
Apple Ile Technical Reference
Manual

Includes ROM Listings for Memory Expandable lie

> $24-95 FPT
USA

Apple® Technical Library Titles
for the Apple Ile and Ile
The Official Publications from
Apple Computer, Inc.
Apple Ile and Apple Ile programmers, developers,
and enthusiasts will find a wealth of information
in the Apple Technical Library, an ongoing series of
comprehensive reference manuals. The first volumes
in the Library contained detailed information about
the Apple Ile and Apple Ile computers. They describe
the hardware, firmware, the ProDOS 8 operating sys
tem, and the Applesoft BASIC programming lan
guage found in Apple Ile and Ile computers.

These books, written and produced by Apple
Computer, Inc., provide definitive references for
those interested in getting the most out of their
Apple Ile or Ile.

Apple Technical Library Titles for the Apple Ile
and Ile include:

Apple Ile Technical Reference
Apple Ile Technical Reference
Applesoft Tutorial
Applesoft BASIC Programmer's Reference

Manual
ProDOS 8 Technical Reference
BASIC Programming with ProDOS
Apple Numerics Manual
ImageWriter II Technical Reference

Manual

Apple® II Apple Ile Technical
Reference Manual

• ~~

Addison-Wesley Publishing Company, Inc.
Reading, Massachusetts Menlo Park, California Don Mills, Ontario
Wokingham, England Amsterdam Bonn Sydney Singapore Tokyo
Madrid Bogota Santiago San Juan

ti APPLE COMPUTER, INC.

Copyright© 1984, 1986 by
Apple Computer, Inc.

All rights reserved. No part of
this publication may be
reproduced, stored in a
retrieval system, or
transmitted, in any form or by
any means, electronic,
mechanical, photocopying,
recording, or otherwise
without prior written pe~rnission
of Apple Computer, Inc.
Printed in the United States of
America.

Apple, the Apple logo,
ProDOS, and LaserWriter are
registered trademarks of Apple
Computer, Inc.

Macintosh is a trademark of
Apple Computer, Inc.

Microsoft is a registered trade
mark of Microsoft Corporation.

POSTSCRIPT is a trademark of
Adobe Systems Incorporated.

ITC Garamond, ITC Avant
Garde Gothic, and ITC Zapf
Dingbats are registered
trademarks of International
Typeface Corporation.

Simultaneously published in the
United States and Canada.

ISBN 0-201-17752-8
ABCD EFG HIJ-D0-89876
First printing, March 1987

WARRANTY INFORMATION

ALL IMPLIED W ARRANTIF.S ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABILITY AND
FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN
DURATION TO NINETY (90)
DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed
this manual, APPLE MAKES NO
WARRANTY OR REPRESENTA
TION, EITHER EXPRESS OR
IMPLIED, WITH RF.SPECT TO
THIS MANUAL, ITS QUALITY,
ACCURACY, MERCHANTABILITY
OR FITNF.SS FOR A PARTICuuR
PURPOSE. AS A RESULT, THIS
MANUAL IS SOLD "AS IS," AND
YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS
TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT
SPECIAL, INCIDENTAL, OR ,
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT
OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THEW ARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLU
SIVE AND IN UEU OF ALL
OTIIERS, ORAL OR WRITTEN
EXPRESS OR IMPLIED. No A~ple
dealer, agent, or employee is
authorized to make any modifica
tion, extension, or~addition to this
warranty.

Some states do no allow the exclu
sion or limitation of implied warran
ties or liability for incidental or
consequential damages, so the
above limitation or exclusion may
n?t apply to you. This warranty
gives you specific legal rights, and
you may also have other rights
which vary from state to state.

Contents

Figures and tables xiv

Pref ace About This Manual xxi

Contents of this manual xxi
The Apple Ile family xxiii

Identifying your Apple Ile xx111
The original Apple Ile xxiv
The UniDisk 3.5 Apple Ile xxiv
The memory expansion Apple Ile xxiv

Conventions used in this manual xxv

Chapter 1 Introduction l

The outside of the machine 2
The keyboard 3

Features 3
Special function keys 4
Cursor movement keys 4
Modifier keys 5
The 80/ 40 switch 5
The keyboard switch 6
Disk-use and power lights 7

The speaker 8
The built-in disk drive 8
The back panel 9

The inside of the machine 11
The internal voltage converter 11
The main logic board 12
The other circuit boards 15

iii

iv Contents

Chapter 2 Memory Organization and Control 17

The 65C02 microprocessor 18
Overview of the address space 20

Memory map and memory switching 20
Main RAM addresses ($0000-$BFFF and $DOOO-$FFFF) 22
Auxiliary RAM addresses ($0000-BFFF and $QOOO-$FFFF) 22
ROM addresses ($C100-$FFFF) 22
Hardware addresses ($COOO-$COFF) 23

Bank-switched memory 24
Page allocations 26

Page $00 (one-byte addresses) 26
Page $01 (the 65C02 stack) 26
Pages $DO-$FF (ROM and RAM) 26

Using bank selector switches 27
48K memory 36

Page allocations 36
Page $02 (the input buffer) 36
Page $03 (global storage and vectors) 36
Pages $04-$07 (text and low-resolution Page 1) 36
Pages $08-$0B (text and low-resolution Page 2) 38
Pages $08 (communication port buffers) 38
Pages $20-$3F (high-resolution Page 1) 38
Pages $40-$5F (high-resolution Page 2) 39

Using 48K memory switches 39
Transfers between main and auxiliary memory 42

Transferring data 42
Transferring control 43

Using display memory switches 44
The reset routine 49

The cold-start procedure (power on) 51
The warm-start procedure (Control-Reset) 51
Forced cold start (Open Apple-Control-Reset) 52
The reset vector 52

Chapter 3 Introduction to Apple lie 1/0 55

The standard I/0 links 56
Standard input features 58

RdKey subroutine 58
Keyln subroutine 58
GetLn subroutine 59
Escape codes with GetLn 60
Editing with GetLn 63

Cancel line 63
Backspace 63
Retype 63

Standard output features 64
COut subroutine 64
Control characters with COutl 65
Control characters with C3COutl 65
The stop-list feature 67
The text window 68
Normal, inverse, and flashing text 69

Primary character set display 70
Alternate character set display 70

Port I/ 0 71
Standard link entry points 71
Firmware protocol 72
Port I/0 space 73
Port ROM space 73
Expansion ROM space 74
Port screen hole RAM space 74

Interrupts 75

Chapter 4 Keyboard and Speaker 77

Keyboard input 78
Reading the keyboard 78
Monitor firmware support for keyboard input 82

Speaker output 82
Using the speaker 83
Monitor firmware support for speaker output 84

Chapter 5 Video Display Output 85

Video display specifications 87
Text modes 88

Text character sets 88
MouseText 90
40-column versus 80-column text 91

Graphics modes 94
Low-resolution graphics 94
High-resolution graphics 95
Double high-resolution graphics 97
Mixed-mode displays 98
Display pages 99
Display mode switching 101
Display page maps 105
Monitor support for video display output 112
I/0 firmware support for video display output 116

Contents v

vi Contents

Chapter 6 Block Device 1/0 119

Disk drive I/O 120
Startup 121

Cold start 121
Warm start 123

Memory expansion card I/0 123
The Smartport I/0 interface 123
Locating the Smartport 124
Issuing a call to the Smartport 125

Cautions 126
Descriptions of the Smartport calls 126

STATUS 128
Parameter descriptions 128
Possible errors 132

READ BLOCK 132
Parameter descriptions 133
Possible errors 133

WRITE BLOCK 134
Parameter descriptions 134
Possible errors 135

FORMAT 135
Parameter descriptions 135
Possible errors 136

CONTROL 136
Parameter descriptions 136
Possible errors 139

INIT 139
Parameter descriptions 140
Possible errors 140

OPEN 140
Parameter descriptions 140
Possible errors 141

CLOSE 141
Parameter descriptions 141
Possible errors 142

READ 142
Parameter descriptions 142
Possible errors 143

WRITE 143
Parameter descriptions 144
Possible errors 144
An example: issuing a Smartport call 145
Summary of commands and parameters 149
Summary of error codes 150

Chapter 7 Serial 1/0 Port 1 153

Using serial port 1 155
Characteristics of port 1 at startup 159
Hardware page locations for port 1 159
I/O firmware support for port 1 16o
Screen hole locations for port 1 160
Changing port 1 characteristics 161

Data format and baud rate 163
Carriage return and line feed 164
Sending special characters 165
Displaying output on the screen 165

Chapter 8 Serial 1/0 Port 2 167

Using serial port 2 169
Characteristics of port 2 at startup 173
Hardware page locations for port 2 173
I/ 0 firmware support for port 2 174
Screen hole locations for port 2 174
Changing port 2 characteristics 176

Data format and baud rate 177
Carriage return and line feed 179
Routing input and output 179

Half-duplex operation 180
Full-duplex operation 182
Terminal mode 184

Chapter 9 Mouse and Game Input 185

Mouse input 186
Mouse connector signals 187
Mouse operating modes 187

Transparent mode 187
Movement interrupt mode 187
Button interrupt mode 188
Movement/button interrupt mode 188
Vertical blanking active modes 188

Mouse soft switches 189
I/O firmware support for mouse input 191

Pascal support 195
BASIC and assembly-language support 195

Screen holes 196
Using the mouse as a hand controller 198

Contents vii

viii Contents

Game input 198
The hand controller connector signals 199

Switch inpurs (SwO and Swl) 200
Analog inputs (Pd!O and Pdll) 200

Monitor support for game input 201

Chapter 10 Using the Monitor 203

Invoking the Monitor 204
Syntax of Monitor commands 205
Monitor memory commands 205

Examining memory contents 206
Memory dump 206
Changing memory contents 208

Changing one byte 208
Changing consecutive locations 209

Moving data in memory 210
Comparing data in memory 211

Monitor register commands 212
Changing registers 213
Examining registers 213

Miscellaneous Monitor commands 213
Display inverse and normal 214
Back to BASIC 214
Redirecting input and output 215
Hexadecimal arithmetic 215

Advanced operations 216
Multiple-command lines 216
Filling memory 216
Repeating commands 217
Creating your own commands 218

Machine-language programs 219
Running a program 219
Disassembled programs 220

The STEP and TRACE commands 221
The Mini-Assembler 223

Starting the Mini-Assembler 223
Using the Mini-Assembler 224
Mini-Assembler instruction formats 226

Summary of Monitor commands 227
Examining memory 227
Changing the contents of memory 227
Moving and comparing 227
The Register command 228
Miscellaneous Monitor commands 228
Running and listing programs 229

