustrates the values of the
mouse-button circuit when the button is pressed or not pressed.
Pressing the button disables the NE556 by pulling the reset
comparator threshold value up so that it cannot reset the flip flop.
As a result the mouse-button input value remains at a TTL level.

284 Chapter 11: Hardware Implementation

A0
A1
CO6X A2
. O <
Pin yoiR OE
4 »-| 16
i5 SJKa +5
2497 6 g 22KQ s
249 ~
N
) 2 15
GAMESWO/MSW* 2 279 8101
7 3 490 +5 MUX
3 14] 1
+ 5 N
249 ~ 1
24904 13} OAPL ((&3))
1K @ o
PDL1/YDIR 7 o7 _|&
TR N SR Y —
5 EDLO/XMOVE S5 i Py
=4 T d DISCHARGE 5 @
'5 i5 THRESHOLD o
O S] 10U — iz 4 Lol rRiG out| L Is
671 : »{CTRL S5
5 6 11 Lo 7 =222
, GAMESW1/MOUSEID" 2 374 out 1K © "
r—
% oy Jﬁ ™| TRiG
7 10 DISCHARGE
5 ~ X—L7hrestoio
iy 34| T 12
%671 8 9 ,
5 SJIKb CAPL ((#))
1K @
0

31
GND

Figure 11-37
Mouse circuits

|
470 ¢ % 80/40 Column
Switch

Mouse input

sng sseIppy

285

286

Input Current 25
(mA)

20

15

10

-10
—15
—20
—25

—30

15

10

—15

—20
Figure 11-38

1
(5V,21.4mA)

4.3V,6.2mA)

.5 5

Input Voltage
(Volts)

~(5V,14.3mA)

1 Undefined

5

put Voltage
(Volts)

[

Mouse button signals

Chapter 11: Hardware Implementation

Hand controller input

Several input signals that are individually controlled via soft
switches are collectively referred to as the hand controller (game)

Pin Signal signals. These signals arrive in the Apple Ilc via the same DB-9

1 GAMESW1 connector as the one used for the mouse, but the Apple IIc

2 +5V interprets these signals differently.

2 Sgtl?lsed for hand controllers The DB-9 connector pin assignments and signal descriptions, as

5 PDLO used for hand controller input, appear in Figure 11-39 and

6 (N.C) Table 11-22.

g SS%ESWO Even though they are normally used for hand controllers, these

9 Not-used for and controllors signals can be used for other simple I/O applications. There are two
1-bit switch inputs, labeled Sw0 and Sw1i, and two analog inputs,

Figure 11-39 called paddles and labeled PdlO and Pdi1. Figure 11-40 shows how

Hand controller connector to connect the 1-bit switch inputs for compatibility with all other

Apple II series computers.

The switch inputs are multiplexed by a 74LS251 8-to-1 multiplexer
enabled by the CO6X* signal from the MMU. Depending on the
low-order address, the appropriate game input is connected to bit 7
of the data bus. Figure 11-41 shows the mouse and hand controller
circuitry with the hand controller circuits highlighted. Figure 11-42
illustrates the values of the hand controller switch inputs when the
switch is open or closed.

Table 11-22

Hand controller connector signals

Pin Signal Description

1 GAMESW1 Switch input 1 (sometimes called
paddle button 1).

2 +5V +5V power supply; total current drain
from this pin must not exceed 100 mA.

3 GND System ground.

4,9 Not used for hand controllers.

5,8 PDLO and PDL1 Hand controller inputs; each of these
must be connected to a 150-KQ
variable resistor connected to +5V.

6 N.C. Not connected.

7 GAMESWO0 Switch input 0 (sometimes called
paddle button 0).

Hand controller input 287

Figure 11-40

D—

Schottky: NO

+5
% 470 Q

Switch: OK

S

+5
0
. L
Vce <0.3V
—p
=30mA

Saturated: OK

L

Ground Level: NO

How to connect switch inputs

i

+5

Emitter Follower: NO

A0
Al
C06X A2
A o
Pin
OE
4 XDIR 16
+5 SJKa g)
o 2 249 6 £ 22k0 &
249 N
l ~
N +5 15
GAMESW0/MSW 2 279 8to1
7 +5 MUX

3 490

14
220-470 t5 N
249 ~ | 11
L5145 249]4__ _13] 0APL (&)
150K @ 1K o)
PDL1/YDIR p7 |B
8 »|17 —®
150 K ¢ PDLO/XMOVE S5 D
5 T DISCHARGE 45 2
5 15T < THRESHOLD T
YMOVE 854 ~T7] JL -
15 9 1ou = - P 207X, rRiG out 15
& = ~{cTRL =
+5 1 lesfcrme - 222
GAMESW1/MOUSEID* 2 374 JL S 1KQ
1 P ‘5 ——|TRIG out 14
é o 10 J _CW,XE DISCHARGE
220-470 5 b THRESHOLD
+5v o ~ 12
671 9 ,
» SIKD CAPL (&)
1K Q
10

3 1
GND

Figure 11-41
Hand controller circuits

288

Chapter 11: Hardware Implementation

470 @ % 80/40 Column
Switch

sng sseIppy

Input Current 25
(mA)

20

15

10

-10
—15
—20
—25

—30

15

10

—15

—20
Figure 11-42

]
(5V,21.4mA)

.3V,6.2mA)

b5 5

Input Voltage
(Volts)

(3.2V,0mA)

(5V,14.3mA)
Undefined

(3.3V,1.9mA)_/

5 5
Input Voltage
(Volts)

(2.9V,0mA)

A4AmA)

Hand conftroller signals

Hand controller input 289

290

Warning

The hand controller inputs are connected to the timing inputs of an
NE556 dual analog timer. Addressing $C07X sends a signal from
MMU pin 22 that resets both timers and causes their outputs to go
to 1 Chigh). A variable resistance of up to 150 KQ connected
between one of these inputs and the +5V supply controls the
charging time of one of the two 0.022 microfarad capacitors.

When the voltage on the capacitor passes a certain threshold, the
output of the NE556 changes back to 0 (low). Programs can
determine the setting of a variable resistor by resetting the timers
and then counting time until the selected timer input changes from
high to low. The resulting count is proportional to the resistance.

The only way to ensure correct paddle values is to make sure
the output of the paddle you intend to read Is low before you
trigger the timer. Triggering the timer starts the charging cycle
for the capacitor In each paddle circuit; the cycle for one may
not be completed by the time you have read the other. If you
retrigger or read the other paddle too soon (that is, in less than
3 ms), you will get a false value for It.

Chapter 11: Hardware Implementation

Memory expansion card

Memory expansion card I/O is supported by an internal connector
mounted on the main logic board. Figure 11-43 is a pinout diagram

for this connector.

For information on the Apple IIc Memory Expansion Card, refer to
the Apple Ilc Memory Expansion Card Reference.

20 °]
40 e 3
6e® ®5
ge e 7
10e e 9
12e o]l
14 ®13
16 e15
180 el7
0@ e]9
220 o2l
24 ®23
260 ®25
8@ e 27
e ®29
320 e 3]
340 ®33
Figure 11-43

Pin

O 00 -JC T O —

Signal Pin Signal
DO 18 A9

D1 19 Al0

D2 20 All

D3 21 Al2

D4 22 Al3

Db 23 Alb

D6 24 Al6
D7 25 RESET
GND 26 RW
GND 27 +5V
A0 28 +5V
Al 29 PHO
Ad 30 GND
Ab 31 ™

A6 32 GND
AT 33 Q3

A8 34 +5V

Memory expansion card connector pinout diagram

Schematic diagrams

Figure 11-44, on the following pages, is a set of schematic diagrams

for the Apple Ilc.

Schematic diagrams

291

262

4 J 2 1
(Tl weor] e T [om)
ey -
NOTE: UNLESS OTHERWISE SPECIFIED A Ivieq INITIAL RELEASE |
1. ALL RESISTANCE VALLES ik 28 o
ARE IN DHMS, +SX. 1/4W. (2)14)U5-2(5) B 1L Ues 13 i VIDTM g 5y
2. AL CAPACITANCE VALLES 13104) 21 2] depe 2 o34 LOPS ¥ g (2)05-6(5)
ARE IN MICROFARADS. t415-1(5) - TEXT 2 e 2 O bB N R (XI55)
D (4) - TOUSELTO: S0 14 68N R99 PHlye (23¢4) D
15| PH¢ 11 THMGENe BN
CASENS Y0 8 cene S
Rzéf ’——’7 PCASe A
1Sloras. 8
'7 16 4 IRP3
' 1K
131(4) — L rss 1! B
28 un
- osv v —
T 03 g (2113)
-5V sp
(21(3) (4) e— 3 A8 = ?
n8 P Y b2 HE_CosX: g (g, 28
D i 18 AL AL 481 UFIE |17 ENBBe g o)y, Slogcne |2 SYNC g 12105-315)
DY AL A2 33 L 18 KBD+ 48 il
EEEN 1 A2 »-(3) Z CLRCAT: gy (2
ol B : 2 a3 o7 od 11 o8 ag 1B AR A3 38 22 CE7Xg, (3, 38 3 SEGAg,. (2
Ds |29 e 2 :z D1 At 2 A At 37 |24 SELIOwg, (4, Sy &k SECB gy (2).5-4(5)
c R ET s[4S = ~ el N = 2e s VCgn 2 &
% o7 o TR 15 10 af L= A8 = Pl 2lpup 2 CRgy (21141 05-18(5)
» T ™ pod I [-TSNTY ot “e A+ & 3¢ sl 27 3¢ VIODE o)
s T =1 n Feed e 2y s 2 lorns - VDY g2 5-1415)
8582 18 A3 o518 st x5 /f\r9 ES) 5 Al rag P 35 A g (o
* . Ae i Y o £ ~ A8 3 7 RAY RA1 8| ven [m RALBs
2 M'a. P (S A8 ANAL 38 Cl RA2 RA2 18| Iu 38 WNDH g o) - 75
3 e = Agj2s A3 At2 29 El RA3 RA3 28 18 YMOVE g 1-g(5)
26 o ais atpl2L AtE A13 28 19 RA4 RA¢ 21 13 Poproove o) a gis)
R/ Ai3a A oy <] AL A4 27 11 RAS RAS 22 8 SPHR gy (3)
—» Al4 s s Ar2l2 A12 A5 26 12 RAB RAG| 23 32 KSTRBgy (3)14)
A4S
N A13 ES' A8 /e :f CASENS l: RAZ RA7 24 31 D gy (3)
r) t 14 7
m cEr iy u —
RESET« °5, 0Es Lol 14 o8 & is RESETe o
vss vss = Tis 712 {E1r0 B (3114)09-29(5)
1 [ROHMOEe |5 RSY
i win %7
rea e
1K w712 PRAS X g (5)45-5.(5)
T RA14
B g (41 8
RiWeg ..\
>
[ory =
RASX R(.56
[R2,47
RA(E-71 A
$2) w—
°
oex[lyss oeX[| ,E_Q 3
== od |, ,[D3 [7lo7 Nt S
DI 3ur42 Cas¥ 05 |4 UF3 | cas* 8
Cuy o RRIWE we¥| D2 weX| ' oe >
RAS¥| = 1 |RAE RaS¥ & = RAb
Rag | & 1Ry N rag |0 § 5[Ra3
raz |, & | Rau N Rz |, B o[Rau
N RAl 8 " RaS RAI 8 " RAS
vee o R/ vl o RAT ©d [METRIC @fappic computer inc.
" e | &
+5V T A o P ot
LCGIC, A% C
W/MEM EXP
b| 0s0-0i80-2 | V6
a | T 2 1

Figure 11-44a

Apple lic schematic diagram, part 1

(a1 RA(B-7)
s
PRASe
(N JU5-S(S) é
(1)u5-14(5) ppYI0D7 1
b (1) Y2008 GND
*5Y, T elvss oex f o |yss D
(1)(3114) — $ MI0), il ALTH L, 7| ALTT
—— = 7
28 YRR PO 7 aTs |y Cas¥
D8 3] 2 vIODg v1DDg WEX| UF1D (ALT 2 WEX| JUFH AT 6
D1 4| s vIODy VIDDY RAS* FA 20 b RAS* 5 & 1y RAe
D2 7l urr B vippe Y vinne Rep | Ra3 rag |, & [ra3
D3 8] 745374 |9 vipps N/ vions Raz |7 & lRaw raz |7 & lraw
D¢ 13| VIDED 12 VIDD4 Vv1DD4 RAL 8 n RAS RAIL 8 n RAS
0s 14 LATCH 15 VIDOS VIDDS v 9 " RAT vee 9 Ra7
D8 17] 16 VIDDS -
0 18] 13 viopr P
18 - —
IPRTPIY
[ISTPEY el
€ c
D8 2 ALTA
D1 5 |um -
02 4 aLT2
03 s ALT3 f /P2 - 3.3
D4 3 ALT4
s 7 ALTS
06 s |t
o7 1 5wt VIDB 7,5
—> (4) ppRIHEE 1 12 SECEAGEES RDYeg () le—
18
E 97 v 5
S5 SEROUT: o 5-11(5)
b %)
\1)%SEEA 14 S R62 13
(1)U5-4(5) peEEE 12 13 mm VIDOUT o
(119 11 u 6852 1.8 WH] 45
(1) guBASe 18|] 330PF
B (1) ppRAEe S| ues l l -
1145185 4| 745188 2| vip
131.8-1515) gplANCSH 3 3) B NTSCy,
(11U5-715) pptilie 2 s1 4 s
+5v 5
{ ™ 14 |22
Ly N :; UFIY =
TuLSIN
I €1505-6(5) ptOPSE 15, |
L b (l)»:::i s
‘:: LI OCHII5-2¢5)mm! 4
D %
(11U5-315) peSYhCe
(1114)55-15(5) ppBEE
(1) g CLRGAT
J11-1205) peEFE
J1-2.01-3(5)1 L1 +12VIN
A Jt-415) D00 | 1avIN
S ARAAS = A A TS DOCUADNT 10 CONTIE
sLme = 1A _=
=18 Fi 3 o 3 -~ L
INS4gE 188 % ™ 2 pie cs7 /| = SCHEMATIC,
79 €78 g“ = LOGIC, A/ C
J1-5.01-615) pEEE ”’I% /;ga'm% i / W/MEN EXD
NONE | 5] 050-0180-2 | 2%