Chapter 11 Hardware Implementation 231

Environmental specifications 232
Power requirements 233

The external power supply 233
The external power connector 234
The internal converter 234

Apple IIc overall block diagram 235
The 65C02 microprocessor 237

65C02 block diagram 237
65C02 timing 239

The custom integrated circuits 241
The memory management unit (MMU) 241
The input/output unit (IOU) 243
The timing generator (TMG) 245
The general logic unit (GLU) 245
The disk controller unit (IWM) 247

Memory addressing 248
ROM addressing 249
RAM addressing 251

Dynamic RAM refreshment 251
Dynamic RAM timing 252

The keyboard 254
The speaker 256

Volume control 256
Output jack 256

The video display 257
The video counters 257
Display memory addressing 258
Display address mapping 258
Video display modes 261

Text displays 263
Low-resolution display 266
High-resolution display 267
Double high-resolution display 269

Video output signals 270
Monitor output 270
Video expansion output 271

Disk I/0 273
Serial I/0 274

ACIA control register 278
ACIA command register 280
ACIA status register 281
ACIA transmit/ receive register 282

Contents ix

Mouse input 282
Hand controller input 287
Memory expansion card 291
Schematic diagrams 291

Appendix A The 65C02 Microprocessor 297

Differences between 6502 and 65C02 297
Differing cycle times 297
Differing instruction results 298

Data sheet 298

Appendix B Memory Map 308

Page $00 308
Page $03 312
Screen holes 312
The hardware page 316

Appendix C Important Firmware Locations 322

The tables 322
Port addresses 323
Other video and I/0 firmware addresses 326
Applesoft BASIC interpreter addresses 326
Monitor addresses 326

Appendix D Operating Systems and Languages 328

Operating systems 328
ProDOS 328
DOS 328
Pascal Operating System 329

Languages 329
Applesoft BASIC 329
Integer BASIC 330
Pascal 330
Fortran 330
Logo II 330

Appendix E Interrupts 331

x Contents

Introduction 331
What is an interrupt? 331
Interrupts on Apple II computers 332
Interrupt handling on the 65C02 333
The interrupt vector at $FFFE 333

The built-in interrupt handler 334
Saving the memory configuration 335
Managing main and auxiliary stacks 336

User's interrupt handler at $03FE 336
Handling break instructions 337
Sources of interrupts 338
Firmware handling of interrupts 339

Firmware for mouse and VBL 339
Firmware for keyboard interrupts 340

Using keyboard buffering firmware 341
Using keyboard interrupts through firmware 342

Using external interrupts through firmware 342
Firmware for serial interrupts 343

Using serial buffering transparently 343
Using serial interrupts through firmware 344
Transmitting -serial data 344
A loophole in the firmware 345

Bypassing the interrupt firmware 345
Using mouse interrupts without the firmware 345
Using ACIA interrupts without the firmware 347

Appendix F Apple II Series Differences 348

Overview 348
Type of processor 350
Machine indentification 350

Memory structure 351
Amount and address ranges of RAM 351
Amount and address ranges of ROM 351
Peripheral-card memory spaces 352
Hardware addresses 353

$COOO-SCOOF 353
$C010-SC01F 353
$C020-SC02F 354
$C030- SC03F 354
$C040- SC04F 354
$C050- SC05F 354
$C060-SC06F 355
$C070- SC07F 355
$C080-SC08F 356
$C090-SCOFF 3 56

Monitors 356

Contents xi

1/0 in general 357
DMA transfers 357
Slots versus ports 357
Interrupts 357

The keyboard 357
Keys, switches, and lights 358
Character sets 358

The speaker 359
The video display 359

Character sets 359
MouseText 360
Vertical blanking 360
Display modes 360

Disk 1/0 361
Serial 1/0 361

Serial ports versus serial cards 361
Serial 1/0 buffers 362

Mouse and hand controllers 363
Mouse input 363
Hand controller input and output 363

Cassette 1/0 364
Hardware 365

Power 365
Custom chips 365

Appendix G USA and International Models 366

xii Contents

Keyboard layouts and codes 366
USA standard (Sholes) keyboard 367
USA simplified (Dvorak) keyboard 370
ISO layout of USA keyboard 371
English keyboard 3 72
French keyboad 373
Canadian keyboard 375
German keyboard 376
Italian keyboard 3 78
Western Spanish keyboard 380

ASCII character sets 381
Certification 383

Product safety 383
Important safety instructions 383
Power supply specifications 383

Appendix H Conversion Tables 384

Bits and bytes 384
Hexadecimal and decimal 387
Hexadecimal and negative decimal 388
Peripheral identification numbers 389
Eight-bit code conversions 391

Appendix I Firmware Listings 396

Glossary 509

Bibliography 533

Index 535
Tell Apple Card

Contents xiii

xiv

Figures and tables

Chapter 1 Introduction

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4

Figure 1-5

Figure 1-6
Figure 1-7
Figure 1-8
Figure 1-9
Figure 1-10
Figure 1-11
Figure 1-12
Table 1-1

Apple Ile external features, front 2
Apple Ile external features, back 2
Front of Apple Ile with standard USA keyboard 3
USA standard (or Sholes) keyboard,
keyboard switch up 6
USA simplified (or Dvorak) keyboard,
keyboard switch down 7
Speaker, volume control, and audio output jack 8
Built-in disk drive 9
Back panel connectors 10
Inside the machine 11
Power supply and voltage converter 12
Original and UniDisk 3.5 Ile main logic board 13
Memory expansion Ile main logic board 14
Keyboard specifications

Chapter 2 Memory Organization and Control 17

Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8
Figure 2-9
Figure 2-10
Figure 2-11
Figure 2-12
Figure 2-13
Figure 2-14
Figure 2-15
Figure 2-16
Table 2-1

Internal model of the 65C02 microprocessor 19
Apple Ile memory map 21
Bank-switched memory map 25
Read ROM 29
Read ROM, write RAM, and use first $DO bank 30
Read ROM, write RAM, and use second $DO bank 31
Read RAM and use first $DO bank 32
Read RAM and use second $DO bank 33
Read and write RAM and use first $DO bank 34
Read and write RAM and use second $DO bank 35
48K memory map 37
48K RAM selection, split pairs 40
48K RAM selection, one side only 41
Page2 selections, 80Store on and HiRes off 47
Page2 selections, 80Store on and HiRes on 48
Reset routine flowchart 49
Bank selector switches 28

Chapter3

Table 2-2
Table 2-3
Table 2-4
Table 2-5
Table 2-6
Table 2-7

48K memory switches 39
48K RAM transfer routines 42
Parameters for MoveAux routine 43
Parameters for XFer routine 43
Display memory switches 45
Page $03 vectors 50

Introduction to Apple Ile 1/0 55

Table 3-1 Prompt characters 59
Table 3-2 Escape codes with GetLn 61
Table 3-3 Control characters with COutl 65
Table 3-4 Control characters with C3C0utl 66
Table 3-5 Text window memory locations 69
Table 3-6 Port characteristics 71
Table 3-7 Firmware protocol locations 72
Table 3-8 Port I/0 locations 73
Table 3-9 Port screen hole memory locations 74

Chapter 4 Keyboard and Speaker 77

Table 4-1 Keyboard input characteristics 79
Table 4-2 Keys and ASCII codes 80
Table 4-3 Speaker output characteristics 83

Chapter 5 Video Display Output 85

Figure 5-1
Figure 5-2

Figure 5-3
Figure 5-4
Figure 5-5
Figure 5-6
Figure 5-7
Figure 5-8
Figure 5-9
Table 5-1
Table 5-2
Table 5-3
Table 5-4
Table 5-5
Table 5-6
Table 5-7
Table 5-8

MouseText characters 91
40-column and 80-column text
with alternate character set 92
Text mode characteristics and switching 93
High-resolution display bits 96
Map of 40-column text display 107
Map of 80-column text display 108
Map of low-resolution graphics display 109
Map of high-resolution graphics display 110
Map of double high-resolution graphics display 111
Video output port characteristics 86
Video display specifications 87
Display character sets 89
Low-resolution graphics colors 94
High-resolution graphics colors 97
Double high-resolution graphics colors 99
Video display page locations 101
Display soft switches 102

Figures and tables xv

Table 5-9

Table 5-10
Table 5-11
Table 5-12
Table 5-13

Display modes supported by firmware,
including Applesoft 104
Other display modes 104
Monitor firmware routines 112
Port 3 firmware protocol table 116
Pascal video control functions 117

Chapter 6 Block Device 1/0 119

Figure 6-1
Table 6-1

Summary of Smartport calls 149
Disk I/ 0 port characteristics 120

Chapter 7 Serial 1/0 Port 1 153

Figure 7-1
Figure 7-2
Table 7-1
Table 7-2
Table 7-3
Table 7-4
Table 7-5

Diagram of port 1 characteristics storage 162
Data format 163
Serial port 1 characteristics 154
Printer port commands 155
Port 1 hardware page locations 159
Port 1 I/0 firmware protocol 160
Port 1 screen hole locations 160

Chapter 8 Serial 1/0 Port 2 167

Figure 8-1
Figure 8-2
Figure 8-3
Figure 8-4
Figure 8-5

Figure 8-6

Table 8-1
Table 8-2
Table 8-3
Table 8-4
Table 8-5

Diagram of port 2 characteristics storage 177
Devices in a typical communication setup 178
Effect of IN#2 180
Effect of IN#2 and T command, half duplex 181
Effect of IN#2 and T command,
full-duplex terminal 182
Effect of IN#2, PR#2, and T command,
full-duplex host 183
Serial port 2 characteristics 168
Modem port commands 170
Port 2 hardware page locations 174
Port 2 I/0 firmware protocol 174
Port 2 screen hole locations 175

Chapter 9 Mouse and Game Input 185

Table 9-1 Mouse input port characteristics 186
Table 9-2 Mouse soft switches 189
Table 9-3 Mouse firmware routines 193
Table 9-4 Mouse port I/ 0 firmware protocol 195
Table 9-5 Mouse port screen hole locations 197
Table 9-6 Game input characteristics 199

xvi Figures and tables

Chapter 10 Using the Monitor 203

Table 10-1 Mini-Assembler address formats 226

Chapter 11 Hardware Implementation 231

Figure 11-1 External power connector 23""4
Figure 11-2 Apple Ile block diagram 236
Figure 11-3 65C02 block diagram 238
Figure 11-4 65C02 timing signals 240
Figure 11-5 MMU pinouts 242
Figure 11-6 IOU pinouts 243
Figure 11-7 TMG pinouts 245
Figure 11-8 GLU pinouts 246
Figure 11-9 IWM pinouts 247
Figure 11-10 Memory bus organization 249
Figure 11-11 23128 ROM pinouts 249
Figure 11-12 2316 ROM pinouts 250
Figure 11-13 2364 pinouts 250
Figure 11-14 64K RAM pinouts 251
Figure 11-15 RAM timing signals 253
Figure 11-16 Keyboard circuit diagram 254
Figure 11-17 Keyboard signals 255
Figure 11-18 Speaker circuit diagram 256
Figure 11-19 Display address transformation 260
Figure 11-20 40-column text display memory 261
Figure 11-21 Video display circuits 262
Figure 11-22 7-MHz video timing signals: 40-column,

low-resolution, and high-resolution display 264
Figure 11-23 14-MHz video timing signals: 80-column

and double high-resolution display 265
Figure 11-24 Video output back panel connectors 270
Figure 11-25 Video expansion connector pinouts 272
Figure 11-26 Disk drive connector 274
Figure 11-27 Serial port circuits 275
Figure 11-28 6551 ACIA block diagram 276
Figure 11-29 6551 pinouts 277
Figure 11-30 Serial port connectors 278
Figure 11-31 ACIA control register 279
Figure 11-32 ACIA command register 280
Figure 11-33 ACIA status register 281
Figure 11-34 Sample mouse waveform 283
Figure 11-35 Mouse movement and direction waveforms 283
Figure 11-36 Mouse connector 284
Figure 11-37 Mouse circuits 285
Figure 11-38 Mouse button signals 286

Figures and tables xvii

Figure 11-39
Figure 11-40
Figure 11-41
Figure 11-42
Figure 11-43

Figure 11-44
Table 11-1
Table 11-2
Table 11-3
Table 11-4
Table 11-5
Table 11-6
Table 11-7
Table 11-8
Table 11-9
Table 11-10
Table 11-11
Table 11-12
Table 11-13
Table 11-14
Table 11-15
Table 11-16
Table 11-17
Table 11-18
Table 11-19
Table 11-20
Table 11-21
Table 11-22

Hand controller connector 287
How to connect switch inputs 288
Hand controller circuits 288
Hand controller signals 289
Memory expansion card connector
pinout diagram 291
Apple Ile schematic diagram 292
Environmental specifications 232
Power supply specifications 233
External power connector signals 234
Internal converter specifications 234
65C02 microprocessor specifications 239
65C02 timing signal descriptions 240
MMU signal descriptions 242
IOU signal descriptions 243
TMG signal descriptions 245
GLU signal descriptions 246
IWM signal descriptions 247
RAM address multiplexing 252
RAM timing signals 253
Display memory addressing 260
Memory address bits for display modes 260
Character-generator control signals 266
Video expansion connector signals 272
Disk drive connector signals 274
6551 signal descriptions 277
Serial port connector signals 278
Mouse connector signals 284
Hand controller connector signals 287

Appendix A The 65C02 Microprocessor 297

Table A-1 Cycle time differences 298

Appendix B Memory Map 308

Table B-1 Page $00 use 309
Table B-2 Page $03 use 312
Table B-3 Main memory screen hole allocations 313
Table B-4 Auxiliary memory screen hole allocations 315
Table B-5 Addresses $COOO-$C03F 316
Table B-6 Addresses $C040-$C05F 318
Table B-7 Addresses $C060-$C07F 319
Table B-8 Addresses $C080-$COAF 320
Table B-9 Addresses $COBO-$COFF 321

xviii Figures and tables

Appendix C Important Firmware Locations 322

Appendix E

Table C-1 Serial port 1 addresses 323
Table C-2 Serial port 2 addresses 324
Table C-3 Video firmware addresses 324
Table C-4 Mouse port addresses 325
Table C-5 Apple Ile enhanced video

and miscellaneous firmware 326
Table C-6 Apple Ile monitor entry points and vectors 326

Interrupts 331

Table E-1
Table E-2
Table E-3

Interrupt-handling sequence 335
Activating mouse interrupts 346
Reading mouse interrupts 346

Appendix F Apple II Series Differences 348

Figure F-1
Table F-1

Apple II, II Plus, and Ile hand controller signals 364
Apple II series indentification bytes 350

Appendix G USA and International Models 366

Figure G-1

Figure G-2

Figure G-3

Figure G-4
Figure G-5
Figure G-6
Figure G-7
Figure G-8
Figure G-9

Table G-1
Table G-2

Table G-3

Table G-4

Table G-5

USA standard (or Sholes) keyboard,
keyboard switch up 368
USA simplified (or Dvorak) keyboard,
keyboard switch down 370
ISO version of USA standard keyboard,
keyboard switch up 371
English keyboard, keyboard switch up 372
French keyboard, keyboard switch down 373
Canadian keyboard, keyboard switch down 375
German keyboard, keyboard switch down 376
Italian keyboard, keyboard switch down 378
Western Spanish keyboard, keyboard
switch down 380
Keys and ASCII codes 368
English keyboard code differences
from Table G-1 372
French keyboard code differences
from Table G-1 374
Canadian keyboard code differences
from Table G-1 375
German keyboard code differences
from Table G-1 377

Figures and tables xix

Table G-6

Table G-7

Table G-8
Table G-9

Italian keyboard code differences
from Table G-1 379
Western Spanish keyboard code differences
from Table G-1 381
ASCII code equivalents 381
50-Hz power supply specifications 383

Appendix H Conversion Tables 384

Figure H-1 Bits, nibbles, and bytes 386
Table H-1 What a bit can represent 385
Table H-2 Values represented by a nibble 386
Table H-3 Hexadecimal/decimal conversion 387
Table H-4 Hexadecimal to negative decimal conversion 388
Table H-5 PIN numbers 390
Table H-6 Control characters, high bit off 392
Table H-7 Special characters, high bit off 393
Table H-8 Uppercase characters, high bit off 394
Table H-9 Lowercase characters, high bit off 395

Appendix I Firmware Listings 396

Table 1-1 Main side ROM map 397
Table 1-2 Auxiliary side ROM map 398

xx Figures and tables

Preface

About This Manual

This is the reference manual for the Apple® Ile personal computer.
It contains detailed descriptions of all the hardware and firmware
that make up the Apple Ile and provides the technical information
that peripheral-card designers and programmers need.

The information in this manual is aimed at assembly-language
programmers and hardware designers, but others interested in the
internal operation of the Apple Ile can also benefit from reading it.

This manual tells you how the Apple Ile works, but not how to use it.
If you need to know how to set up and use your Apple Ile, read the
Apple Ile Owner's Manual.

This manual describes three versions of the Apple Ile:

o the original Apple Ile

o the Apple Ile that supports the UniDisk™ 3.5 drive

o the Apple Ile that supports the Memory Expansion Card

More information on the various versions of the Apple Ile is
provided under "The Apple Ile Family," later in this Preface.

Contents of this manual
The Apple Ile is presented in this manual from the outside in.

Chapter 1 introduces the Apple Ile, including external controls,
connectors, and the main internal components.

Chapter 2 introduces the 65C02 microprocessor and its directly
addressable memory space.

Chapter 3 introduces the 1/0 characteristics of the Apple Ile.
Chapters 4 and 9 cover specific areas of the I/0 interface.

xxi

Chapter 4 describes the keyboard and speaker.

Chapter 5 describes the video display.

Chapter 6 descnbes block device I/0, including the Smartport
firmware interface.

Chapter 7 descnbes serial port 1.

Chapter 8 describes serial port 2.

Chapter 9 describes the mouse/game paddle port.

Chapter 10 describes the Apple He's built-in Monitor firmware. The
Monitor helps you write, disassemble, and debug machine
language programs, as well as providing you with a means to look at
and manipulate the contents of main memory.

Chapter 11 describes the Apple Ile hardware in detail.

Appendix A describes the 65C02 microprocessor in detail,
including the differences between it and the 6502 microprocessor
used on early-model Apple II's. Most of this appendix is a reprint of
the manufacturer's data sheet for the 65C02.

Appendix B contains a memory map of the Apple Ile main
memory. Detailed maps are provided for memory pages $00 and
$03, the screen holes, and the hardware page.

Appendix C lists the Apple Ile firmware entry points, including
those for the 1/0 fmnware and the Monitor fmnware.

Appendix D describes some of the operating systems and languages
supported by Apple Computer for the Apple Ile.

Appendix E descnbes the operation of the Apple Ile interrupt
handler fmnware and how to use it in your programs.

Appendix F outlines the differences and similarities between the
diverse members of the Apple II family of computers.

Appendix G describes the various international versions of the
Apple Ile keyboard and character set Power and safety information
for international versions of the Apple Ile is also included in this
appendix.

Appendix H contains tables to aid you in code and number base
conversions.

Appendix I contains the firmware listing for the new version of the
Apple Ile and information on obtaining listings for the original and
UniDisk 3.5 ROMs.

The Glossary defines many of the technical terms used in this
manual.

xxl I Preface: About This Manual

The Bibliography lists articles and books with additional
information about the Apple Ile.

Finally, after the index at the back of this manual, you'll find the Tell
Apple Card; please take a minute to fill this card out and mail it back
to us. Your experience with this and other Apple manuals can help
us plan new reference materials.

The Apple lie family
Changes have been made to the Apple Ile since the original version
was introduced. The first change was made in order to support the
UniDisk 3.5 external drive, and included a set of ROM-based
machine-language routines called the Protocol Converter. The
latest version incorporates all the UniDisk 3.5 upgrade features, a
new version of the Protocol Converter called the Smartport, and
support for an optional memory expansion card. All of these
versions are described in this manual. Where there are differences
between the various versions of the Apple Ile, they will be called out
in the manual. For the sake of convenience, the various versions of
the Apple Ile are identified by the features they support, such as
memory expansion for the newest Ile and UniDisk 3.5 for the
version that introduced the UniDisk 3.5 drive support. Unless
specified, all versions of the Apple Ile operate identically.

Important Smartport Is merely a new name for the Protocol Converter; all
the specifications for the Smartport apply to the Protocol
Converter, and vice versa. ·

Identifying your Apple lie

There are basically three versions of the Apple Ile:

o the original Apple Ile

o the UniDisk 3.5 Apple Ile

o the memory expansion Apple Ile

You can tell which Apple Ile you have by checking the value of the
ID byte at ROM location 64447 ($FBBF in hexadecimal). The value
of this byte is 255 ($FF) in the original Apple Ile, 0 ($00) in the
UniDisk 3.5 version, and 3 ($03) in the memory expansion version.

•!• Checking the ID byte: You can check the value of the ID byte
from Applesoft by typing PRINT PEEK (6 4 4 4 7) .