~ | = f : ‘

Figure 11-44b
Apple lic schematic diagram, part 2

€62

414

(4) g CLKEN®

ALB-15)
11)(4) eme—

(112114 em—

RDDATA

P 2-18. J8-16(5)

(1) g CE7Xe

T 2-19. JB-2815)

u3-13(5) p-22AY

B UC1-9¢5)

J5-16(5) pe-CAPL

Jo-26(5) p-OATL

"B UCI-5C5)

S yet-ucs)
SEEKPHR,

RP1-1K

AP3-1K

[FOIE3p ==

N o o [
>

i

0 |0

Less
2]

B UCI-3C5)

Lo uc1-2¢5>

s g

11114103-29(5) gp-RESETe

14) g RIS

SV 5V

(2)U3-15(5) ge-LANCSH

1K {7 t‘fe'

L

upie
2746

-
N

us-3115) 2
s-2415) 12

u8-22(5) g2
JS-BI(S) P

Y4

JS-1415) B
J9-6(5) 1=

5-1815) - E
w1151 L

uBIS

3588
PRO

8 | b o [o o | fo 888 [
-

JI-4(5) P X8
5-2(5) 12

J8-1215) B
ws-33s) XL

5-1815) P22
s-28(5) 2

w-3s) Xt
Jg-515) 2

w715 28
s-91s) L

8-3415) - ST
J8-32(5) ge-ONTRL |

<H

gt

|§!389MHWHH=B’.{X?HRXEEEE

<A
ot

oy

]

c46
47PF

NJ—:::mmvmaﬁ

12?&

+5V

(BEAD))

22K

b o [o I

= To
]

@

5
e

ay

UFy
7UHCT251

M

188

188

7 3(BEAD)

12 |18

UF2
ILo-1

S

RP4
112-8315 1

+SV

(BEAD)

=, e PLLSAMOVE

KSTRS,

XBIR

STRgp (11141
AKDg

£3-815) gePOLL/YDIR

5-715) ppCAMENE

U3-1(5) wOAMENL

1> mSEKE

+5v

(BEAD) (BEAD3

8

s s

1911 (5 mLlRACTY

sv

‘!‘AEI ‘]’.I 33336
ND —

£380

dan Iu—«_m.ne_za-zuzv lc 15 1625 26 32,

-29
266

1 31en72

v

UAI4

AUD

EARGND, e

N

A4 J7-1¢5)
156-9085

L6
156-8005
N

1VSOUNDgy, i5_5(5)

EAROUT |

——————— >~ J7-3(5)
EAROUT2

e
Ly — Tcez
156-0005 $|

Sl - 7-2(5)

7-0810-0S0

éapple compuber inc

OTICE OF PROPRIETARY PROTERTY

aCota Ty O AP COTEN 1l FAGLSR

SR
j

W/MEM EAZ

0s6-0180- 2+ |"3/5)

Figure 11-44c

Apple lic schematic diagram, part 3

2

4 * 1
(N
1113 -
(1) gpSELI0e
w185 R
t1)12) pp2BEe
D EXTINT . | 0 oo 5
%:(3,
Dig-7)
[PRTES
rev sv
A
1 RPi-1K
ss =Y
? 5 2v
2 28 uon * 1)
ERERCRERF D413 6551 i E1‘55x23
D818 T
(1) ppROENe AB 13| seRy ‘ uoL? s
‘3,=E. AL 14 MC1488L
e s 2|
= . 3 12 18| B RES
i so8 680 R1g
(1) geBR/He 28 2 4t oK _—
iz g tHE =4 —— @) J5-2(5)
1R 26, 2 .
c 11) gl sox 6] m ;’ Q} CJuce) B Ry, o) c
+5V
-sav
(11(3108-29(5) geRESETL P L
° I o3 |
A 2 oo |2 p
A3 3 En DISKe
UE9 K gy 13)
oS 2y v T R— 5 Ty (113
+5v £ = = een BT g (131215-1515)
—> 15 v AB 8 parRes. {18 N la—
I = R4 - AZ Z 1oup1s P2 NC
. o 15K 8 18 TEXT g (5)05-1152
8 g y osc2 sl gqu =
% NC— 1.8432MHz 18 [t | RP3-1K
" UDR7 ' 14 13 GLUENS 8| 1
1 3)
6 rC148L =
BS54 ” ; %
ncnp EE| S I
. S TDiBgy, 5-2
B sere g lte 8| 0 3 3 DRigg,. B
1 Bt 8 ron > 5!
= 7] FILTER [Seme P e
2 7 ‘&’ubs
17 | 8 mfa' diee
= 3| YA 3 roze > V2!
9 | FILTER [g psrze Y U2
crs SR2E g i2-5
KSTRBgy, (4)13) o
+ [t 3
— =) z
b u7 S
®
W &5
L—(p—— M ui-us: >
w3
80K
SERs
-
iz - ©d | METRIC ‘appleoompu’oennr.
A A
T 7] SRR s e
== 75|/~ SCHEMATIC,
S LOGIC, AJC
/| W/1AEM EXP
= B = i VY
; NONE | o] 0s0-0i80- | V%
e | t !

Figure 11-44d
Apple llc schematic diagram, part 4

o1 T4

96C

4 3 2
o] e T o
o8 i T
UNLESS OTHERWISE SPECIFIED
U ES OTHE RS SPECAED SERIAL 1

)
oo — yo B —ano
) seekPHI—2{ FILTERLIS o o yg-y
(3) SEEKPHZ — 2] L8 j2-13, u8-6
(3)SEEKPHI —] 7 2-m,08-8
(3)WRREGE — He y2-i5, v8-18
»enzs—O S — 217
N 3 SEEKRPHE—1 B sz, 08-2
CEXTINTE —2 LB Y
(3IWRDATA 12 219,48-18
Ig "
c
Ji3
MEMORY
EXPANSION
REETED S T e TR
< vz > e < >
o >=eemT05 >
—!>‘ oo > Teeit <07 >
oo >tleelt S
< ao >t e BRI S
Tl s
D D
oS S
< ap > ee B an >
. el ms
T Sal b Tm S
SesEreo oo B

7.

@

i

oo
te o
11 o0

l e o

i

EXTERNAL POWER IN

-]
EXTERNAL DISK

GAME

3
CBEAD)

3
113y

VIDED

2y < vIbouT

(11141
11121141
@)
(12)
3)
(1112)
tunar

J8-2, UCI-14
U84, UCI-9
JB-6, UCI-I8
J8-8, UCI-17
JB-18, UCI-16

< WROATA > JB-18, UCI-12

)
121041

Jg-14

11)3114)
(3)
131

| oot

2
4

Lo o

J2-11, UCI- 1y

P S D QR
<gm_>Steeit J2-13, UCI-18
law >

J2-14, UCT-I7

leei® JR-15, UCI-16

<o B w >

e et e >

oz > e v S > ane-so
> e o > =5, vtz
Grae > o o o > 1218

.

e o

<>
<= >3
T >Sres]
= >
o>

e >

reet < >
<= >
e >

R D]

e S

- 3}
e

NC
BecoLse >2 Le
Tou Setleet
ol
Taonle
ozl
TrEs >S4
Taoal.
T D=

i

il

:

{4)
(4)

1o

o

i}

i

o

n

(]

w2

SOTICE OF PROPRICTARY PROPERTY
23T T RETROUCE O CORY T
2 T T A o v on pan

=] | SCHEMATIC,
e S LOGIC, A//C
/ W/MEM EXP

o] os0-0180-4 | ¥6)

Figure 11-44e

Apple lic schematic diagram, part 5

~

Appendix A

The 65C02 Microprocessor

This appendix describes the differences between the 6502 and the
65C02 microprocessors. It also contains the data sheet for the NCR
65C02 microprocessor.

In the data sheet tables, execution times are specified in numbers of
cycles. One cycle for the Apple Ilc equals 0.978 microseconds.

If you want to write programs that execute on all computers in the
Apple 1I series, make sure your code uses only the subset of 65C02
instructions present on the 6502.

Differences between 6502 and 65C02

The data sheet in this chapter lists the new 65C02 instructions and
addressing modes. This section supplements that information by
listing the instructions whose execution times or results have
changed from their 6502 counterparts.

Differing cycle times

In general, differences in execution times are significant only in
time-dependent code, such as precise wait loops. Fortunately,
instructions with changed execution times are few.

Table A-1 lists the 65C02 instructions whose number of instruction
execution cycles is different from their number on the 6502.

297

Table A-1
Cycle time differences

Instruction/mode Opcode 6502 65C02
cycles cycles

ASL Absolute, X 1E
DEC Absolute, X DE
INC Absolute, X FE
JMP (Absolute) 6C
LSR Absolute, X SE
ROL Absolute, X 3E
ROR Absolute, X 7E

RIS B NIRVLI LN IEN IS
[exN e e e W e el

Differing instruction results

The instructions that have different results from their 6502
equivalents are

O BIT (in immediate mode)
O JMP (indirect, when crossing a page boundary).

The BIT instruction when used in immediate mode (code $89)
leaves processor status register bits 7 (N) and 6 (V) unchanged on
the 65C02. On the 6502, all modes of the BIT instruction have the
same effect on the status register: the value of memory bit 7 is
placed in status bit 7, and memory bit 6 is placed in status bit 6.
However, all BIT instructions on both versions of the processor set
status bit 1 (Z) if the memory location being tested contains a 0.

If the JMP indirect instruction (code $6C) references an indirect
address location that spans a page boundary, the 65C02 fetches the
high-order byte of the effective address from the first byte of the
next page, while the 6502 fetches it from the first byte of the current
page. For example, JMP ($02FF) gets ADL from location $02FF on
both processors. On the 65C02, ADH comes from $0300 while on
the 6502, ADH comes from $0200.

Data sheet

The rest of this appendix is copyright 1982, NCR Corporation,
Dayton, Ohio, and is reprinted with their permission.