The Apple lie family xxiii

The original Apple lie

The original Apple Ile is the oldest member of the Ile family. It has
the following features:

o the 65C02 microprocessor

D 128K of RAM

The UniDisk 3.5 Apple lie

The Apple Ile that introduced support for the UniDisk 3.5 drive is
identified in this manual as the UniDisk 3.5 version. It includes the
following changes from the original Apple Ile:

o the Protocol Converter, to support the UniDisk 3.5 external disk
drive

o a 256K ROM IC to replace the 128K ROM

o some new serial port commands

o the Mini-Assembler

o two new Monitor commands (STEP and TRACE)

o built-in diagnostics

The UniDisk 3.5 Apple Ile also includes improved interrupt handler
features and new external drive startup procedures.

The memory expansion Apple lie

The Apple Ile that supports an optional memory expansion card
supports all the features of the UniDisk 3.5 version. It includes the
following changes from the UniDisk 3.5 Ile:

o an internal connector to support an optional memory expansion
card

o 4 64Kx4 RAM ICs to replace the 16 64Kxl ICs

The Apple Ile that supports the memory expansion option also
reorganizes the 1/0 port ("slot") entry points in the firmware. The
mouse, located at port 4 in the original and UniDisk 3.5 versions, is
now at port 7. The memory expansion card uses port 4 in the new
Apple Ile. What this means is that all the mouse 1/0 entry point
addresses have been changed from $C4XX to $C7XX

xxiv Preface: About This Manual

To avoid confusion and maintain compatibility with previous
versions, the text and tables in this book still show the values used
for the original and UniDisk 3. 5 versions of the Apple Ile. However,
a statement reminding you of the change appears near affected
tables.

Remember that the Smartport and the Protocol Converter are
the same thing.

Conventions used in this manual
Special text in this manual is set off in several different ways, as
shown in these examples.

Warning Important warnings look like this. These flag potential danger to
the Apple lie. its software. or you.

Important Text set off like this is less urgent or threatening than text In a
Warning box. but still of a critical nature.

Original lie Text set off like this applies only to the original version of the
Apple lie.

UniDisk 3.5 Text set off like this applies only to the UniDisk 3.5 version of the
Apple lie.

Memory expansion Text set off like this applies only to the memory expansion
version of the Apple lie.

•:• By the way: Information that is useful but incidental to the text
is set off like this. You may want to skip over such information
and return to it later.

Terms that appear in boldface in the text are defined in the
Glossary or a marginal gloss.

Computer voice is used to indicate text that should be identical
to your screen display or printout.

Conventions used in this manual xxv

Chapter 1

Introduction

This chapter introduces you to the working parts of the Apple Ile by
briefly describing the major components of the computer-both
internal and external hardware and firmware-and telling you

. where in the manual to fmd out more about them.

The outside of the machine
This section briefly describes the Apple He's keyboard, controls,
indicators, and expansion connectors.

The Apple Ile comes equipped with a keyboard, speaker (with audio
output jack and volume control), built-in disk drive, external power
supply, and internal voltage converter. It also has built-in interfaces
with external connectors for a serial printer, video monitor, special
video display adapters, modem, mouse, and game controllers.
These external connectors allow you to plug in accessory equipment
without having to go inside the machine to use expansion slots like
those in the Apple Ile.

Figure 1-1 shows the front and right side of an Apple Ile, and
Figure 1-2 shows the back and left side.

Keyboard Disk Drive
(See Figs. 1-4 and 1-5) (See Fig. 1-7)

Back Panel
(See Fig. 1-8)

Speaker
Volume Control

(See Fig. 1-6)

Figure 1-1
Apple lie external features,
front

2 Chapter 1: Introduction

Figure 1-2
Apple lie external features,
back

ASCII stands for American
Standard Code for Information
Interchange. Table 4-2 lists the
ASCII character encoding for
the standard and simplified USA
keyboards. Appendix G lists the
encoding for International
keyboards.

Reset Switch

80/40-Column Switch

Keyboard Switch

The keyboard
The Apple He's primary input device is the keyboard, shown in
Figure 1-3. The keyboard has a 63-key typewriter layout with both
uppercase and lowercase characters and can generate all 128
standard ASCII characters. A reset key, 80/40-coJumn display
selector switch, keyboard layout selector switch, disk-use light, and
power light are also located on the front of the computer.

r111~r,r11 1111r1111
£/

Disk-Use Light Power Light

Figure 1-3
Front of Apple lie with standard USA keyboard

Table 1-1 lists the characteristics of all Apple Ile keyboards and
front panels.

Features

The Apple Ile keyboard has automatic repeat on all character keys.
This means that if you hold the key down longer than about a
second, the character it generates repeats until you let up the key. It
also has two-key rollover, which means if you press a key before
releasing the one you pressed before it, the second character enters
the computer the same as though you had released the previous key
first. (This is important for fast touch-typists.)

The outside of the machine 3

The Open Apple and Solid Apple
keys are connected to 1-bit
addresses in memory. described
in Chapter 9.

Chapter 2 describes the results
of the various reset procedures.

Table 1-1
Keyboard specifications

Number of keys
Character encoding
Number of codes
Features
Special function keys
Cursor movement keys

Modifier keys
Front-panel switches
Front-panel lights

Special function keys

63
ASCII
128
Automatic ·repeat, tw0-key rollover
Reset, Open Apple, Solid Apple,
Left Arrow, Right Arrow, Down Arrow,
Up Arrow, Return, Delete, Tab
Control, Shift, Caps Lock, Escape
80/40 switch, keyboard switch
Power light, disk-use light

The Apple Ile keyboard has three special function keys: Reset, and
two keys marked with apples-one outlined (Open Apple) and one
filled in (Solid Apple).

Reset has a direct line to the 65C02 microprocessor's RESET signal
line (see Chapter 11): holding down Control while pressing Reset
causes the Apple Ile to restart processing with an internal firmware
program that puts the machine in a known state (see Chapter 2).

You can restart the Apple Ile without turning the power off and back
on again, by holding down both Control and Open Apple while
pressing Reset. Restarting this way is less stressful to the Apple He's
components than normal poweru p.

Cursor movement keys

The Apple Ile keyboard has four cursor movement keys with arrows
marked on them: left, right, down, and up. Three other keys can
also cause cursor movements: Return, Delete, and Tab. All seven of
these keys generate ASCII control characters (see Table 4-2). It is up
to the operating system or application program to interpret and act
on the control codes that these keys generate.

4 Chapter 1 : Introduction

The Monitor Is a built-In program
that performs some of the basic
activities of the computer, such
as retrieving and storing key
codes as they come in, and
clearing or updating the display
screen.

Modifier keys

Three special keys-Control, Shift, and Caps Lock-generate no
codes when pressed by themselves, but change the codes generated
by other keys they are pressed in combination with. A fourth key,
Escape, generates a nonprinting control code that causes the
Monitor to interpret certain subsequent keystrokes in a mqdified
way.

o Control, when pressed in combination with letter keys or certain
other keys, produces ASCII control characters. Most of the
control characters are invisible most of the time.

o Shift works the same on the Apple Ile as on an ordinary
typewriter: it selects uppercase letters and the upper characters
on the keys.

o Caps Lock, in its down position, changes the letter keys to
uppercase, but does not affect other keys.

o Escape is not a modifier key in the same sense as Control and
Shift: you do not hold it down while pressing other keys. Rather,
you press Escape and it generates the ASCII escape (ESC) control
character (key code $1B-see Table 4-2). When the Escape key is
pressed, many programs-including the built-in Monitor
program-then interpret other specific keys as designating an
escape sequence.

The 80/40 switch

The 80/40 switch lets you specify whether a program should display
information in 40 or 80 columns per line. The switch indicates 40-
column display when in its down position, and 80-column display
when in its up position.

Important Not all programs check this switch. Even programs that do
check the switch may do so only when the program first starts
up. If that is the case, changing the switch position while the
program Is running will have no effect on the program's display.
(See Table 4-1.)

The outside of the machine 5

/fao/40 /faeyboard

I @ # $
esc ' 2 3 4

tab a w E R

control A s D

shift z x c
-caps
\ 0 lock

Figure 1-4

The keyboard switch

You use the keyboard switch to select for use one of the two keyboard
layouts and screen character sets built into your Apple Ile. On USA
versions of the Apple Ile, you select the standard Sholes keyboard
layout (Figure 1-4) with the ·switch in the up position, and the
Dvorak simplified layout (Figure 1-5) witllthe swit-ch in the down
position.

If you normally use the Dvorak keyboard layout, you can gentlypry
up the keys from the keyboard and rearrange and replace them in
their Dvorak positions.

% /\ & * () - +
5 6 7 8 g 0 - = delete

{ } I
T y u I 0 p [1 \

: II

F G H J K L : I return

< > ?
v B N M I shift

• ~-· ·-7 {, t

USA standard (or Sholes) keyboard, keyboard switch up

6 Chapter 1 : Introduction

§a0/40 /Jeyboard

I @ # $ % /\ & * () ~'f:~~->~ '~'-l}.'f!/
esc I 2 3 4 5 6 7 8 g 0 v1 .11 delete

J1t
lt ~ > ~} ~ · 11:~~::~~ I

tab f p y f G c R L \

-
control A 0 E u I D H T N s - return

shift
I ".~
I}: " D J K x B M w v z shift

..:.
N

caps
I 0 • ~ 1' lock ~ .. ---;>

Figure 1-5
USA simplified (or Dvorak) keyboard, keyboard switch down (shaded characters may be in
different positions on some models)

Appendix G illustrates the
keyboard layouts for both
keyboard switch positions on
several international versions of
the Apple lie.

On international models, the keycaps indicate the character
positions for the local keyboard layout, which is selected when the
keyboard switch is down. When up, the keyboard switch selects the
USA standard characters and key layout.

Disk-use and power lights

The red disk-use light glows whenever the built-in disk drive's motor
is switched on.

The green power light glows when the Apple Ile is turned on and
normal power is present at the Apple Ilc's internal power supply.

Warning If the power light flashes on and off, turn off the computer
immediately. Find out what caused the condition (such as a
brownout or short circuit) and fix the problem before turning
the computer on again. Above all , do not use the disk drive
when the power light is flashing; this may damage the
computer.

The outside of the machine 7

The way programs control the
speaker Is described under
·speaker Output· in Chapter 4.

The speaker

The Apple Ile has a speaker in the bottom of the case, as shown in
Figure 1-6. The speaker lets Apple Ile programs produce a variety of
sounds. There is also a volume control on the left side of the
Apple Ile case, and a jack for connec;ting headphones or an
external speaker. The jack accepts eithei°t>he-charrnel (monaural)
or two-channel (stereo) plugs, although speaker output is monaural
only. Inserting a plug disconnects the built-in speaker

19-----~"---=r-- Volume Control Knob

Figure 1-6

Speaker (Inside)

---- Audio Output Jack

Speaker, volume control, and audio output jack

The built-in disk drive

The Apple He's built-in disk drive (Figure 1-7) is fully compatible
with the Apple Disk Ile that reads and writes 5.25-inch single-sided
35-track disks. The drive door is on the right side of the Apple Ile
case.

8 Chapter l : Introduction

Disk Drive.Door

Figure 1-7
Built-in disk drive

The back panel
The back panel of the Apple Ile (Figure 1-8) has seven connectors
and a main power switch. From left to right they are

o a 9-pin D-type miniature connector for connecting hand
controllers, a mouse, a joystick, or some other device (see
Chapters 9 and 11)

o a 5-pin DIN connector for serial input and output (port 2;
normally for a modem) (see Chapters 7 and 11)

o a 15-pin D-type connector for video expansion (see Chapter 11)

o an RCA-type jack for a video monitor (see Chapter 11)

o a 19-pin D-type connector for connecting one or more external
devices, such as intelligent disk drives (see Chapters 6 and 11)

o another 5-pin DIN connector for serial input and output (port 1;
normally for a printer or plotter) (see Chapters 8 and 11)

o a special 7-pin DIN connector for power input (see Chapter 11)

Before attaching cables to the Apple Ile back panel connectors, be
sure to move the handle until it clicks into position for propping up
the computer. The handle should be down whenever the computer
is running so that it can maintain proper cooling airflow.

The installation manuals for external devices contain instructions
for connecting them to the Apple Ile.

The outside of the machine 9

Mouse and Hand
Control Connector

(See Figs. 11-37
and 11-42)

Serial Port 2 Video Expansion Handle Serial Port 1
Connector

(See Fig. 11-30)

Power
Switch Connector Connector

(See Fig. 11-30) (See Fig. 11-25)

Figure 1-8
Back panel connectors

l 0 Chapter l : Introduction

Video Output
Connector

(See Fig. 11-24)

External
Disk Drive
Connector

(See Fig. 11-26)

External Power
Connector

(See Fig. 11-1)

Voltage
Converter

Built-in
Disk Drive

Main Logic Board
(See Figure 1-11)

Speaker

(underneath)

Complete specifications of the
Apple lie power supply and
voltage converter appear in
Chapter 11.

The inside of the machine
Figure 1-9 shows the main components inside the Apple Ile
computer.

Figure 1-9
Inside the machine

The internal voltage converter

The built-in voltage converter operates from a 12 to 15 VDC input
source, such as provided by the external power supply furnished
with the Apple Ile (Figure 1-10). The voltage converter provides
power for the logic board, built-in disk drive, one external disk
drive, and the I/0 signals available at the back panel.

The inside of the machine 11

Internal Voltage Converter

Power Switch

Figure 1-10
Power supply and voltage converter

The voltage converter produces three different voltages: +5V,
+12V, and -12V. (Minus 5V, needed by some components in the
Apple Ile, is derived from -12V on the main logic board.) It is a
high-efficiency switching converter that protects itself and the rest
of the Apple Ile against short circuits and other electrical mishaps.

The main logic board
The main logic board, which is mounted flat in the bottom of the
Apple He's case, has almost all the electronic parts of the computer
attached to it.

12 Chapter 1: Introduction

Firmware is program code that is
stored in ROM. It can be read
and executed, but not changed.

Character Generator ROM

IWM

TMG

GLU

Auxiliary RAM

Main RAM

IOU

MMU

Keyboard ROM

Figure 1-11 shows the main logic board and the most important
integrated circuits (ICs) in the Apple Ile. They are the CPU (central
processing unit), RAM (random-access memory), ROM (read
only memory) ICs for keyboard encoding, display character
generation, and firmware, and the five custom ICs.

The processor is a 65C02 microprocessor. The 9~~2 is a ~MOS
version of the 6502 used in other members of the Apple II family. It
is an 8-bit microprocessor with a 16-bit address bus. In the
Apple Ile, the 65C02 runs at 1 MHz and performs up to 500,000 8-bit
operations per second.

65C02 Microprocessor- -+ll!f"Sii

Firmware ROM

Figure 1-11
Original and UniDisk 3.5 lie main logic board

The inside of the machine 13

The Applesoft language
interpreter Is described In the
Applesoft Tutorial and the
Applesoft BASIC Programmer's
Reference Manual.

Figure 1-12
Memory expansion lie main logic board

The keyboard is scanned by an IC that generates matrix values for a
ROM. The value of the ASCII code supplied by the ROM is latched at
a specified memory location and is readable by programs.

The character generator ROM converts ASCII character values to a
form that the video display can use.

The other ROM contains the Monitor, the Applesoft BASIC
interpreter, enhanced video firmware, and other input/ output
firmware. The firmware that this ROM contains is described
throughout this manual.

14 Chapter 1 : Introduction

For more on memory addressing.
see Chapter 2.

See Chapters 3 through 9.

Chapter 11 discusses the
functions of these Integrated
circuits In some detail.

Five of the large ICs on the main logic board are custom-made for
the Apple Ile:

o The memory management unit (MMU) contains most of the
logic that controls memory addressing in the Apple Ile.

o The input/output unit (IOU) contains most of the logic that
controls the built-in input and output features of the Apple Ile.

o The timing generator(TMG) generates all the system and I/0
clock and timing signals from a 14-MHz oscillator.

o The general logic unit (GLU) performs the remaining required
logic functions. ·

o The dtsk controller unit, also known as the Integrated Woz
Machine (IWM), is a single-chip version of the Apple Disk II
controller card. It controls the built-in and external disk drives
connected to the Apple Ile.

The other circuit boards

The Apple Ile contains other circuit boards that serve special
purposes: a motor-speed control and read/write logic board for the
disk drive, and a matrix board for detecting the position of keys
pressed. This manual does not discuss these circuit boards.

Warning Adjustment of disk drive speed must be done by an authorized
Apple SeNlce Center. Do not attempt to adjust the speed of
your built-In disk drive. If you do. you may damage it and you
will void your warranty.

The Inside of the machine 15

Chapter 2

Memory
Organization
and Control

17

Each of the other registers holds
eight bits Cone byte). so the
65C02 is called an 8-bit
processor.

Appendix A lists the instructions
the 65C02 can carry out. their
use. and their effects on the
registers . For further
information. consult the
pertinent books listed in the
Bibliography.

This chapter introduces the Apple He's processor, the 65C02, and
the memory ranges and locations in the Apple Ile that have been set
aside for special purposes. The last section of this chapter describes
the reset routines, which restore the computer to a known state.

The 65C02 microprocessor
The 65C02 is a general-purpose 8-bit CMOS microprocessor similar
in operation to the 6502 used in other members of the Apple II
family of computers.

Figure 2-1 is a model of the 65C02 microprocessor's register
organization. Registers are fast-acting built-in storage areas where
the processor performs and keeps track of its work. The 65C02 has
one 16-bit register and five 8-bit registers.

The 16-bit register is called the program counter (PC). It specifies
the address in memory that contains the instruction the processor is
currently carrying out. A 16-bit register can specify any one of
65,536 memory addresses, and so the 65C02 is said to have an
address space of 65,536 locations.

The five 8-bit registers in the 65C02 are the following:

o The accumulator, or A register. The accumulator is like a desk
top where the processor performs mathematical and logical
operations on information.

o The index registers, X and Y. The processor uses these registers
to modify the address where information is to be found or
placed, and to pass information from one program to another.

o A stack pointer, or S register. The processor uses a 256-byte
region of memory-page $01-as an area to stack up bytes for
future use. The stack is empty when the computer is turned on.
Several 65C02 instructions either push (store) the contents of a
register onto the stack, or pull (retrieve) a byte from the stack and
place it in a register. The S register keeps track of the address of
the byte in the stack that is currently ready for use.

o A processor status register, or P register. Seven of the eight bits of
this register are used as flags to record the outcome of processor
activities, and can be checked by later instructions to determine
what has happened and what the processor should do next.

18 Chapter 2: Memory Organization and Control

..
AO

A1

A2

A3

A4

A5

A6

A7

Address
Bus

AS

A9 I
0
<(

A10 ~
i;

A11 £
ABH

A12

A13

A14

A15

Legend:

D • 8-Bitline

• 1-Bit Line

Figure 2-1

Register Section Control Section -
RES IRQ NMI

Index
Register

(Y)

Index
Register

(X)

Stack Pointer
Register

(S)

Instruct ion
Decode Timing

Control

PCL Clock
Generator

PCH Osci llator

Input Data
Latch(DL)

"-~~~~~~~~~~-+-+-+-+-+-4-+---~.-.oo

L-~~~~~~~~~~~-+-+-+-+-4-+ ~--i~D1
L_~~~~~~~~~~~-+-+-+--1--+ ~~~~02
L-~~~~~~~~~~~~~+-~-+---~~~ ~03
L-~~~~~~~~~~~~~~+-4-+---~~~~-.-04

L-~~~~~~~~~~~~~~--i-+---~~~~~~~os

c_~~~~~~~~~~~~~~--+_....~~~~~--J~D6

L_~~~~~~~~~~~~~~~ ~~~~~~--11-01

Internal model of the 65C02 microprocessor (copyright © 1982 by NCR Corporation;
used by permission)

ROY

SYNC

ML

<1>0(1n)

<1> 1(0ut)

<!>,(Out)

so
R/W

Data Bus

The 65C02 microprocessor 19

Soft switches are described
more fully under "Bank
Switched Memory· and "48K
Memory.·

There are two other ROMs in the
Apple lie: one to generate
characters corresponding to
keystrokes and another to
generate characters for display.
(See "The Keyboard" and "The
Video Display· in Chapter 9.)
However. these RO Ms are not
addressable by the
microprocessor.

Overview of the address space
The Apple He's 65C02 microprocessor can address 65,536 (64K)
memory locations. All the Apple Ilc's RAM, ROM, and input and
output (I/O) devices are accessed using addresses in this 64K
address range. Some functions have the same addresses-but not at
the same time. The Apple Ile controls its shared addresses by using
soft switches. A soft switch is a memory location that controls
some aspect of the computer's operation when it is accessed.

All input and output in the Apple Ile is memory mapped-that is,
specific memory addresses (all in the $CO page) are allocated to
each I/ 0 device. In this chapter, the 1/0 memory spaces are
described simply as areas of memory. For details of the built-in I/0
features and firmware, refer to the descriptions in Chapters 3
through 9.