298 Appendix A: The 65C02 Microprocessor

= GENERAL DESCRIPTION

NCR65C02

PIN CONFIGURATION

The NCR CMOS 6502 is an 8-bit microprocessor which is soft- vss L1 40 [FES
ware compatible with the NMOS 6502. The NCR65C02 hardware o o E ? . ::;,) ;';g ovn
interfaces with all 6500 peripherals. The enhancements include . m:: B
ten additional instructions, expanded operational codes and e 361 Ng
two new addressing modes. This microprocessor has all of the ad- i 6 3s I ne
vantages of CMOS technology: low power consumption, increased syne 7 3[R
noise immunity and higher reliability. The CMOS 6502 is a low vop [8 33[J oo
power high performance microprocessor with applications in the A0 [9 2[Jo1
consumer, business, automotive and communications market. a1 [0 311 o2
A2 [30 D3
A3 []12 29[] o4
A4 []13 28] Ds
a A5 []14 27 [D6
FEATURES "= =
® Enhanced software performance including 27 additional OP codes :7 4 :j Zi - :‘j
encompassing ten new instructions and two additional = ol el
addressing modes. i 23 Afd
A0 [19 22[] A12
® 66 microprocessor instructions. Al [20 21 [vss
® 15 addressing modes.
® 178 operational codes.
e 1MHz, 2MHz operation.
e Operates at frequencies as low
as 200 Hz for even lower power = NCR65C02 BLOCK DIAGRAM
consumption (pseudo-static: stop during @5 high).
® Compatible with NMOS 6500 series
microprocessors. ~s—— REGISTER SECTION CONTROL SECTION — ——m=
® 64 K-byte addressable memory. FES IR NI
® |Interrupt capability. a j B m
a0] REGISTER
® Lower power consumption, Al] —
4mA @ 1MHz. A2 = aéé?xsﬁia i‘j\/_ oY
® +5 volt power supply. :j: ABL Jg STac o - SYNC
. . gqe . <- =
® 8-bit bidirectional data bus. A5 2) m
® Bus Compatible with M6800. :f: z comng
—
® Non-maskable interrupt. % L
ADDRESS
® 40 pin dual-in-line packaging. Ro2 T
A] T
® 8-bit parallel processing A9 | 2 - .
® Decimal and binary arithmetic. P g S SiciitaTon
= £ @1 (0UT)
o Pipeline architecture. wa] | g
® Programmable stack pointer. A= wH
A4 -
® Variable length stack. A15 oaTA BUS ’CE J INSTRUCTION
® Optional internal pullups for N~ = U TLL 1L
(RDY, IRQ, S0, NMI and RES) Lecend P
803"
ﬁ «8BIT LINE
* Specifications are subject to 1 BIT LINE
change without notice.
Copyright ©1982 by NCR Corporation, Dayton, Ohio, USA
Data sheet 299

NCR65C02

= ABSOLUTE MAXIMUM RATINGS:

(Vpp =5.0V £ 5%, Vgs =0V, Ta = 0°to + 70°C)

RATING SYMBOL VALUE UNIT
SUPPLY VOLTAGE Voo —-0.3 10 +7.0 A
INPUT VOLTAGE Vin —0.3 to +7.0 \
OPERATING TEMP. Ta 0to+70 il
STORAGE TEMP. Ts1G —55 to + 150 °C
= PIN FUNCTION
PIN FUNCTION

A0 - A15 Address Bus

DO - D7 Data Bus

TRQ* Interrupt Request

RDY * Ready

ML Memory Lock

NMI* Non-Maskable Interrupt

SYNC Synchronize

RES* Reset

S0+ Set Querflow

NC No Connection

R/W Read/Write

vDD Power Supply (+5V)

VSS Internal Logic Ground

% Clock Input

01,02 Clock Qutput

*This pin has an optional internal pullup for a No Connect condition.
= DC CHARACTERISTICS

SYMBOL MIN TYP, MAX UNIT

Input High Voltage

0o (IN) ViH Vgg + 2.4 - Vop Vv
Input High Voltage

RES, NMI, RDY, TRQ, Data, 5.0. Vgg + 2.0 - - v
Input Low Voltage

@0 (IN) ViL Vss -0.3 = Vgs+ 0.4 Vv

RES, NMI, RDY, TRQ, Data, S.0. ~ - Vs + 0.8 v
Input Leakage Current

(Viny =010 5.25V, Vpp = 5.25V) It

With pullups -30 - +30 HA
Without pullups = = +1.0 HA
Three State (Off State) Input Current

(Vin =04 1024V, V¢ =5.28V)

Data Lines ITs) - — 10 HA
QOutput High Voltage

(lgy =-100 gAde, Vpp =475V

SYNC, Data, A0-A15, R/W) Vou Vgs +2.4 - - \
Out Low Voltage

(|0|__ — 1.6mAdc, VDD = 4.75\/

SYNC, Data, AO-A15, R/W) VoL - - Vgg + 0.4 \"
Supply Current f=1MHz lop - - 4 mA
Supply Current f=2MHz Ipp - - 8 mA
Capacitance C pF

(Vin =0, Ta = 25°C, f = 1MHz)

Logic Cin . - 5

Data - - 10

AD-A15, R/W, SYNC Cout - - 10

Bp (IN) Clg (IN) - = 10
300 Appendix A: The 65C02 Microprocessor

NCR65C02

= AC CHARACTERISTICS vpp=5.0V#5% Ta=0°Cto 70°C, Load = 1 TTL + 130 pF

1MHZ 2MH2Z 3MH2Z

Parameter Symbol Min Max Min Max Min Max Unit
Delay Time, @g (IN) to @2 (OUT) toLy - 60 - 60 20 60 nS
Delay Time, @1 (OUT) to @2 (OUT) toLy -20 20 -20 20 -20 20 nS
Cycle Time tove 1.0 5000% 0.50 5000% 0.33 5000* HS
Clock Pulse Width Low tpL 460 - 220 - 160 — nS
Clock Pulse Width High tpH 460 - 220 - 160 - nS
Fall Time, Rise Time te, R - 25 — 25 - 25 ns
Address Hold Time taH 20 - 20 - 0 - nS
Address Setup Time taDs - 225 - 140 - 110 nS
Access Time tacc 650 - 310 - 170 - nS
Read Data Hold Time toHR 10 - 10 - 10 - nS
Read Data Setup Time Tost 100 = 60 = 60 = nS
Write Data Delay Time tvMps - 30 - 30 - 30 nS
Write Data Hold Time toHwW 20 - 20 — 15 - nS
50 Setup Time ts0 100 - 100 - 100 - nS
Processor Contral Setup Time** tecs 200 - 150 - 150 - nS
SYNC Setup Time tsyne = 225 -~ 140 - 100 nS
ML Setup Time L - 225 - 140 - 100 nS
Input Clock Rise/Fall Time trdo . tRa0 - 25 - 25 - 25 nS
*NCRB5C02 can be held static with @ 2 high.

**This parameter must only be met to guarantee that the signal will be recognized at the current clock cycle.

= MICROPROCESSOR OPERATIONAL ENHANCEMENTS

Function

NMQS 6502 Microprocessor

NCR65C02 Microprocessor

Indexed addressing across page boundary.

Extra read of invalid address.

Extra read of last instruction byte.

Execution of invalid op codes,

Some terminate only by reset. Results
are undefined.

All aré NOPs (reserved for future use).

Op Code Bytes Cycles
X2 2 2
X3, X7, XB, XF 1 1
44 2 3
54, D4, F4 2 4
5C 3 8
DC, FC 3 4

Jump indirect, operand = XXFF.

Page address does not increment.

Page address increments and adds one
additional cycle.

Read/modify/write instructions at
effective address,

One read and two write cycles,

Two read and one write cycle.

Decimal flag.

Indeterminate after reset.

Initialized to binary mode (D=0) after
reset and interrupts.

Flags after decimal operation.

Invalid N, V and Z flags.

Valid flag adds one additional cycle.

Interrupt after fetch of BRK instruc-
tion,

Interrupt vector is loaded, BRK vector
is ignored.

BRK is executed, then interrupt is
executed,

* MICROPROCESSOR HARDWARE ENHANCEMENTS

Function

NMOS 6502

NCR6E5C02

Assertion of Ready RDY during
write operations.

Ignored.

Stops processor during 07.

Unused input-only pins (IRQ, NMT,
RDY, RES, 50).

Must be connected to low impedance
signal to avoid noise problems.

Connected internally by a high-
resistance to Vpp (approximately 250
K ohm.)

Data sheet 301

NCR65C02

= TIMING DIAGRAM

%

01

02

ADDR, R/W
READ DATA
WRITE DATA
SYNC

ML

RDY, /A
NMI, RES
50

thnoo :q[trag

ﬁ = toLy

j Ity

= tn oy P
S — T ‘ %
R —

1
M

- {IADS

e 1

ACC t

—— D

e tOHW

a-r tMDS -

N
4

| E tsyne

i {tm

= tpcg

X

ol |

1‘ tso]

Note: All timing is referenced from a high voltage of 2.0 volts and a low voltage of 0.8 volts,

= NEW INSTRUCTION MNEMONICS

HEX
80
3A
1A
DA
5A
FA
7A
9C
9E

MNEMONIC
BRA
DEA
INA
PHX
PHY
PLX
PLY
STZ
sTZ
STZ
§TZ
TRB
TRB
TSB
TSB

DESCRIPTION

Branch relative always [Relative]

Decrement accumulator [Accum)

Increment accumulator [Accum]

Push X on stack [Implied]

Push Y on stack [Implied]

Pull X from stack [Implied]

Pull ¥ from stack [Implied]

Store zero [Absolute]

Store zero [ABS, X]

Store zero [Zero page]

Store zero [ZPG,X]

Test and reset memory bits with accumulator [Absolute]
Test and reset memory bits with accumulator [Zero page)
Test and set memory bits with accumulator [Absolute]
Test and set memaory bits with accumulator [Zero page]

= ADDITIONAL INSTRUCTION ADDRESSING MODES

HEX

302

MNEMONIC
ADC
AND
BIT
BIT
cMmP
EOR
JMP
LDA
ORA
SBC
STA

DESCRIPTION

Add memory to accumulator with carry [(ZPG)]
“AND" memory with accumulator [(ZPG)]

Test memory bits with accumulator [ABS, X]

Test memory bits with accumulator [ZPG, X]
Compare memory and accumulator [{ZPG)]
""Exclusive Or"" memory with accumulator [(ZPG)]
Jump (New addressing mode) [ABS(IND,X)]

Load accumulator with memory [(ZPG)]

“OR" memory with accumulator [(ZPG)])
Subtract memory from accumulator with borrow [(ZPG))
Store accumulator in memory ((ZPG)]

Appendix A: The 65C02 Microprocessor

NCR65C02

= MICROPROCESSOR PROGRAMMING MODEL

7 0
(NIVIT[8[o[11Z]c] PROCESSOR STATUS
N[v]1]B|D[I]Z]|C REG "'P"

7 0

ACCUMULATOR A

7 0

I Y DINDEK REGISTER Y CARRY 1 - TRUE

—— T DISABLE 1 - DISABL
. [X 1 INDEX REGISTER X TAQG DISABLE 1 = DISABLE

DECIMAL MODE 1 = TRUE
[PCH -]]' PCL __lg PROGRAM COUNTER PC BRK COMMAND 1 = BRK
] S] STACK POINTER § it ey

= FUNCTIONAL DESCRIPTION

Timing Control

The timing control unit keeps track of the instruction
cycle being monitored. The unit is set to zero each time
an instruction fetch is executed and is advanced at the
beginning of each phase one clock pulse for as many
cycles as is required to complete the instruction. Each
data transfer which takes place between the registers de-
pends upon decoding the contents of both the instruc-
tion register and the timing control unit.

Program Counter

The 16-bit program counter provides the addresses which
step the microprocessor through sequential instructions
in a program,

Each time the microprocessor fetches an instruction
from program memory, the lower byte of the program
counter (PCL) is placed on the low-order bits of the
address bus and the higher byte of the program counter
(PCH) is placed on the high-order 8 bits. The counter is
incremented each time an instruction or data is fetched
from program memory.

Instruction Register and Decode

Instructions fetched from memory are gated onto the
internal data bus. These instructions are latched into the
instruction register, then decoded, along with timing and
interrupt signals, to generate control signals for the var-
ious registers.

Arithmetic and Logic Unit (ALU)

All arithmetic and logic operations take place in the
ALU including incrementing and decrementing internal
registers (except the program counter). The ALU has no
internal memory and is used only to perform logical and
transient numerical operations.

NEGATIVE 1 = NEG

Accumulator

The accumulator is a general purpose 8-bit register that
stores the results of most arithmetic and logic operations,
and in addition, the accumulator usually contains one of
the two data words used in these operations.

Index Registers

There are two 8-bit index registers (X and Y), which
may be used 10 count program steps or to provide an
index value to be used in generating an effective address.

When executing an instruction which specifies indexed
addressing, the CPU fetches the op code and the base
address, and modifies the address by adding the index
register to it prior to performing the desired operation.
Pre- or post-indexing of indirect addresses is possible (see
addressing modes).

Stack Pointer

The stack pointer is an 8-bit register used to control the
addressing of the variable-length stack on page one. The
stack pointer is automatically incremented and decre-
mented under control of the microprocessor to perform
stack manipulations under direction of either the program
or interrupts (NMI and IRQ). The stack allows simple
implementation of nested subroutines and multiple level
interrupts, The stack pointer should be initialized before
any interrupts or stack operations occur.

Processor Status Register

The 8-bit processor status register contains seven status
flags. Some of the flags are controlled by the program,
others may be controlled both by the program and the
CPU. The 6500 instruction set contains a number of
conditional branch instructions which are designed to
allow testing of these flags (see microprocessor program-
ming model).

Data sheet 303

NCR65C02
= ADDRESSING MODES

Fifteen addressing modes are available to the user of the
NCRB5C02 microprocessor. The addressing modes are
described in the following paragraphs:

Implied Addressing [Implied]

In the implied addressing mode, the address containing
the operand is implicitly stated in the operation code of
the instruction.

Accumulator Addressing [Accum]

This form of addressing is represented with a one byte
instruction and implies an operation on the accumu-
lator.

Immediate Addressing [Immediate]

With immediate addressing, the operand is contained in
the second byte of the instruction; no further memory
addressing is required.

Absolute Addressing [Absolute]

For absolute addressing, the second byte of the instruc-
tion specifies the eight low-order bits of the effective
address, while the third byte specifies the eight high-order
bits. Therefore, this addressing mode allows access to the
total 64K bytes of addressable memory.

Zero Page Addressing [Zero Page]

Zero page addressing allows shorter code and execution
times by only fetching the second byte of the instruction
and assuming a zero high address byte. The careful use
of zero page addressing can result in significant increase
in code efficiency.