A contiguous block of 256 address locations in the 65C02's address
range is called a page. A 1-byte address counter or 8-bit register can
specify 1 of 256 different locations. Thus, page $00 consists of
memory locations from 0 through 255 (hexadecimal $00 through
$FF); page $01 consists of locations 256 through 511 (hexadecimal
$0100 through $01FF); and so on. In this manual, all page numbers
are given in hexadecimal format.

•:• Note: The first two digits of a four-digit hexadecimal address are
the page number. There are 256 pages of 256 bytes each in the
address space. This kind of page is different from the display
areas in the Apple Ile, which are sometimes referred to as
Page 1 and Page 2 . In this manual, dollar signs ($)in addresses
signify that the addresses are in hexadecimal notation.

Memory map and memory switching
Figure 2-2 is a map of the Apple He's memory address space and
what the major blocks of addresses are used for. As you can see in
the figure, addresses $COOO through $COFF contain hardware only,
and addresses $C100 through $CFFF contain ROM only. At all
other addresses there are two to five blocks of RAM or ROM
locations. At any given time, only one block of RAM or ROM
occupies each set of addresses. As described later in this chapter,
soft switches in the hardware page control that blocks the processor
is currently using.

20 Chapter 2: Memory Organization and Control

$FFFF

$0000

$C100
$COOO

$0200
$0000

Figure 2-2

Hardware

Hardware
Page

Pages $00
and $01

Apple lie memory map

/"'

1

ROM Main RAM Auxiliary RAM

Monitor

Applesoft
BASIC

Interpreter

Bank 1 Bank 2 Bank 1 Bank 2

1/0 Firmware

Memory map and memory switching 21

Main RAM addresses ($0000-$BFFF
and $DOOO-$FFFF)

The area labeled Main RAM in Figure 2-2 is so called because some
or all of it is present in all models of the Apple II series of
computers. The Apple Ile has 64K bytes of main ~1\1.

Auxiliary RAM addresses ($0000-$BFFF
and $D000-$FFFF)
The Apple Ile has 64K of auxiliary RAM built in. Some or all of that
range of auxiliary memory is present in an Apple Ile with one of the
80-column text cards installed (see Appendix F), but there is no
auxiliary RAM in the Apple II or II Plus.

A range of addresses in auxiliary RAM cannot be used
simultaneously with the same range of addresses in main RAM; your
programs must use the soft switches described in this chapter to
select either main or auxiliary memory for any given range of
addresses.

ROM addresses ($C100-$FFFF)
ROM addresses contain the built-in Apple He firmware. Addresses
$C100 through $CFFF belong exclusively to ROM. Addresses $DOOO
through $FFFF are shared by ROM, main RAM, and auxiliary RAM;
the selection techniques are described later in this chapter.

The Apple He's built-in ROM pages $Cl through CF (addresses
$C100 through $CFFF) contain 1/0 firmware. The Apple Ile 1/ 0
firmware is roughly divided among the built-in 1/0 devices as
follows:

o Serial port 1 (RS-232 device) firmware entry points are on
page $Cl. Much, but not all, of the firmware for the port is in the
$Cl00 space.

o Serial port 2 (communication device) firmware entry points are
on page $C2. Much, but not all, of the firmware for the port is in
the $C100 space.

22 Chapter 2: Memory Organization and Control

The operation of the Applesoft
interpreter firmware is
described in the Applesoff
BASIC Programmer's Reference
Manual.

Chapters 3 through 9 describe
the Apple llc's input and output
locations. Appendix B lists these
locations in address order. rather
than by function.

Bit numbering in a byte is
explained in Appendix H.

o Video output firmware entry points are on page $C3; the
enhanced video firmware and miscellaneous 1/0 support
routines occupy pages $C8 through $CF. This is partly because
there are no slots 8 through F on the Apple Ile and because the
firmware takes up more than one page of firmware memory
space.

o Mouse firmware entry points are on page $C4 (page $C7 in the
memory expansion version).

o Block device 1/0 firmware entry points are on page $C6.

•:• Note: This correspondence of ports and entry points does not
imply that all of each port's firmware occupies a specific page.
The Apple Ile 1/0 port firmware space is allocated in a way that
provides the best possible performance in the available space.

The ROM address range of pages $DO through $FF contain the
Applesoft BASIC interpreter and the Monitor firmware, allocated as
follows :

o Pages $DO through $F7 (addresses $DOOO through $F7FF)
contain the Applesoft interpreter firmware.

o Pages $F8 through $FF (addresses $F800 through $FFFF) contain
the Monitor, described in Chapter 10. You can use some of the
built-in Monitor routines to make input and output procedures in
your assembly-language programs easier to write. These routines
are described in Chapters 3 through 9.

Hardware addresses ($COOO-$COFF)

The soft switches that the Apple Ile and your programs use to
control the Apple He's built-in input and output functions are all
found in the $CO memory page (addresses $COOO through $COFF).
In the same range of memory are the switches for selecting blocks of
memory throughout the address space. This chapter describes the
address space (memory) switches.

The hardware functions of the switches in this page fall into five
basic categories:

o Data tnputs. The only data input is location $COOO, where the
low-order seven bits (bits 6 through O) represent the keyboard
key just pressed. (These data are guaranteed valid only when
bit 7 = 1.)

o Flag tnputs. Most built-in input locations are single-bit flags in
the high-order (bit 7) position of their respective memory
addresses. Flags have only two values: on (greater than or equal
to 128 or $80) or off Oess than 128 or $80).

Memory map and memory switching 23

The switch, hand controller (analog) and button inputs, and the
keyboard strobe are examples of flag inputs. The locations for
reading soft-switch states are also of this type.

o Strobe outputs. The clear keyboard strobe (Chapter 4) and
paddle timer strobe (Chapter 9) outputs are controlled by
memory locations. If your program reads the contents of one of
these locations, then the function associated with that location
will be activated.

o Toggle switches. The Apple Ile has only one toggle switch: the
speaker switch. A toggle switch has only one address assigned to
it; each time you access it, it changes to its other state (on or off).

Reading the speaker toggle at location $C030 clicks the speaker
once. However, if you write to the speaker location, the
microprocessor activates the address bus twice during successive
clock cycles, causing the speaker toggle to end up in its original
state before the speaker cone can move. Therefore, you should
read, rather than write, to use this device.

The processor cannot read the on/off status of the speaker
switch.

o So.ft switches. Soft switches are two-position switches turned on
by accessing one address and turned off by accessing another
address. Most of these switches have a third address associated
with them for reading the state of the switch.

There are eight soft switches that select different combinations of
bank-switched memory. Four of these eight switches require that
your program read them twice in succession to activate them.

Bank-switched memory
The memory areas described in this section are called bank
switched memory (Figure 2-3) because so many banks (ranges) of
addresses-one bank of ROM and up to four banks of RAM-occupy
the same group of locations among the upper addresses of
memory. Pages $00 and $01, at the low end of memory, are
included here because the two sets of them-one in main RAM and
one in auxiliary RAM-are controlled by the same switches as the
high-address banks. The stack and zero page are switched this way
so that system software running in the bank-switched memory space
can maintain its own stack and zero page while it manipulates the
48K memory space.

24 Chapter 2: Memory Organization and Control

>-
0
E
Q)

:2
"O
Q)
.c
.8
·~

'1
"" c:
ell

ID

$FFFF

$F800

$F7FF

$EOOO

$DFFF

$0000

$CFFF

$C100

$BFFF

$0200
Pages$00 {
and $01 $0000

Figure 2-3

I
I

ROM

Monitor
Firmware

Applesoft
BASIC

Interpreter

I I
L ____ J

Bank-switched memory map

Main RAM Auxiliary RAM
.A

~ "

Bank 1 Bank 2 Bank 1 Bank 2

r-----, r----.,

Bank-switched memory 25

These memory banks are
controlled by the soft switches
described under "Using Bank
Selector Switches.·

Page allocations
Pages $00 and $01 are used by many of the 65C02 instructions. The
ROM and RAM addresses in bank-switched memory are usually
occupied by system software such as interpreters, compilers, and
operating systems.

Page $00 (one-byte addresses)

Several of the 65C02 microprocessor's addressing modes-for
example, indirect addressing-require the use of addresses in page
$00, or zero page. However, the Monitor, the interpreters, and the
operating systems all make extensive use of page $00, too. One way
to avoid conflicts is to use only those page-$00 locations not
already used by these other programs. But there is another way.

As you can see from Table B-1 in Appendix B, page $00 is pretty
well used up, except for a few bytes here and there. Rather than
trying to squeeze your data into an unused corner, you may prefer a
safer alternative: turn off interrupts, save the contents of part of
page $00, use that part, then restore the previous contents to page
$00, restore interrupts to their previous state, and then pass control
to another program.

Page $01 (the 65C02 stack)

The 65C02 microprocessor uses page $01 as its stack-a place where
it can store subroutine return addresses, in last-in, first-out
sequence. Programs can also use the stack for temporary storage of
registers (via push and pull instructions). However, programs
should use the stack carefully.

Pages $DO-$FF CROM and RAM)

The memory address space from locations $DOOO through $FFFF is
used for both ROM and RAM. The 12K bytes of ROM in this address
space contain the Monitor and the Applesoft BASIC interpreter.

There are 16K bytes of main RAM in this 12K space, with two banks
occupying the 4K of addresses from $DOOO through $DFFF. The
RAM is normally used for storing other languages such as Pascal, or
operating systems such as ProDOS®.

There are also 16K bytes of auxiliary RAM in this 12K space, again
with double occupancy in the address range $DOOO through $DFFF.

26 Chapter 2: Memory Organization and Control

Using bank selector switches
You switch banks of memory in the same way you switch other
functions in the Apple Ile: by using soft switches. These soft switches
do four things:

o select either RAM or ROM in this memory spare

o allow or inhibit (write-protect) writing to the RAM when RAM is
selected

o select the first or second 4K-byte bank of RAM in the address
space $DOOO through $DFFF

o select either main RAM or auxiliary RAM

Warning Do not use soft switches without careful planning. Careless
switching between RAM and ROM is almost certain to have
catastrophic effects on your program.

Table 2-1 shows the addresses of the soft switches for selecting all
allowed combinations of reading and writing in this memory space,
and the addresses of the locations to read the switch settings.
Figures 2-4 through 2-10 illustrate how to select the combinations
and what the resulting status of each switch is.

To make sure you do not inadvertently remove write protection
from bank-switched RAM, the four write-enable addresses require
that you read them twice in succession (indicated by RR in
Table 2-1) .

Because the AltZP switch shares the read keyboard address, you
must write (Win Table 2-1) to its locations to change the switch
setting.