Absolute Indexed Addressing [ABS, X or ABS, Y]
Absolute indexed addressing is used in conjunction with
X or Y index register and is referred 10 as "Absolute, X,
and “‘Absolute, Y."”” The effective address is formed by
adding the contents of X or Y to the address contained
in the second and third bytes of the instruction. This
mode allows the index register to contain the index or
count value and the instruction to contain the base
address. This type of indexing allows any location refer-
encing and the index to modify multiple fields, resulting
in reduced coding and execution time,

Zero Page Indexed Addressing [ZPG, X or ZPG, Y]

Zero page absolute addressing is used in conjunction
with the index register and is referred to as “Zero Page,
X" or ““Zero Page, Y."" The effective address is calculated
by adding the second byte to the contents of the index
register. Since this is a form of ““Zero Page’ addressing,
the content of the second byte references a location in
page zero. Additionally, due to the ““Zero Page’ address-
ing nature of this mode, no carry is added to the high-
order eight bits of memory, and crossing of page boun-
daries does not occur,

Relative Addressing [Relative]
Relative addressing is used only with branch instructions;

it establishes a destination for the conditional branch,
The second byte of the instruction becomes the operand
which is an “Offset’” added to the contents of the pro-
gram counter when the counter is set at the next in-
struction. The range of the offset is —128 to +127
bytes from the next instruction.

Zero Page Indexed Indirect Addressing [(IND, X)]

With zero page indexed indirect addressing (usually re-
ferred to as indirect X) the second byte of the instruction
is added to the contents of the X index register; the
carry is discarded. The result of this addition points to a
memory location on page zero whose contents is the low-
order eight bits of the effective address. The next mem-
ory location in page zero contains the high-order eight
bits of the effective address. Both memory locations
specifying the high- and low-order bytes of the effective
address must be in page zero,

*Absolute Indexed Indirect Addressing [ABS(IND, X))
(Jump Instruction Only)

With absolute indexed indirect addressing the contents of
the second and third instruction bytes are added to the
X register. The result of this addition, points to a memory
location containing the lower-order eight bits of the
effective address. The next memory location contains
the higher-order eight bits of the effective address.

Indirect Indexed Addressing [(IND), Y]

This form of addressing is usually referred to as Indirect,
Y. The second byte of the instruction points to a mem-
ory location in page zero. The contents of this memory
location are added to the contents of the Y index regis-
ter, the result being the low-order eight bits of the effec-
tive address, The carry from this addition is added to the
contents of the next page zero memory location, the
result being the high-order eight bits of the effective
address.

*Zero Page Indirect Addressing [(2PG)]
In the zero page indirect addressing mode, the second
byte of the instruction points to a memory location on
page zero containing the low-order byte of the effective
address. The next location on page zero contains the
high-order byte of the effective address.

Absolute Indirect Addressing [(ABS)]

(Jump Instruction Only)

The second byte of the instruction contains the low-order
eight bits of a memory location. The high-order eight
bits of that memory location is contained in the third
byte of the instruction. The contents of the fully speci-
fied memory location is the low-order byte of the effec-
tive address, The next memory location contains the
high-order byte of the effective address which is loaded
into the 16 bit program counter.

NOTE: * = New Address Modes

304 Appendix A: The 65C02 Microprocessor

= SIGNAL DESCRIPTION

Address Bus (A0-A15)
A0-A15 forms a 16-bit address bus for memory and 1/0
exchanges on the data bus. The output of each address
line is TTL compatible, capable of driving one standard
TTL load and 130pF.

Clocks (dg, @1, and @2)

@p is a TTL level input that is used to generate the inter-
nal clocks in the 65602, Two full level output clocks are
generated by the 6502, The @2 clock output is in phase
with @g. The @1 output pin is 180° out of phase with @q.
(See timing diagram.)

Data Bus (D0-D7)

The data lines (D0-D7) constitute an 8-bit bidirectional
data bus used for data exchanges to and from the device
and peripherals. The outputs are three-state buffers
capable of driving one TTL load and 130 pF.

Interrupt Request (IRQ)

This TTL compatible input requests that an interrupt
sequence begin within the microprocessor, The IRQ is
sampled during @7 operation; if the interrupt flag in the
processor status register is zero, the current instruction
is completed and the interrupt sequence begins during
@ 1. The program counter and processor status register
are stored in the stack. The microprocessor will then set
the interrupt mask flag high so that no further IRQs
may occur, At the end of this cycle, the program counter
low will be loaded from address FFFE, and program
counter high from location FFFF, transferring program
control to the memory vector located at these addresses.
The RDY signal must be in the high state for any inter-
rupt to be recognized. A 3K ohm external resistor should
be used for proper wire OR operation,

Memory Lock (ML)

In a multiprocessor system, the ML output indicates the
need to defer the rearbitration of the next bus cycle to
ensure the integrity of read-modify-write instructions.
ML goes low during ASL, DEC, INC, LSR, ROL, ROR,
TRB, TSB memory referencing instructions. This signal
is low for the modify and write cycles.

Non-Maskable Interrupt (NMI)

A negative-going edge on this input requests that a non-
maskable interrupt sequence be generated within the
microprocessor, The NMI is sampled during @2; the cur-
rent instruction is completed and the interrupt sequence
begins during @1. The program counter is loaded with
the interrupt vector from locations FFFA (low byte)
and FFFB (high byte), thereby transferring program con-
trol to the non-maskable interrupt routine.

Note: Since this interrupt is non-maskable, another NMI
can occur before the first is finished. Care should be taken
when using NMI to avoid this.

NCR65C02

Ready (RDY)

This input allows the user to single-cycle the micropro-
cessor on all cycles including write cycles. A negative
transition to the low state, during or coincident with
phase one (@1), will halt the microprocessor with the out-
put address lines reflecting the current address being
fetched, This condition will remain through a subsequent
phase two (@2) in which the ready signal is low. This fea-
ture allows microprocessor interfacing with low-speed
memory as well as direct memory access (DMA),

Reset (RES)

This input is used to reset the microprocessor. Reset
must be held low for at least two clock cycles after
VDD reaches operating voltage from a power down, A
positive transistion on this pin will then cause an initiali-
zation sequence to begin. Likewise, after the system has
been operating, a low on this line of at least two cycles
will cease microprocessing activity, followed by initial-
ization after the positive edge on RES.

When a positive edge is detected, there is an initialization
sequence lasting six clock cycles. Then the interrupt
mask flag is set, the decimal mode is cleared, and the pro-
gram counter is loaded with the restart vector from loca-
tions FFFC (low byte) and FFFD (high byte), This is
the start location for program control. This input should
be high in normal operation.

Read /Write (R/W)

This signal is normally in the high state indicating that
the microprocessor is reading data from memory or 1/0
bus. In the low state the data bus has valid data from the
microprocessor to be stored at the addressed memory
location.

Set Overflow (SO)

A negative transition on this line sets the overflow bit in
the status code register, The signal is sampled on the trail-
ing edge of @1,

Synchronize (SYNC)

This output line is provided to identify those cycles dur-
ing which the microprocessor is doing an OP CODE
fetch. The SYNC line goes high during @7 of an OP CODE
fetch and stays high for the remainder of that cycle, If
the RDY line is pulled low during the @1 clock pulse in
which SYNC went high, the processor will stop in its
current state and will remain in the state until the RDY
line goes high. In this manner, the SYNC signal can be
used to control RDY to cause single instruction execu-
tion.

Data sheet 305

NCR65C02
= INSTRUCTION SET — ALPHABETICAL SEQUENCE

ADC Add Memory to Accumulator with Carry LDX Load Index X with Memory
AND “AND" Memory with Accumulator LDY Load Index ¥ with Memory
ASL Shift One Bit Left LSR Shift One Bit Right
BCC Branch on Carry Clear NOP No Operation
BCS Branch on Carry Set ORA "OR' Memory with Accumulator
BEQ Branch on Result Zero PHA Push Accumulator on Stack
BIT Test Memory Bits with Accumulator PHP Push Processor Status on Stack
BMI Branch on Result Minus *PHX Push Index X on Stack
BNE Branch on Result not Zero *PHY Push Index Y on Stack
BPL Branch on Result Plus PLA Pull Accumulator from Stack
*BRA Branch Always PLP Pull Processor Status from Stack
BRK Force Break *PLX Pull Index X from Stack
BVC Branch on Overflow Clear *PLY Pull Index Y from Stack
BVS Branch on Overflow Set ROL Rotate One Bit Left
CLC Clear Carry Flag ROR Rotate One Bit Right
CLD Clear Decimal Mode RTI Return from Interrupt
CLI Clear Interrupt Disable Bit RTS Return from Subroutine
CLV Clear Overflow Flag SBC Subtract Memory from Accumulator with Borrow
CMP Compare Memory and Accumulator SEC Set Carry Flag
CPX Compare Memory and Index X SED Set Decimal Mode
CPY Compare Memory and Index Y SEl Set Interrupt Disable Bit
*DEA Decrement Accumulator STA Store Accumulator in Memory
DEC Decrement by One STX Store Index X in Memory
DEX Decrement Index X by One STY Store Index Y in Memory
DEY Decrement Index Y by One *STZ Store Zero in Memory
EOR “Exclusive-or"” Memary with Accumulator TAX Transfer Accumulator to Index X
*INA Increment Accumulator TAY Transfer Accumulator 1o Index Y
INC Increment by One *TRB Test and Reset Memory Bits with Accumulator
INX Increment Index X by One *TSB Test and Set Memory Bits with Accumulator
INY Increment Index Y by One TSX Transfer Stack Pointer to Index X
JMP Jump to New Location TXA Transfer Index X to Accumulator
JSR Jump to New Location Saving Return Address TXS Transfer Index X to Stack Pointer
LDA Load Accumulator with Memory TYA Transfer Index Y 1o Accumulator
Note: * = New Instruction
= MICROPROCESSOR OP CODE TABLE
s
[*] 0 1 2 4 5 6 8 9 A B C D E F
] BRK ORA TsB* ORA ASL PHP ORA ASL TSB* ORA ASL
ind, X zpg Zpg pg imm A abs abs abs
1 BPL ORA |ORA*T TRB* | ORA ASL CLC ORA INA* TRB* ORA ASL
rel ind, ¥ (zpg) 2pg z2pg, X | zpg, X abs, Y A abs abs, X | abs, X
2 JSR AND BIT AND | ROL PLP AND | ROL BIT AND ROL
abs ind, X 2pg zpg zpg imm A abs abs abs
3 BMI | AND |AND*t BIT* | AND | ROL SEC AND |DEA" BIT"t AND | ROL
rel ind, ¥ (zpg} zpg, X | zpg, X | zpg, X abs, Y A abs, X abs, X | abs, X
4 RTI EOR EOR LSR PHA EOR LSR JMP EOR LSR
ind, X zpg zpg imm A abs abs abs
5 BVC EOR |EOR*t EOR LSR CLI EOR | PHY" EOR LSR
rel ind, Y (zpg) zpg, X | zpg, X abs, Y abs, X | abs, X
6 RTS ADC STZ* | ADC ROR PLA ADC | ROR IMP ADC ROR
ind, X pg zpg zpg imm A (abs) abs abs
7 BVS | ADC |aDC*T §TZ* | ADC ROR SEI ADC | PLY* JMP* T ADC ROR
rel ind, Y {zpg) zpg, X | zpg, X | zpg, X abs, Y abs lind, X)| abs, X | abs, X
8 BRA"® STA STY STA STX DEY BIT" TXA STY STA STX
rel ind, X pg zpg zpg imm abs abs abs
9 BCC STA |sTa*t STY STA STX TYA STA | TXS sTZ* STA sTZ*
rel ind, Y (zpg) zpg, X | zpg, X | zpa, Y abs, Y abs abs, X | abs, X
A LDY LDA LDX LDY LDA LDX TAY LDA TAX LDY LDA LDX
imm | ind, X imm 1pg zpg 2pg imm abs abs abs
B BCS LDA Lpa*t LDY LDA LDX CcLv LDA | TSX Loy LDA LDX
rel ind, Y (zpg) 2pg, X | zpg, X | zpg, Y abs, Y abs, X abs, X abs, Y
c cPY CMP CPY CMP DEC INY CMP | DEX ey CMP DEC
imm | ind, X zpg zpg zpg imm abs abs abs
D BNE CMP cmPt CMP DEC CLD CMP PHX" CMP DEC
rel ind, ¥ | (zpg) zpg, X | zpa, X abs, Y abs, X | abs, X
E CPX SBC CPX | sBC INC INX §8C | NOP CPX SBC INC
imm | ind, X zpg zpg zpg imm abs abs abs
F BEQ | SBC ssc*t SBC INC SED SBC | PLX* SBC INC
rel ind, ¥ (zpg) zpg, X | zpg, X abs, Y abs, X abs, X
0 1 2 4 5 6 8 9 A B [+ D E F