To find out which way a switch is set, read the appropriate location
and then check bit 7 (shown as R7 in Table 2-1). If the bit is a 1, the
answer to the question given in the table is affirmative.

Note that there is no way to check whether write protection is on or
off.

Important You can't read one RAM bank and write to the other; If you
select either RAM bank for reading, you get that one for writing
as well. However. you can read ROM and write RAM
(Figures 2-5 and 2-6), which makes It easy to transfer firmware
to bank-switched RAM If you want to use It with a program
there.

Bank-switched memory 27

Table 2-1
Bank selector switches

Name Action Hex Dec Function

R $C080 49280 Read RAM; no write;
use $DOOO bank 2

RR $C081 49281 Read ROM; write RAM;
use$DOOO bank 2

R $C082 49282 Read ROM; no write;
use $DOOO bank 2

RR $C083 49283 Read and write RAM;
use $DOOO bank 2

R $C088 49288 Read RAM; no write;
use $DOOO bank 1

RR $C089 49289 Read ROM; write RAM;
use$DOOO bank 1

R $C08A 49290 Read ROM; no write;
use $DOOO bank 1

RR $C08B 49291 Read and write RAM;
use $DOOO bank 1

RdBnk2 R7 $C011 49169 Read whether $DOOO
bank 2 (1) or bank 1 (O)

Rd LC RAM R7 $C012 49170 Read RAM (1) or
ROM (0)

AltZP w $C008 49160 Off: Use main bank,
page $00 and page $01

AltZP w $C009 49161 On: Use auxiliary bank,
page $00 and page $01

RdAltZP R7 $C016 49174 Read whether
auxiliary (1) or
main (O) bank

28 Chapter 2: Memory Organization and Control

Select memory: Select memory:
W $COOS Turn off AltZP W $C009 Turn on AltZP
R $C082 Read ROM, use bank 2 • R $C082 Read ROM , use bank 2•

or R $C08A Read ROM, use bank 1 • or R $COBA Read ROM, use bank 1 •

ROM Main RAM Auxiliary RAM ROM Main RAM Auxiliary RAM
r---1

~
0
E
Cll
::?
"O
Cll
.c
~
·~
(/)

I
..><
c
<1l
co

Page$01 C
Page $00 C::

Legend: ~

~

Figure 2-4
Read ROM

I
I
I
I
I
I

Bank
1

~
Read resulting status:

Bank
2

I
I
I
I
I
I

Bank
1

~
R7 $C016 Read AltZP; bit 7 ~ 0
R7 $C011 •Read Bank2; bit 7 ~ 1 or O
R7 $C012 Read EnLCRAM; bit 7 ~ 0

Read memory D Inactive memory

Write memory R Read

Bank
2

r-----1

Bank
1

I
I
I
I
I
I

~

Bank
2

Bank
1

I
I
I
I
I
I

~
Read resulting status:

R7 $C016 Read AltZP; bit 7 ~ 1
R7 $CO 11 •Read Bank2; bit 7 ~ 1 or 0
R7 $C012 Read EnLCRAM; bit 7 ~ 0

R7 ~ Read, check bit 7 RR ~ Read twice in succession

w ~ write

Bank-switched memory 29

Select memory:

ROM
1----i

W $C008 Turn off AltZP
RR $C089

Main RAM

Bank
2

I
I
I
I
I
I

Auxiliary RAM

Bank Bank
1 2

I
I
I
I
I
I

Select memory:

ROM
r--1

W $C009 Turn on AltZP
RR $C089

Main RAM

Bank
1

I
I
I
I
I
I

Bank
2

I
I
I
I

I
Page$01 [
Page$00 [

I I - ~ ~
I I

t==j
Read resulting status: Read resulting status:

R7 $C016 Read AltZP; bit 7 ~ 0 R7 $C016 Read AltZP; bit 7 ~ 1
R7 $C011 Read Bank2; bit 7 ~ 0 R7 $C011 Read Bank2; bit 7 ~ 0
R7 $C012 Read EnLCRAM; bit 7 ~ 0 R7 $C012 Read EnLCRAM; bit 7 ~ 0

Legend: ~ Read memory D Inactive memory R7 ~ Read , check bit 7 RR = Read twice in succession

~ Write memory R Read W ~ Write

Figure 2-5
Read ROM, write RAM, and use first $DO bank

30 Chapter 2: Memory Organization and Control

Select memory:

ROM
r---1

W $COOS Turn off AltZP
RR $C081

I
I
I
I
I
I

Main RAM Auxiliary RAM

Bank
1

I
I
I
I
I
I

Bank
2

Select memory:

ROM ,-----,

W $C009 Turn on AltZP
RR $C081

Main RAM

Bank
1

I
I
I
I
I
I

I
I
I
I
I
I

Page$01 [
Page$00 C ~ ~ ~ ~

Read resulting status: Read resulting status:
R7 $CO 16 Read AltZP; bit 7 ~ 0 R7 $C016 ReadAltZP;bit7 ~ 1
R7 $C011 Read Bank2; bit 7 ~ 1 R7 $C011 Read Bank2; bit 7 ~ 1
R7 $C012 Re~d EnLCRAM; bit 7 ~ 0 R7 $C012 Read EnLCRAM; bit? ~ 0

Legend: ~ Read memory D Inactive memory R7 ~ Read, check bit 7 RR = Read twice in succession

~ Write memory R Read W ~ Write

Figure 2-6
Read ROM, write RAM, and use second $DO bank

Bank-switched memory 31

Select memory:

ROM
r-1

W $COOS Turn off AltZP
R $COBB

Main RAM

Bank
2

I
I
I
I
I
I

Auxiliary RAM

Bank Bank
1 2

I
I
I
I
I
I

Select memory:

ROM
r---1

W $C009 Turn on AltZP
R $COBB

Main RAM

Bank
1

I
I
I
I
I
I

Bank
2

I
I
I
I
I
I

Page$01 [

Page$00 [

I I - I I

~ 8 -Read result ing status: Read result ing status:
R7 $C016 Read AltZP; bit 7 = 0 R7 $C016 Read AltZP; bit 7 = 1
R7 $CO 11 Read Bank2; bit 7 = 0 R7 $C01 1 Read Bank2; bit 7 = 0
R7 $C012 Read EnLCRAM; bit 7 = 1 R7 $C012 Read EnLCRAM; bit 7 = 1

Legend: ~ Read memory D Inact ive memory R7 = Read, check bit 7 RR = Read twice in succession

~ Write memory R Read w = Write

Figure 2-7
Read RAM and use first $DO bank

32 Chapter 2: Memory Organization and Control

Select memory:
W $COOS
R $COBO

Turn off AltZP
Select memory:

W $C009
R $COBO

Turn on AltZP

ROM
r--1

Main RAM Auxiliary RAM ROM
r-----1

Main RAM Auxiliary RAM

Page$01 [
Page$00 [

Legend: ~

~

Figure 2-8

Bank
1

I I
I I
I I
I I
I I
I I
I I I I - t=j

Read resulting status:
R7 $C016 Read AltZP; bit 7 = 0
R7 $C0 11 Read Bank2; bit 7 = 1
R7 $C012 Read EnLCRAM; bit 7 = 1

Read memory D Inactive memory

Write memory R Read

Read RAM and use second SDO bank

Bank
2

Bank
1

I
I
I
I
I
I

~
Read resulting status:

Bank
2

I
I
I
I
I

~
R7 $C0 16 Read AltZP; bit 7 = 1
R7 $C011 Read Bank2; bit 7 = 1
R7 $C012 Read EnLCRAM; bit 7 = 1

R7 = Read , check bit 7 RR = Read twice in succession

W = Write

Bank-switched memory 33

Select memory:

ROM
r--1

W $COOS Turn off AltZP
RR $COBB

Main RAM

I
I
I
I
I
I

Auxiliary RAM

Bank Bank
1 2

I
I
I
I
I
I

Select memory:

ROM
r---1

W $C009 Turn on AltZP
RR $COBB

Main RAM

I
I
I
I
I
I

Bank
1

Bank
2

I
I
I
I
I
I

Page$01 [

Page$00 [

I I - ~ ~
I I

~
Read result ing status: Read resulting status:

R7 $C016 Read AltZP; bit 7 = 0 R7 $CO 16 Read AltZP; bit 7 = 1
R7 $C01 1 Read Bank2; bit 7 = 0 R7 $C01 1 Read Bank2; bit 7 = 0
R7 $C012 Read EnLCRAM; bit 7 = 1 R7 $C012 Read EnLCRAM; bit 7 = 1

Legend: ~ Read memory D Inactive memory R7 = Read, check bit 7 RR = Read twice in succession

~ Write memory R Read W = Write

Figure 2-9
Read and write RAM and use first $DO bank

34 Chapter 2: Memory Organization and Control

Select memory:
W $C008
RR $C083

Turn off AltZP
Select memory:

W $C009
RR $C083

Turn on AltZP

ROM
r---1

Main RAM Auxiliary RAM ROM
r----1

Main RAM

Page$01 C
Page$DOC

Legend: ~

~

Figure 2-10

Read resulting status:

Bank
1

R7 $C0 16 Read AltZP; bit 7 ~ 0
R7 $C011 Read Bank2; bit 7 ~ 1
R7 $C012 Read EnLCRAM; bit 7 ~ 1

Read memory D Inactive memory

Write memory R Read

Bank
2

Read and write RAM and use second $DO bank

Bank Bank
1 2

Read resulting status:
R7 $C016 Read AltZP; bit 7 ~ 1
R7 $C01 1 Read Bank2; bit 7 ~ 0
R7 $C012 Read EnLCRAM; bit 7 ~ 1

R7 ~ Read, check bit 7 RR ~ Read twice in succession

W ~ Write

Bank-switched memory 35

48K memory
The 48K memory space (actually, 47.SK) extends from location
$0200 to location $BFFF (Figure 2-11) in both main and auxiliary
RAM. The amount of storage available in this address space
depends on what language or operating system you are using, and
what video display needs your program has.

Page allocations
Most of the Apple Ilc's 48K RAM is available for storing your
programs and data. However, a few RAM pages are reserved for the
use of the Monitor firmware, the Applesoft BASIC interpreter, and
whatever video display you may select.

Important The system does not prevent your using these pages, but if you
do use them, you must be careful not to disturb the system
data they contain.

A buffer is any storage area set
aside for one program or device
to put information into and
another to take information out
of at a different time or rate.

Refer to Appendix D and to the
appropriate programmer and
reference manuals for operating
system use of page $03.

Global storage refers to an area
reserved for information that
programs use in common.
Vectors-the addresses of
special routines- are examples
of this kind of Information. See
"The Reset Routine· about the
global storage and vectors
found on page $03.