Note: * = New OP Codes

Note: T = New Address Modes

306

Appendix A: The 65C02 Microprocessor

NCR65C02
= OPERATIONAL CODES, EXECUTION TIME, AND MEMORY

REQUIREMENTS

IMME-[ABSO- | ZERO M- | (IND, [(IND), RELA- ABS PROCESSOR
DIATE| LUTE | PAGE |ACCUMPLIED| X) v |zPG, x|zrPG, Y|AaBS, x| ABS, Y| TIVE | (ABS) |UND, X)| (ZPG) | STATUS CODES
76543210
MNE OPERATION 0P| n| # 0P| n|#|0P| n[#OP | n|#| 0P |n [#|0P In| #|0P|n | #|0P[n|#]0P[n |#[0P [n #[0P[n |#|0P|n|#lor | #|oP]n |#|oP|n|#[N V- B D T Z C|MNE
ADC|A+M+C*A (1,3) 69| 2[2|60|43[65 (3|2 61(6]2|71(5(2| 75|42 7D(4[3|79]4[3 72(5(2|N V . Z claDC
AND(AAM<+A (1) | 29]|2(2|2D|4|3[25 (3|2 216(2|31(5|2[35(42 3D|43|39(a(3 32(5/2(N . . 2 .|AND
ASL [@_——B8~0 (1) OE (6|3(06|5|2|0a (21 1662 1E(6|3 N . . ZclasL
BCC |Branch if C=0 (2 90(2/2] . |scc
BCS |Branch if C=1 (2 802|2] 9" .|scs
BEQ (Branch if 2=1 (@ Fo[22]|sea
BIT [AAM (a.5)| 89| 2|2|2C |4 3| 24|3|2 34|42 Ic|4|3 Mgt .. . Z . [BIT
BMI [Branch if N=1 (@ 30(2[2 B o b .|emi
BNE [Branch it Z=0 (2 00| 2|2] .|BNE
BPL [Branch if N=0 (2 10(2[2 .|sPL
BRA |Branch Always (2 80|22 T .|BRA
BRK |Break 00|7)1 TR .|BRK
BVC |Branch if V=0 (@ 50(2|2 BVC
BVS |Branch if V=1 (2) 70|22 o|Bvs
cLCjo+C 18]2[1 ojcLc
cLofo+D o8|2|1 . 0 cLo
cLl [o=1 58(21 [} cul
cLv(osv 88|21 0 o [CLV
CMP|A .M (1) | co[2|2|co|4|3|cs|32 c1|6|2|D1|5(2|Ds|4|2 oD|4|3|D9|4 (3] D2|5/2(N . Z clcme
CPX [X -M E0[2|2|EC|43[E4|3]2) N z clepx
cPY [Y-M co|2|2|cc|4|3|ca|3|2 N .z c|cpy
DEA(A-1+A 3A(2|1 N Z .|DEA
DEC|M-1+M (1 CcEe|6|3|ce|s|2 06|62 DE|6|3 N z |DEC
DEX|[X -1+X cAl2|1 N z . |DEX
DEY|Y.1+Y 88[2|1 N z .|DEY
EOR[AVM=+A 49|2(240|4|3(45(3|2 41(6(2(51|5(2|55(4(2 5D(4(3(59(4 (3 52(5(2|N Z . [EOR
INA [A+ 1A 1A(2[1 N . Z .|INA
INC [M+1+M m €€ (6|3 E6|5|2] 6|62 FE|6|3 N z .|INC
INX [X + 12X 82|t N Z |INX
INY [Y+1Y csl2|1 N . Z .[INY
JMP [Jump to new loc ac |33 sc(6/3|7c|s|3 : ; IMP
JSR | Jump Subroutine 20 (63| ISR
LDA|M~+A (1) | A9|2|2|AD|4|3|As| 3|2 A1]6]2(B1|5|2|B5|4|2] 8D|4|3|894|3 82(5(2|N Z .[LbA
LOX|M*X (11| A2|2|2|AE|a]3|A6| 3|2 86(4(2 BE|4|3 N Z .|LDx
LDY|M~+Y (1) | A0|2|2|ac|4]3|A4|3|2 B4/4[2 BC|[4[3 N Z |Lby
LSR [0~ ®-@ (1) 4€E|6|3|46(5(2[4A[2[1 56(6(2 SE(6(3 0 z c|LSR
NOP |PC + 1 +PC EAl2)1 . .|noP
ORA|AVM=+A (1) |09|2|200|4|3|0s|3|2 o1e[2|11]5(2[15|4|2 10[4[3[19|43 12|5(2|N Z .|ORA|
PHA|A*M; S-1+§ a8 31 PHA
PHP [P+M S-1+S 08 [3[1 PHP
PHX [X*Mg S 14§ DA|3[1 L|PHX
PHY | Y *M; S 19§ 5A(3|1 PHY
PLA [S+1+S Mg+A 6841 N z .|PLA
PLP [S+1+S Mg+P 2841 NV . 1D 1 ZC|PLP
PLX [S+1+S Mg*X FAl4]1 N z [PLx
PLY [S+1+5 MY 7a (a1 N z .|pLy
ROL| a1 m 2€(6/3|26(5(2[24 |2[1 36(6|2 3E(6[3 N Z gROL
ROR|L@-F =8 ()] 6€(63|66(5|2(6A (2|1 766 |2] 7E(6(3 N Z QROR
RTI |Return from Inter 40l6 |1 NV . 1D 12ZQgRTI
RTS |Return from Subr. 606 |1 5 RTS
SBC|A-M-CT-A (1.3) [E9(2|2|ED |4 [3|E5|3[2 E16[2|F1[s|2[Fs (a2 FD[4[3|Fo4|3 F2|5|2|N Vv .z dgssC
SEC [1+C (2|1 : 1|SEC
SED|1+D F8(2|1 1 SED
SEl [1+1 78(2|1 1 SEI
STA [A+M 8D|4(3(85/3[2 81/6[2|91 |6 |2[95|4[2 90 |s[3[995 |3 92|5[2 STA
STX [Xx*M 8€ (4386 3(2] 96/4 2 . STX
STY |Y*M 8C(4 (384 (32, 9442 .|sTY
STZ |00 *M 9c|a|3|64 (3|2 7a|a|2 9€ |5(3 5 sTZ
TAX|A*X laA|2 |1 N .z .|TAx
TAY|A+Y A8|2 |1 N . z .|Tay
TRB|AAM*M (4) 1C|6(3|14(5|2 . Z.|TRB
TSB [AVM+M (a) loc |6 (3|0a|s |2 .z .|ts8
TSX [S+X BA|2 |1 N z .|Tsx
TXA[X*A 8A2 [1 N z . |TxA
TXS [X+S 9A |21 : TXS
TYA[Y*A 982 [1 N z . |Tva
Notes:
1. Add 1 to “’n"’ if page boundary is crossed. X Index X + Add n No. Cycles
2. Add 1 to "n" if branch occurs to same page. Y Index Y — Subtract # No. Bytes
Add 2 to “'n”" if branch occurs to different page. A Accumulator A And Mg Memory bit 6
3. Add 1 to “'n” if decimal mode. M Memory per effective address VvV Or M7 Memory bit 7
4. V bit equals memory bit 6 prior to execution. Ms Memory per stack pointer M Exclusive or

N bit equals memory bit 7 prior to execution.
*5. The immediate addressing mode of the BIT instruction leaves bits 6 & 7
(V & N) in the Processor Status Code Register unchanged.

Data sheet 307

308

Appendix B

Memory Map

This appendix lists all important RAM and hardware locations in
address order and briefly describes them. Appendix C contains a
similar list for important firmware addresses.

The tables in this appendix list addresses in either two or three
forms: the hexadecimal form (preceded by a dollar sign) for use in
assembly language; the decimal form for use in Applesoft BASIC;
and (for numbers greater than 32,767) the complementary decimal
value for use in Apple Integer BASIC.

Page $00

Table B-1 lists the zero page addresses in hexadecimal and decimal
form, followed by symbols denoting the firmware or system
software that uses them.

O

O o o o

M denotes the monitor.

A denotes Applesoft BASIC.
I denotes Integer BASIC.

D denotes DOS 3.3.

P denotes ProDOS. Locations whose contents ProDOS saves and
restores afterward have a P in parentheses, indicating that
ProDOS has no net effect on them.

Table B-1

Page $00 use

Hex Dec Used by Hex Dec Used by
$00 0 A $30 48 M
$01 1 A $31 49 M
$02 2 A $32 50 M
$03 3 A $33 51 M
$04 4 A $34 52 M
$05 5 A $35 53 M D
$06 6 $36 54 M D
$07 7 $37 55 M D
$08 8 $38 56 M D
$09 9 $39 57 M D
$0A 10 A $3A 58 M P
$0B 11 A $3B 59 M p
$0C 12 A $3C 60 M P
$0D 13 A $3D 61 M P
$OE 14 A $3E 62 M DP
$OF 15 A $3F 63 M DP
$10 16 A $40 64 M D (P)
$11 17 A $41 65 M D (P)
$12 . 18 A $42 66 M D (P
$13 19 A $43 67 M D (P)
$14 20 A $44 68 M D (P)
$15 21 A $45 69 M D (P)
$16 22 A $46 70 M D (P)
$17 23 A $47 71 M D (P)
$18 24 A $48 72 M D (P)
$19 25 $49 73 M P)
$1A 26 $4A 74 I D (P)
$1B 27 $4B 75 I D P
$1C 28 $4C 76 I D (P)
$1D 29 $4D 77 I D (P)
$1F 31 $4F 79 M
$25 37 M $5s 85 MA I
$26 38 M D $56 86 Al
$27 39 M D $57 87 Al
$28 40 M D $58 88 Al
$29 41 M D $59 89 Al
$2A 42 M D $5A 90 Al
$2B 43 M D $5B 91 Al
$2C 44 M D $sC 92 Al
$2D 45 M D $s5D 93 Al
$2E 46 M D $5E 94 Al
$2F 47 M D $SF 95 Al

Page $00 309

Table B-1 (continued)

Page $00 use

Hex Dec Used by Hex Dec Used by
$60 96 Al $90 144 Al
$61 97 Al $91 145 Al
$62 98 Al $92 146 Al
$63 9 Al $93 147 Al
$64 100 Al $94 148 Al
$65 101 Al $95 149 Al
$66 102 Al $96 150 Al
$67 103 AID $97 151 Al
$68 104 AID $98 152 Al
$69 105 AID $99 153 Al
$6A 106 AID $9A 154 Al
$6B 107 Al $9B 155 Al
$6C 108 Al $9C 156 Al
$6D 109 Al $9D 157 Al
$6E 110 Al $9E 158 Al
$6F 111 AID $9F 159 Al
$70 112 AID $A0 160 Al
$71 113 Al $A1 161 Al
$72 114 Al $A2 162 Al
$73 115 Al $A3 163 Al
$74 116 Al $A4 164 Al
$75 117 Al $AS 165 Al
$76 118 Al $A6 166 Al
$77 119 Al $A7 167 Al
$78 120 Al $A8 168 Al
$79 121 Al $A9 169 Al
$7A 122 Al $AA 170 Al
$7B - 123 Al $AB 171 Al
$7C 124 Al $AC 172 Al
$7D 125 Al $AD 173 Al
$7E 126 Al $AE 174 Al
$7F 127 Al $AF 175 Al
$80 128 Al $B0 176 Al
$81 129 Al $B1 177 Al
$82 130 Al $B2 178 Al
$83 131 Al $B3 179 Al
$84 132 Al $B4 180 Al
$85 133 Al $BS 181 Al
$86 134 Al $B6 182 Al
$87 135 Al $B7 183 Al
$88 136 Al $B8 184 Al
$89 137 Al $B9 185 Al

310 Appendix B: Memory Map

Table B-1 (continued)

Page $00 use

Hex Dec Used by Hex Dec Used by
$8A 138 Al $BA 186 Al
$8B 139 Al $BB 187 Al
$8C 140 Al $BC 188 Al
$8D 141 Al $BD 189 Al
$8E 142 Al $BE 190 Al
$8F 143 Al $BF 191 Al
$CO 192 Al $EO 224 A
$C1 193 Al $E1 225 A
$C2 194 Al $E2 226 A
$C3 195 Al $E3 227

$C4 196 Al $E4 228 A
$Cs 197 Al $ES 229 A
$C6 198 Al $E6 230 A
$C7 199 Al $E7 231 A
$C8 200 Al $ES8 232 A
$C9 201 Al $E9 233 A
$CA 202 AID $EA 234 A
$CB 203 AID $EB 235

$CC 204 AID $EC 236

$CD 205 AID $ED 237

$CE 206 I $EE 238

$CF 207 I $EF 239

$DO 208 Al $FO 240 A
$D1 209 Al $F1 241 A
$D2 210 Al $F2 242 A
$D3 211 Al $F3 243 A
$D4 212 Al $F4 244 A
$D5 213 Al $F5 245 A
$D6 214 I $F6 246 A
$D7 215 I $F7 247 A
$D8 216 AID $F8 248 A
$D9 217 Al $F9 249

$DA 218 Al $FA 250

$DB 219 Al $FB 251

$DC 220 Al $FC 252

$DD 221 Al $FD 253

$DE 222 Al $FE 254

$DF 223 Al $FF 255

Page $00

311

312

Page $03

Most of page $03 is available for small machine-language
programs. The built-in Monitor uses the top 16 addresses of

page $03, as shown in Figure B-2; the XFer routine uses locations
$03ED and $03EE. If you are using DOS or ProDOS, it also uses the
32 locations $03D0 through $03EF.

Table B-2
Page $03 use

Hex Dec Use

$03F0 1008 Address of BRK request handler (normally $59,
$03F1 1009 $FA)

$03F2 1010 Reset vector
$03F3 1011
$03F4 1012 Power-up byte (see text)

$03F5 1013 Jump instruction to Applesoft & command
$03F6 1014 handler (initially $4C, $58, $FF)
$03F7 1015

$03F8 1016 Jump instruction to user Control-Y command
$03F9 1017 handler
$03FA 1018

$03FB 1019 Jump instruction to NMI interrupt handler
$03FC 1020 (not used by Apple IIc)
$03FD 1021

$O3FE 1022 Address of user IRQ interrupt handler
$03FF 1023

Screen holes

One result of the way the Apple Iic hardware maps display memory
on the screen is that groups of 8 memory addresses are left over in
16 areas of the text and low-resolution display pages—8 areas in
main RAM and 8 in auxiliary RAM. The firmware uses for these

128 bytes are shown in Tables B-3 and B-4.

Appendix B: Memory Map

Memory expansion

The version of the Apple lic that supports the memory
expansion card uses some of the screen holes differently than
earlier versions. Where they differ, the memory expansion ROM
assignments are given in parentheses in Tables B-3 and B-4
following the original and UniDisk 3.5 assignments.

Table B-3
Main memory screen hole allocations

Hex Dec Description

$0478 1144 Mouse port: low byte of clamping minimum
$0479 1145 Reserved for serial port 1

$047A 1146 Reserved for serial port 2

$047B 1147 Reserved

$047C 1148 Low byte of X coordinate (Reserved)

$047D 1149 Reserved for mouse port

$047E 1150 Reserved

$047F 1151 Reserved (Low byte of X coordinate)

$04F8 1272 Mouse port: low byte of clamping maximum
$04F9 1273 Reserved for serial port 1

$04FA 1274 Reserved for serial port 2

$04FB 1275 Reserved

$04FC 1276 Low byte of Y coordinate (Reserved)

$04FD 1277 Reserved for mouse port

$04FE 1278 Reserved

$04FF 1279 Reserved (Low byte of Y coordinate)

$0578 1400 Mouse port: high byte of clamping minimum
$0579 1401 Port 1 printer width (1-255; 0 = unlimited)
$057A 1402 Port 2 line length (1-255; 0 = unlimited)

$057B 1403 Cursor horizontal position (80-column display)
$057C 1404 High byte of X coordinate (Reserved)

$057D 1405 Reserved for mouse port

$057E 1406 Reserved

$057F 1407 Reserved (High byte of X coordinate)

$0SF8 1528 Mouse port: high byte of clamping maximum
$05F9 1529 Port 1 temporary storage location

$05FA 1530 Port 2 temporary storage location

$0SFB 1531 Reserved

$0SFC 1532 High byte of Y coordinate (Reserved)

$05FD 1533 Reserved for mouse port

$05FE 1534 Reserved

$05FF 1535 Reserved (High byte of Y coordinate)

Screen holes 313

314

Table B-3 (continued)
Main memory screen hole allocations

Hex Dec Description

$0678 1656 Reserved

$0679 1657 Indicates when port 1 firmware is parsing a
command

$067A 1658 Indicates when port 2 firmware is parsing a
command

$067B 1659 Reserved

$067C 1660 Mouse port: reserved (Reserved)

$067D 1661 Reserved for mouse port

$067E 1662 Reserved

$067F 1663 Reserved (Mouse port: reserved)

$06F8 1784 Reserved

$06F9 1785 Current port 1 command character

$06FA 1786 Current port 2 command character

$06FB 1787 Reserved

$06FC 1788 Mouse port: reserved (Reserved)

$06FD 1789 Reserved for mouse port

$O6FE 1790 Reserved

$06FF 1791 Reserved (Mouse port: reserved)

$0778 1912 DEVNO: $n0 = current active port number x 16

$0779 1913 Port 1 flags for echo and auto line feed

$077A 1914 Port 2 flags for each and auto line feed

$077B 1915 Reserved

$077C 1916 Mouse port status byte (Reserved)

$077D 1917 Reserved for mouse port

$077E 1918 Reserved

$077F 1919 Reserved (Mouse port status byte)

$07F8 2040 MSLOT: owner of $C800-$CFFF ($C3, video)

$07F9 2041 Port 1 current printer column

$07FA 2042 Port 2 current line position

$07FB 2043 Reserved

$07FC 2044 Mouse port mode byte (Reserved)

$07FD 2045 Reserved for mouse port

$07FE 2046 Reserved

$07FF 2047 Reserved (Mouse port mode byte)

Appendix B: Memory Map

Table B-4

Auxiliary memory screen hole allocations

Hex Dec Description

$0478 1144 Initial port 1 ACIA control register values ($9E)
$0479 1145 Initial port 1 ACIA command register values ($0B)
$047A 1146 Initial port 1 characteristics flags ($40)

$047B 1147 Initial port 1 printer width ($50)

$047C 1148 Initial port 2 ACIA control register values ($16)
$047D 1149 Initial port 2 ACIA command register values ($0B)
$047E 1150 Initial port 2 characteristics flags ($01)

$047F 1151 Initial port 2 line length ($00)

$04F8 1272

through Reserved

$04FF 1279

$0578 1400

through Reserved

$057F 1407

$0SF8 1528

through Reserved

$0SFF 1535

$0678 1656

through Reserved

$067F 1663

$06F8 1784

through Reserved

$06FF 1791

$0778 1912

through Reserved

$077F 1919

$07F8 2040

through Reserved

$O7FF 2047

Screen holes 315

The hardware page

Tables B-5 through B-9 list all the hardware locations available for
use in the Apple IIc. These tables have a column at the left that is not
present in other tables. This column, labeled RW, indicates the
action to take at a particular location.

O R means read.
O KRR means read twice in succession.

O R7 means read the byte and then check bit 7; in the use column,
“See if...” refers to the condition represented by bit 7 = 1, unless
otherwise specified. Bit 7 has a value of $80, so if the contents of
the location are greater than or equal to $80, the bit is on.

Another way to test bit 7 (the sign bit) is with a BIT instruction,
followed by BPL (bit 7 was 0) or BMI (bit 7 was 1).

O R/Wmeans to either read or write. For writing, the value is
unimportant.
O W means to write only. The value is unimportant.

O N means not to read or write, because the location is reserved.

An address of the form $C00x refers to the 16 locations from $C000
through $COOF. Labels, when they are shown, are simply memory
aids. Some of them correspond to the labels at those addresses in
the firmware, others do not. Your program will have to assign a
label for it anyway.

Table B-5

Addresses $C000-$CO3F

RW Hex Dec Negdec Label Use

R $C00x KStrb Read keyboard data (bits 0-6) and strobe (bit 7)
\% $C000 49152 -16384 80Store Off: Page2 switches Page 1 and 2

W $C001 49153 -16383 80Store On: Page2 switches Page 1 and 1X

W $C002 49154 -16382 RAMRd Off: Read main 48K RAM

W $C004 49156 16380 RAMWTrt Off: Write in main 48K RAM

w $C005 49157 -16379 RAMWirt On: Write in auxiliary 48K RAM

W $C006 49158 -16378 Reserved

W $C007 49159 -16377 Reserved

W $C008 49160 -16376 AltZP Off: Use main PO, P1, bank-switched RAM

W $C009 49161 -16375 AltZP On: Use auxiliary PO, P1, bank-switched RAM
W $CO0A 49162 -16374 Reserved

A\ $COOB 49163 -16373 Reserved

W $COOC 49164 -16372 80Col Off: 40-column display

316 Appendix B: Memory Map

Table B-5 (continued)
Addresses SC0O00-SCO3F

RW Hex Dec Negdec Label Use
w $COOD 49165 -16371 80Col On: 80-column display
w $COOE 49166 -16270 AltChar Off: Display primary character set
W $COOF 49167 -16369 AltChar On: Display alternate character set
W $CO1x Clear keyboard strobe ($C00x bit 7)
R7 $C010 49168 -16368 AKD See if any key now down; clear strobe
R7 $CO011 49169 -16367 RdBnk2 See if using $D000 bank 2 (or 1)
R7 $C012 49170 -16366 RALCRAM See if reading RAM (or ROM).
R7 $C013 49171 -16365 RdRAMRd See if reading auxiliary 48K RAM (or main)
R7 $C014 49172 -16364 RARAMWrt See if writing auxiliary 48K RAM (or main)
R $C015 49173 -16363 RstXInt Reset mouse X0 interrupt
R7 $C016 49174 -16362 RdAlZP See if auxiliary PO, P1 and bank-switched RAM
R $C017 49175 -16361 RstYInt Reset mouse Y interrupt
R7 $C018 49176 -16360 Rd80Store See if 80Store on (or off)
R7 $C019 49177 -16359 RstVBI See if VBIInt off (1); reset it
R7 $CO1A 49178 -16358 RATEXT See if text (or graphics)
R7 $C01B 49179 -16357 RdAMIXED See if mixed mode switch on
R7 $CO01C 49180 -16356 RdPage2 See if Page 2/1X selected (or 1)
R7 $CO01D 49181 -16355 RdHiRes See if high-resolution switch on
R7 $CO1E 49182 -16354 RdAltChar See if alternate character set (or primary)
R7 $CO1F 49183 -16353 Rd80Col See if 80-column hardware on
N $C020 49184 -16352
through Reserved (read and write)
N $CO2F 49199 -16337
W $C030 49200 -16336 Reserved
R $C030 49200 -16336 Toggle speaker
N $C031 49201 -16335
through Reserved (read and write)
N $CO3F 49215 -16321

The hardware page 317

Table B-6
Addresses $C040-SCOS5F

RW Hex Dec Negdec Label Use

R7 $C040 49216 -16320 RdAXYMsk See if X0/Y0 mask set

R7 $C041 49217 -16319 RdVBIMsk See if VBL mask set

R7 $C042 49218 -16318 RdXOEdge See if interrupt on falling X0 edge
R7 $C043 49219 -16317 RdAYOEdge See if interrupt on falling YO edge

N $C044 49220 -16316 Reserved

N $C045 49221 -16315) Reserved

N $C046 49222 -16314 Reserved

N $C047 49223 _16313 Reserved

R $C048 49224 -16312 RstXY Reset X0/YO0 interrupt flags

N $C049 49225 16311 Reserved

N $CO4A 49226 16310 Reserved

N $C04B 49227 -16309 Reserved

N $C04C 49228 -16308 Reserved

N $C04D 49229 -16307 Reserved

N $CO4E 49230 -16306 Reserved

N $CO4F 49231 -16305 Reserved

R/W $C0O50 49232 -16304 TEXT Off. Graphics display

R/W $C051 49233 -16303 TEXT On: Text display

R/W $C052 49234 -16302 MIXED Off: Text or graphics only

R/W $CO053 49235 -16301 MIXED On: Combination text and graphics

R/W $C054 49236 -16300 Page2 Off: Use Page 1

R/W $C055 49237 -16299 Page2 On: Display Page 2 (80Store off); store to Page
1X (80Store on)

R/W $C056 49238 -16298 HiRes Off: Low resolution

R/W §C057 49239 -16297 HiRes On: High resolution; double if 80Col and
DHiRes on

N $C058 49240 -16296 Reserved if IOUDis on ($CO7E bit 7=1)

R/W DisX Disable (mask) mouse X0/Y0 interrupts

N $C059 49241 -16295 Reserved if IOUDis on

R/W EnbXY Enable (allow) mouse X0/Y0 interrupts

N $COSA 49242 -16294 Reserved if IOUDis on

R/W DisVBI Disable (mask) VBL interrupts

N $COSB 49243 -16293 Reserved if IOUDis on

R/W EnVBI Enable (allow) VBL interrupts

N $§COSC 49244 -16292 Reserved if IOUDis on

R/W X0Edge Interrupt on rising edge of X0

N $COSD 49245 -1629 Reserved if IOUDis on

R/W X0Edge Interrupt on falling edge of X0

R/W $COSE 49246 -16290 DHiRes If IOUDis on: Set double high-resolution

R/W YOEdge If IOUD:is off: Interrupt on rising Y0

R/W $COSF 49247 -16289 DHiRes If IOUDis on: Clear double high-resolution

R/W YOEdge If IOUDis off: Interrupt on falling YO

318 Appendix B: Memory Map

Table B-7
Addresses $C040-$CO7F

RW Hex Dec Negdec Label Use

W $C06x Reserved (write)

R7 $C060 4924 -16288 Rd80Sw See if 80/40 switch down (= 40)

R7 $C061 49249 -16287 RdBtn0 See if mouse button/Open-Apple pressed

R7 $C062 49250 -16286 RdBinl See if switch 1/Solid Apple pressed

R7 $C063 49251 -16285 Rd63 See if mouse button not pressed

R7 $C064 49252 -16284 PdI0 See if hand control button 0 pressed

R7 $C065 49253 -16283 Pdll See if hand control button 1 pressed

R7 $C066 49254 -16282 MouX1 See if mouse X1 (direction) is high

R7 $C067 49255 -16281 MouY1 See if mouse Y1 (direction) is high

N $C068 49256 -16280

through Reserved (write and read)

N $CO6F 49263 -16273

R/W $CO7x Trigger paddle timer; reset VBIInt,
however, some $C07x are reserved

R/W $C070 49264 -16272 PTrig Designated trigger or reset location

N $C071 49265 -16271

through Reserved

N $CO7D 49277 -16259

R7 $CO7E 49278 -16258 RdIOUDis See if IOUDIs on, trigger paddle timer;
reset VBIlInt

W IOUDis On: Enable access to DHiRes switch;
disable $C058-$C0O5F IOU access

R7 $CO7F 49279 -16257 RdDHiRes See if DHiRes on

W I0OUDis Off: Disable access to DHiRes switch;

enable $C058-$COSF IOU access

The hardware page

319

Table B-8
Addresses $C080-SCOAF

RW Hex Dec Negdec Label Use
R $C080 49280 -16256 Read RAM; no write; use $D000 bank 2
RR $C081 49281 -16255 Read ROM; write RAM; use $D000 bank 2
R $C082 49282 -16254 Read ROM; no write; use $D000 bank 2
RR $C083 49283 -16253 Read and write RAM; use $D000 bank 2
N $C084 49284 -16252 Reserved
N $C085 49285 -16251 Reserved
N $C086 49286 -16250 Reserved
N $C087 49287 -16249 Reserved
R $C088 49288 -16248 Read RAM; no write; use $D000 bank 1
RR $C089 49289 -16247 Read ROM; write RAM; use $D000 bank 1
R $CO8A 49290 16246 Read ROM; no write; use $D000 bank 1
RR $C08B 49291 -16245 Read and write RAM; use $D000 bank 1
N $CO8C 49292 16244 Reserved
N $CO8D 49293 16243 Reserved
N $CO8E 49294 -16242 Reserved
N $CO8F 49295 -16241 Reserved
N $C090 49296 —16240
through Reserved
N $C097 49303 -16233
R/W $C098 49304 -16232 Port 1 ACIA transmit/receive register
R/W $C099 49305 -16231 Port 1 ACIA status register
R/W $CO9A 49306 -16230 Port 1 ACIA command register
R/W $C09B 49307 -16229 Port 1 ACIA control register
N $CO9C 49308 -16228
through Reserved
N $CO9F 49311 -16225
N $COAQ 49312 -16224
through Reserved
N $COA7 49319 -16217
R/W $COA8 49320 -16216 Port 2 ACIA transmit/receive register
R/W $COA9 49321 -16215 Port 2 ACIA status register
R/W $COAA 49322 -16214 Port 2 ACIA command register
R/W $COAB 49323 16213 Port 2 ACIA control register
N $COAC 49324 -16212
through Reserved
N $COAF 49327 -16209
320 Appendix B: Memory Map

Table B-9
Addresses $COBO-SCOFF

RW Hex Dec Neg Dec Llabel Use
N $COBO 49328 -16208

through Reserved
N $COBF 49343 -16193
N $C0Co 49344 -16192

through Reserved
N $COCF 49359 -16177
N $CODO 49360 -16176

through Reserved
N $CODF 49375 -16161
N $COEO 49376 -16160

through Reserved
N $COEF 49391 16145
N $COF0 49392 16144

through Reserved
N $COFF 49407 -16129

The hardware page

321

322

Warning

Appendix C

Important Firmware Locations

This appendix lists all significant firmware addresses: entry points,
locations containing the addresses of entry points, and locations
where machine and device identification bytes reside.

The Monitor firmware entry points are the only published entry
points in the sense that they are the only ones that will remain
in the same locations in future Apple Il series computers.

The frmware protocol identification bytes and offsets will work
with other Apple ll-series computers only if used as directed.

The tables

This appendix supplements the chapter text by specifying three
forms of each address: hexadecimal, decimal, and complementary
(negative) decimal.

In these tables, some of the addresses are followed by a label. These
labels are listed only to help you find the named location in the
firmware listings, or to remember the function found at the address.
The Apple Ilc contains no global label table: your program must
assign its own labels to the addresses as required.

There are several types of information at these firmware addresses:
actual entry points (labeled entr)), the low-order byte of an entry
point (labeled offsef), a device or machine identification byte
(labeled idend), and indicators (labeled indic) specifying whether
there are optional routines, vector addresses (labeled vecto?), or
an RTS instruction location.

Each input/output port has an associated protocol table, as shown
in Tables C-1 through C-4. Many of the bytes (labeled offsef) in the
protocol tables are the low-order bytes of addresses of I/O routines
for the ports; the high-order byte of these addresses must be $Cn
(where n is the port number). This structure is explained in

Chapter 3. Although your program must perform some extra
processing to use these tables, the benefit is simplified compatible
port and slot I/O for all Apple II-series machines.

Port addresses

Addresses for serial ports 1 and 2, output port 3, and mouse input
port 4 are shown in the following four tables.

Table C-1

Serial port 1 addresses

Hex Dec Neg dec Label Type Description

$C100 49408 -16128 entry Main port 1 entry point
$C105 49413 -16123 ident ID byte ($38)

$C107 49415 -16121 ident ID byte ($18)

$C10B 49419 -16117 ident Firmware card signature ($01)
$C10C 49420 -16116 ident Super Serial Card ID ($31)
$C10D 49421 -16115 offset Low-order PInit address
$C10E 49422 -16114 offset Low-order PRead address
$C10F 49423 -16113 offset Low-order PWrite address
$C110 49424 -16112 offset Low-order PStatus address
$C111 49425 -16111 indic Non-zero: no optional routines

Port addresses 323

Table C-2

Serial port 2 addresses

Hex Dec Neg dec Label Type Description

$C200 49664 -15872 entry Main port 2 entry point

$C205 49669 -15867 iden ID byte ($38)

$C207 49671 -15865 ident ID byte ($18)

$C20B 49675 -15861 ident Firmware card ID ($01)

$C20D 49676 -15860 ident Super Serial Card ID ($31)

$C20D 49677 -15859 offset Low-order PInit address

$C20E 49678 —-15858 offset Low-order PRead address

$C20F 49679 —15857 offset Low-order PWrite address

$C210 49680 —-15856 offset Low-order PStatus address

$C211 49681 -15855 indic Non-zero: no optional routines

Table C-3

Video firmware addresses

Hex Dec Neg Dec Label Type Description

$C300 49920 -15616 entry Main video entry point (output only)

$C305 49925 -15611 C3Keyln ident ID byte ($38)

$C307 49927 -15609 C3COutl ident ID byte ($18)

$C30B 49931 -15605 ident Firmware card signature ($01)

$C30C 49932 -15604 ident 80-column card ID ($88)

$C30D 49933 -15603 offset Low-order PInit address

$C30E 49934 -15602 offset Low-order PRead address

$C30F 49935 -15601 offset Low-order PWrite address

$C310 49936 —15600 offset Low-order PStatus address

$C311 49937 -15599 MoveAux entry Routine for main/auxiliary control
swapping (also called AuxMove)

324 Appendix C: Important Firmware Locations

Table C-4
Mouse port addresses

Hex Dec Neg dec Label Type Description

$C400 50176 -15360 entry Main mouse entry point

$C405 50181 -15355 ident ID byte ($38)

$C407 50183 -15353 ident ID byte ($18)

$C40B 50187 -15349 ident Firmware card signature ($01)
$C40C 50188 —-15348 type X-Y pointing device ID ($20)
$C40D 50189 —15347 offset Low-order Plnit address

$C40E 50190 —~15346 offset Low-order PRead address
$C40F 50191 -15345 offset Low-order PWrite address
$C410 50192 —15344 offset Low-order PStatus address
$C411 50193 -15343 indic Optional routines follow ($00)
$C412 50194 -15342 . SetMouse offset Low-order SetMouse address
$C413 50195 -15341 ServeMouse offset Low-order ServeMouse address
$C414 50196 -15340 ReadMouse offset Low-order ReadMouse address
$C415 50197 -15339 ClearMouse offset Low-order ClearMouse address
$C416 50198 -15338 PosMouse offset Low-order PosMouse address
$C417 50199 -15337 ClampMouse offset Low-order ClampMouse address
$C418 50200 -15336 HomeMouse offset Low-order HomeMouse address
$C419 50201 -15335 InitMouse offset Low-order InitMouse address

Memory expansion The memory expansion version of the Apple lic supports the
mouse in port 7. This means that the firmware entry points are
$C7XX addresses, instead of $C4XX address; change the 4's to
7's in Table C-4.

Port addresses 325

Other video and I/0 firmware addresses

Miscellaneous firmware addresses are listed in Table C-5.

Table C-5

Apple lic enhanced video and miscellaneous firmware

Hex Dec Neg dec Label Type Description

$C600 50688 -14848 entry Disk drive firmware entry point
$C700 50944 -14592 entry External disk startup routine
$C803 51203 -14333 NewlRQ entry IRQ handling routine

Memory expansion $C700 supports the mouse in the memory expansion version.

Applesoft BASIC interpreter addresses

The addresses of Applesoft BASIC entry points are listed in the
Applesoft BASIC Programmer’s Reference Manual. The Applesoft
interpreter occupies ROM addresses from $D000 through $F7FF.

Monitor addresses

Table C-6 lists the Monitor entry points, machine identifier bytes,
interrupt vectors, and the address of a known RTS instruction.

Table C-6

Apple llc monitor entry points and vectors

Hex Dec Neg dec Label Type Description

$F800 63488 —2048 PLOT entry Plots a low-resolution block

$F819 63513 -2023 HLine entry Draws low-resolution horizontal line
$F828 63528 -2008 VLine entry Draws low-resolution vertical line
$F832 63538 -1998 ClrScr entry Clears low-resolution screen

$F836 63542 -1994 ClrTop entry Clears top 40 low-resolution lines
$F864 63588 -1948 SetCol entry Sets low-resolution color (Table 5-4)
$F871 63601 -1935 SCRN entry Reads color of low-resolution block
$F941 63809 -1727 PrntAX entry Displays A and X in hex

$F94A 63818 -1718 PrBl12 entry ‘Sends X blanks to output

326 Appendix C: Important Firmware Locations

Table C-6 (continued)
Apple llc monitor entry points and vectors

Hex Dec Neg dec Label Type Description

SFA47 63845 -1691 NewBRK entry Apple IIc break handler

$FA6G2 64098 —-1438 Reset entry Hardware reset routine

$FB1E 64386 -1150 PRead entry Reads hand controller position
$FB6F 64467 -1169 SetPwrC entry Routine to create power-up byte
$FBB3 64535 -1101 ident Machine identification byte
$FBCO 64548 -1088 ident Machine identification byte
$FBDD 64477 -1059 Belll entry Sends 1-kHz beep to speaker
$FC42 64578 -958 CIrEOP entry Clears from cursor to bottom
$FC58 64600 -936 HOME entry Clears from cursor to upper left
$FCOC 64668 —-868 CIrEOL entry Clears from cursor to end of line
$FCOE 64670 866 CIEOLZ entry Clears from BASL to end of line
$FCA8 64680 -856 WAIT entry Delays for time specified by A
$FDOC 64780 -756 RdKey entry Displays cursor, jumps to KSW
$FD1B 64795 —741 Keyln entry Waits for keypress, reads key
$FD35 64821 715 RdChar entry Gets input, interprets ESC codes
$FD67 64871 —665 GetlnZ entry Sends CR to output, goes to GetLn
$FDOA 64874 -662 Getln entry Displays prompt, gets input line
$FDGF 64879 657 Getlnl entry No prompt; gets input line
$FD8B 64907 —629 CROutl entry Clears to end of line, calls CROut
$FD8E 64910 -626 CROut entry Sends CR to output

$FDDA 64986 -550 PrByte entry Sends A to output

$FDE3 64995 -541 PrHex entry Displays low nibble of A in hex
$FDED 65005 -531 COut entry Jumps to CSW

$FDFO0 65008 -528 COutl entry Displays A, advances cursor
$FE2C 65068 -468 MOVE entry Copies memory elsewhere
$FE36 65078 —458 VERIFY entry Compares two blocks of memory
$FF2D 65325 -211 PrErr entry Sends ERR to output; beeps
$FF3A 65338 -198 Bell entry Sends CONTROL-G to output
$FF3F 65343 -193 IORest entry Loads $45-$49 into registers
$FF4A 65354 -182 I0Save entry Stores A, X, Y, P, S at $45-$49
$FF58 65368 -168 IORTS RTS Location of known RTS instruction
$FF69 65385 -151 Monitor entry Standard Monitor entry point
$FFFA 65530 -6 vector Low-order NMI vector (unused)
$FFFB 65531 -5 vector High-order NMI vector (unused)
$FFFC 65532 —4 vector Low-order reset vector ($62)
$FFFD 65533 -3 vector High-order reset vector ($FA)
$FFFE 65534 =2 IRQVect vector Low-order IRQ vector ($03)
$FFFF 65535 -1 vector High-order IRQ vector (§CB)

Monitor addresses 327

328

Appendix D

Operating Systems
and Languages

This appendix is an overview of the characteristics of operating
systems and languages when run on the Apple Ilc. It is not intended
to be a complete description. For more information, refer to the
manuals that are provided with each product.

Operating systems

This section discusses the operating systems that the Apple IIc works
with CP/M, and any other operating system that requires an
interface card, does not work on the Apple Ilc.

ProDOS

ProDOS is the preferred disk operating system for the Apple IIc. It
supports startup from the external disk drive (on original Apple IIc’s
with the command PR#7), interrupts, and all other hardware and
firmware features of the Apple Ilc.

DOS

The Apple IIc works with DOS 3.3. Its built-in disk drive hardware
and firmware can also access DOS 3.2 disks by using the BASICS
disk. DOS support is provided for the sake of Apple II series
compatibility; neither version of DOS takes full advantage of all the
features of the Apple Ilc.

Pascal Operating System

Versions 1.2 and later of the Pascal Operating System use the
80/40 switch and the interrupt features of the Apple Ilc, while
remaining compatible with the other Apple II series computers.

While the Apple IIc works with Pascal 1.1, this version of the Pascal
Operating System does not use the 80/40 switch or handle
interrupts.

The Apple Ilc does not work with Pascal 1.0, because the I/O
firmware entry points of that version of the operating system are
rigidly defined (rather than being accessed via a table), and the
Apple IIc’s built-in firmware does not correspond to these entry
points.

Languages

This section discusses using Apple programming languages with the
Apple Ilc. It is also a guide to using this reference manual with these
languages.

Applesoft BASIC

The programming examples in this manual are almost entirely in
assembly language, and so most addresses and values are given in
hexadecimal notation.

Use a PEEK in BASIC (instead of LDA in assembly language) to read
a location, and a POKE (instead of STA) to write to a location. The
values used by Applesoft must be in decimal, so you will have to
convert hexadecimal values given in this manual to decimal.
(Several tables in this manual include decimal equivalents to make
the job easier for you.)

If you read a hardware address from a BASIC program, you get a
value between 0 and 255. Bit 7 has a value of 128, so if a soft switch is
on, its value will be equal to or greater than 128; if the switch is off,
the value will be less than 128.

Languages 329

Integer BASIC

You will have to run a version of DOS in your Apple Ilc to use
Integer BASIC. ProDOS does not support Integer BASIC.

Pascal

The Pascal language runs on the Apple IIc under versions 1.1 or
later of the Pascal Operating System. However, for best
performance, use Pascal versions 1.2 or later.

Fortran

Fortran runs under version 1.1 of the Pascal Operating System,
which does not detect or use certain Apple Ilc features, such as the
80/40 switch or auxiliary memory. Therefore, Fortran does not take
advantage of these features either,

Logo Il

Apple Logo I works under ProDOS on Apple II series machines with
at least 128K of memory. Logo II is a version of the Logo language
originally developed from the LISP (LISt Processing) language at
MIT as a language to be used for leaming. Logo II takes advantage of
the Apple II's graphics and retains much of the power and flavor of
LISP without LISP’s somewhat cryptic syntax.

330 Appendix D: Operating Systems and Languages

Warning

Appendix E

Interrupts

This appendix describes the sources of interrupts on the Apple Ilc,
how the firmware handles the interrupts, and how to use interrupt-
driven features directly in those rare cases when the firmware
cannot meet your needs.

If you use Interrupt hardware directly, instead of using the built-
in interrupt-handling firmware, you can’t be sure that your
programs will be compatible with possible future Apple Il series
computers or revisions.

Intfroduction

This section describes interrupts and their effects on the Apple Iic
hardware.

What is an interrupt?

An interrupt is a signal that a computer uses to know when to stop
what it's doing so it can quickly handle a time-dependent task. For
example, the Apple IIc mouse sends an interrupt to the computer
every time it moves. This lets the system keep track of the mouse’s
position and maintain smooth movement of the pointer on the
screen.

331

332

Appendix E: Interrupts

When an interrupt occurs, control passes to an interrupt handler,
which must record the exact state of the computer at the moment of
the interrupt, determine the source of the interrupt, and take
appropriate action. It is important that the computer preserve a
“snapshot” of its state when interrupted, so that when it continues
later with what it was doing, those conditions can be restored.

Interrupts on Apple Il computers

Interrupts have not always been fully supported on the Apple II. All
versions of Apple’s DOS, as well as the Monitor program, rely on
the integrity of location $45, which the built-in interrupt handler
has always destroyed by saving the accumulator in it. Most versions
of Pascal simply do not work with interrupts enabled.

The Apple Ilc built-in interrupt handler now saves the accumulator
on the stack instead of in location $45. DOS 3.3, ProDOS,

Pascal 1.2 (or later versions), and the Monitor all work with
interrupts on the Apple Ilc.

You should use either ProDOS or Pascal 1.2 (or later versions) if
you want interrupt-using software to work on the Apple Ile and the
Apple 1I Plus. Both operating systems have full interrupt support
built in.

Interrupts are effective only if they are enabled most of the time
since interrupts that occur while interrupts are disabled cannot be
detected. Because of the critical timing of disk read and write
operations, Pascal, DOS 3.3, and ProDOS turn off interrupts while
accessing the disk. Thus it is important to remember that while a
disk drive is being accessed, all the interrupt sources discussed
below are turned off.

On the Apple Ile only, interrupts are periodically turned off while
80-column screen operations are being performed. This is most
noticeable while the screen is scrolling. Also, most peripheral
cards used in the Apple Ile disable interrupts while reading and
writing.

Interrupt handling on the 65C02
From the point of view of the 65C02, there are three possible causes
of interrupts.

1. The IRQ line on the microprocessor can be pulled low if 65C02
interrupts are not masked (that is, the CLI instruction has been
used). This is the standard technique that devices use when they
need immediate attention.

2. The processor executes a break (BRK, opcode $00) instruction.

3. A nonmaskable interrupt (NMD) occurs. Because the NMI line in
the Apple IIc’s 65C02 is not used, this never happens on the
Apple Ilc.

The first two possibilities cause the 65C02 to save the current
program counter and status byte on the stack and then jump to the
routine whose address is stored in $FFFE and $FFFF. The sequence
performed by the 65C02 is:

1. If an IRQ occurs, finish executing the current instruction. (If a
BRK occurs, the current instruction is already finished.)

2. Push the high byte of the program counter onto the stack.
3. Push the low byte of the program counter onto the stack.
4. Push the program status byte onto the stack.

5. Jump to the address stored in $FFFE, $FFFF—that is,
JMP ($FFFE).

The different sources of interrupt signals are discussed below.

The interrupt vector at $FFFE

In the Apple IIc there are three separate regions of memory that
contain address $FFFE: the built-in ROM, the bank-switched
memory in main RAM, and the bank-switched memory in auxiliary
RAM. The vector at $FFFE in the ROM points to Apple IIc’s built-in
interrupt handling routine. You should generally use the built-in
interrupt handler, rather than writing your own, because of the
complexity of interrupts on the Apple Ilc.

Introduction 333

334

Appendix E: Interrupts

When you initialize the mouse or serial communication firmware,
copies of the ROM’s interrupt vector are placed in the interrupt
vector addresses in both main and auxiliary bank-switched
memory. If you plan to use interrupts and the bank-switched
memory without the mouse or communication firmware, you must
copy the ROM'’s interrupt vector yourself.

The built-in interrupt handler

"The built-in-interrupt handler is responsible for determining

whether a BRK or an IRQ interrupt occurred. If it was an IRQ
interrupt, it decides whether the interrupt should be handled
internally, handled by the user, or simply ignored.

The built-in interrupt-handling routine records the current memory
configuration, then sets up its own standard memory configuration
so that a user’s interrupt handler knows the precise memory
configuration when it is called.

Next the handler checks to see if the interrupt was caused by a break
instruction, and if it was, handles it as described later in this
appendix.

If the interrupt was not caused by a BRK, the handler checks for
interrupts that it knows how to handle (for example, a properly
initialized mouse) and handles them.

Depending on the state of the system, it either ignores other
interrupts or passes them to a user’s interrupt handling routine
whose address is stored at $03FE and $03FF of main niemory.

After handling an interrupt itself, or after the user’s handler returns
(with an RTI), the built-in interrupt handler restores the memory
configuration, and then does an RTI to restore processing to where
it was when the interrupt occurred. Table E-1 illustrates this whole
process. Each of the steps is explained in detail in the sections that
follow.

Table E-1
Interrupt-handling sequence

Interrupted
program Processor Built-in handler User's handler

Program—Push address
Push status

JMP ($FFFE)—=Save old and set
nNew memory
configuration

If BRK, then go
to break handler
($FA47) >

Qur interrupt?

NO: Push address
Push status
JMP (303FE)—Handle
interrupt

YES: Handle it

Restore memory <+—RTI
configuration

Pull status «<——RTI
Program —-—~Pull address

Saving the memory configuration
The built-in interrupt handler saves the state of the system, and sets
it to a known state according to these rules:

o If 80Store and Page2 are on, then it switches in text Page 1 (Page2
off) so that main screen holes are accessible,

O It switches in main memory for reading (RAMRd off).
O It switches in main memory for writing (RAMWTrt off).

O It switches in ROM addresses $D000-$FFFF for reading
(RALCRAM off).

O It switches in main stack and zero page (AltZP off).

O It preserves the auxiliary stack pointer, and restores the main
stack pointer.

The built-in interrupt handler 335

336

Appendix E: Interrupts

O It preserves the current ROM state and switches in the ROM
bank 1.

% Note: Because main memory is switched in, all memory
addresses used later in this appendix are in main memory
unless otherwise specified.

Managing main and auxiliary stacks

Because the Apple IIc has two stack pages, the firmware has
established a convention that allows the system to be run with two
separate stack pointers. Two bytes in the auxiliary stack page are to
be used as storage for inactive stack pointers: $0100 for the main
stack pointer when the auxiliary stack is active, and $0101 for the
auxiliary stack pointer when the main stack is active.

When a program that uses interrupts switches in the auxiliary stack
for the first time, it should place the value of the main stack pointer
at auxiliary stack address $0100, and initialize the auxiliary stack
pointer to $FF (the top of the stack). When it subsequently switches
from one stack to the other, it should save the current stack pointer
before loading the pointer for the other stack.

When an interrupt occurs while the auxiliary stack is switched in, the
current stack pointer is stored at $0101, and the main stack pointer
is retrieved from $0100. Then the main stack is switched in for use.
After the interrupt has been handled, the stack pointer is restored to
its original value,

User’s interrupt handler at $03FE

You can set up screen hole locations to indicate that the user's
interrupt handler should be called when certain interrupts occur.
To do this, place your interrupt handler’s address at $03FE and
$03FF in main memory, low byte first.

The user’s interrupt handler should do the following:

O Verify that the interrupt came from the expected source. The
following sections describe how this should be done for each
interrupt source.

0 Handle the interrupt as desired.

O Clear the interrupt, if necessary. The following sections describe
how to clear the interrupts.

O Return with an RTIL.

If your interrupt handler needs to know the memory configuration at
the time of the interrupt, it can check the encoded byte stored four
bytes down on the stack. This byte is explained later in this
appendix.

In general there is no guaranteed maximum response time for
interrupts. This is because the system may be doing a disk
operation, which could last for several seconds.

Once the built-in interrupt handler has been called, it takes

about 250 to 300 microseconds for it to call your interrupt-handling
routine. After your routine returns, it takes 40 to 140 microseconds
to restore memory and return to the interrupted program.

If memory is in the standard state when the interrupt occurs, the
total overhead for interrupt processing is about 150 microseconds
less than if memory is in the worst possible state (80Store and Page2
on, auxiliary memory switched in for reading and writing, auxiliary
bank-switched memory page $02 switched in for reading and
writing).

Handling break instructions

After the interrupt handler has set the memory configuration, it
checks to see if the interrupt was caused by a BRK (opcode $00)
instruction. (If it was, bit 4 of the processor status byte is a 1.) If so,
it jumps to a break-handling routine, which saves the state of the
computer at the time of the break as follows:

Information Location

Program counter (low byte) $3A
Program counter (high byte) $3B

Encoded memory state $44
Accumulator $45
X register $46
Y register $47
Status register $48

Finally, the break routine jumps to the routine whose address is
stored at $03F0 and $03F1.

Handling break instructions 337

338

Appendix E: Interrupts

The encoded memory state in location $44 can be interpreted as
follows:

Bit7=0

Bit 6 = 1 if 80Store and Page2 both on

Bit 5 = 1 if auxiliary RA