Page $02 (the input buff er)

The GetLn input routine uses page $02 as its keyboard-input buffer.
The size of this buffer (256 bytes) sets the maximum size of input
strings read by Applesoft or the Monitor. If you know that you won't
be typing any long input strings (more than, say, 30 characters),
you can store temporary data at the upper end of page $02.

Page $03 (global storage and vectors)

The Monitor and operating systems use parts of page $03 for global
storage and vectors. Table 2-7, later in this chapter, shows the
part of page $03 the built-in firmware uses.

Pages $04-$07 (text and low-resolution Page l)

The most often used display buffer is the text and low-resolution
graphics Page 1 (TLPl in Figure 2-11), which occupies main
memory pages $04 through $07. It is not usable for program and
data storage if you are using Monitor routines or Applesoft, or with
almost any other program that uses text or low-resolution display.

36 Chapter 2: Memory Organization and Control

Bank
Switched
Memory

$FFFF

$0000

{
$CFFF

ROM/HW
$COOO

High
Resolution

Pages

$BFFF

$6000
$5FFF

$4000
$3FFF

$2000
$1FFF

{

$0BFF
Text and $0800

Low-Resolution $07FF
Pages $0400

$0200

{
$01FF

Pages $00 and $01 $OOOO

Figure 2-11
48K memory map

Main RAM
r--------,
I I
I I
I I
I I
I I
1-----T ____ ..J
I I I
I I I
I I , ____ .,L ____ ,

I I
I I

HRP2

HRP1

TLP2

TLP1
::::::j
=1

I I
I I

L---------....1

Main Memory
Screen Holes

Auxiliary RAM
r---------,
I I
I I
I I
I I
I I
~----.-----l
I I !
I I I
~----..1.-----1
I I
I I

HRP2X

HRP1X

TLP2X

TLP1X =1
=1

I I
I I
.__ -- _____ ..J

Auxiliary Memory
Screen Holes

48K memory 37

Text and low-resolution Page lX (TIPlX) is an identical display
page occupying auxiliary memory pages $04 through $07. This pair
of text and low-resolution graphics pages are used together to
produce 80-column text display.

There are 128 locations in pages $04 through $07 (64 in main RAM,
see ·p0 rt Screen Hole RAM 64 in auxiliary RAM) that are not displayed on the screen. These
Space· in Chapter 3. locations are called screen holes.

Warning The screen holes are reserved for use by the built-in firmware.

For more on serial port 2. see
Chapter 8.

See Chapter 5.

Pages $08-$08 (text and low-resolution Page 2)

The second text and low-resolution graphics display buffer, TLP2,
occupies main memory pages $08 through $OB. Most programs do
not use Page 2 for displays, but TIP2 is there for display use if
required.

Text and low-resolution Page 2X (TIP2X) is an identical display
buffer occupying pages $08 through $OB in auxiliary memory.

Note that Apple Ile fumware does not provide a way to use the
second pair of text and low-resolution graphics pages for 80-
column text display.

Page $08 (communication port buffers)

Serial port 2 uses the first half of auxiliary memory page $08
(addresses $0800 through $087F) as a keyboard input buffer, and the
second half of the page (addresses $0880 through $08FF) as a serial
input buffer. These buffers increase the data transfer rates possible
with the serial communication port. Appendix E explains how to
use these features . If your program does not use this page for
buffers, it can use it as part of TIP2X.

Pages $20-$3F (high-resolution Page 1)

The primary high-resolution graphics display buffer, high
resolution Page 1 (HRPl), occupies the 32 memory pages from $20
through $3F Oocations $2000 through $3FFF). If your program
doesn't use high-resolution graphics, this area is usable for
programs or data.

High-resolution Page lX (HRPlX) is an identical display page
occupying auxiliary memory pages $20 through $3F.

The Apple Ile can display double high-resolution graphics by
interleaving HRPl and HRPlX.

38 Chapter 2: Memory Organization and Control

For more Information about the
display buffers. see Chapter 5.

For details. refer to "Using
Display Memory Switches.·

Pages $40-$5F (high-resolution Page 2)

High-resolution Page 2 occupies main memory pages $40
through $5F Oocations $4000 through $5FFF). Most programs use
this area for program or data storage, but it is also available as a
second high-resolution page.

High-resolution Page 2X (HRP2X) occupies auxiliary memory
pages $40 through $5F.

Apple Ile firmware provides high-resolution graphics routines for
HRP 1 and HRP2 only. Refer to the Applesojt BASIC Programmer's
Reference Manual.

Using 48K memory switches
Two switches select main or auxiliary RAM in the 48K memory
space: RAMRd determines which to use for reading, and RAMWrt
determines which to use for writing. When these switches are on,
they select auxiliary memory. When they are off, they select main
memory. (This discussion assumes that the 80Store switch, used to
control display memory, is off.)

Each switch has three locations assigned to it (Table 2-2): one to
turn it on, one to turn it off, and a third to read its state. Because the
memory locations for turning the switches on and off are shared
with keyboard reading functions, you must write to these addresses
to use them for memory switching. For each switch, you can read
bit 7 at its third location to check whether the switch is on or off. If
the switch is on, bit 7 is 1; if the switch is off, bit 7 is 0.

Table 2-2
48K memory switches

Name Action Hex Dec Function

RAMRd w $C002 49154 Off: Read main 48K RAM
RAMRd w $C003 49155 On: Read auxiliary 48K RAM
RdRAMRd R7 $C013 49171 Read whether main (O) or

aux. (1)
RAMWrt w $C004 49156 Off: Write to main 48K RAM
RAMWrt w $C005 49157 On: Write to auxiliary 48K

RAM
RdRAMWrt R7 $C014 49172 Read whether main (O) or

aux. (1)

Note: 80Store must be off to switch all memory in this range, including
display memory (Table 2-6).

48K memory 39

Select memory:
W $COOO
W $C002
W $C005

Main RAM

.-----.,
I I
1---.---l
I I I
l---1..--l
I I

Turn off 80Store
Read from main memory
Write to auxiliary memory

Auxiliary RAM
I
,------,
I I
1---.---1
I I I
f---'---l
I I

"""'....,,.rn,,._..... TLP2

~~~I' TLP1 
L----.J 

Read resulting status: 
R7 $C018 Read 80Store; bit 7 = 0 
R7 $C013 Read RAMRd; bit 7 = 0 
R7 $C014 Read RAMWrt; bit 7 = 1 

Legend: ~ Read memory D 
~ Write memory R 

Figure 2-12 
48K RAM selection, split pairs 

Select memory: 
W $COOO 
W $C003 
W $C004 

Main RAM 
I I 
.-----., 
I ·1 
1--..,.---1 
I I I 
1--~--1 
I I 

Turn off 80Store 
Read from auxiliary memory 
Write to main memory 

TLP2 

TLP1 

Auxiliary RAM 
I I 
... ----, 
~--.---l 
I I I 
1--...J.._--I 
I I 

L----.J 

Read resulting status: 
R7 $C018 Read 80Store; bit 7 = 0 
R7 $C013 Read RAMRd; bit 7 = 1 
R7 $C014 Read RAMWrt; bit 7 = 0 

Inactive memory R7 = Read, check bit 7 

Read W = Write 

40 Chapter 2: Memory Organization and Control 



Select memory: 
W $COOO 
W $C002 
W $C004 

Main RAM 
I I 
r-----., 
I I 
1---,---1 
I I I 
1----'---4 
I I 

Turn off 80Store 
Read from main memory 
Write to main memory 

Auxiliary RAM 
I I 
r------, 
I I 
t---r---1 
I I I 
l----'----1 
I I 

HRP2X 

HRP1X 

..... 

"" L-----' 

TLP2X 

TLP1X 

Read resulting status: 
R7 $C018 Read 80Store; bit 7 = 0 
R7 $C013 Read RAMRd; bit 7 = 0 
R7 $C014 Read RAMWrt; bit 7 = 0 

Select memory: 
W $COOO 
W $C003 
W $COOS 

Main RAM 
I I 
,..----., 
I I 
l---r---1 
I I I 
1--...L-4 
I I 

HRP2 

HRP1 

L----...1 

/' 

"" 

Turn off 80Store 
Read from auxiliary memory 
Write to auxiliary memory 

TLP2 

TLP1 

Auxiliary RAM 
I I 
.----- ., 
I I 
t---.--1 
I I I 
t---'----1 
I I 

Read resulting status: 
R7 $C018 Read 80Store; bit 7 = 0 
R7 $C013 Read RAMRd; bit 7 = 1 
R7 $C014 Read RAMWrt; bit 7 = 1 

Legend: ~ Read memory D Inactive memory R7 = Read, check bit 7 

~ Write memory R Read W =Write 

Figure 2-13 
48K RAM selection , one side only 

48K memory 41 



Transfers between main and auxiliary memory 

If you want to write assembly-language programs that use auxiliary 
memory but you don't want to manage the auxiliary memory 
yourself, you can use the built-in 48K RAM transfer routines. These 
routines Oisted in Table 2-3) make it possible to moye between 
main and auxiliary memory without having to manipulate the soft 
switches described earlier in this chapter. 

Important The routines described below make it easier to use auxiliary 
memory, but they do not protect you from errors. You still have 
to plan your use of auxiliary memory to avoid catastrophic 
effects on your program. 

Table 2-3 
48K RAM transfer routines 

Name Action 

MoveAux JSR 

XFer ]MP 

Transferring data 

Hex Function 

$C3 l l Move data blocks between main 
and auxiliary 48K memory. 

$C314 Transfer program control between 
main and auxiliary 48K memory. 

In your assembly-language programs, you can use the built-in 
routine named MoveAux to copy blocks of data from main memory 
to auxiliary memory or from auxiliary memory to main memory. 
Before calling this routine, you must put the data addresses into 
byte pairs in page $00 and set or clear the carry bit to select the 
direction of the move. 

Warning Don't try to use MoveAux to copy data In bank-switched 
memory (page $00, page $01, or pages SDO through SFF). 
MoveAux uses page $00 all during the copy. 

The pairs of bytes you use for passing addresses to this routine are 
called Al, A2, and A4, and they are used for parameter passing by 
several of the Apple He's built-in routines. The addresses of these 
byte pairs are shown in Table 2-4. 

Put the addresses of the first and last bytes of the block of memory 
you want to copy into Al and A2. Put the starting address of the 
block of memory you want to copy the data to into A4. 

42 Chapter 2: Memory Organization and Control 



Table 2-4 
Parameters for MoveAux routine 

Name 

Carry 

AlL 
AlH 
A2L 
A2H 
A4L 
A4H 

Location 

$3C 
$3D 
$3E 
$3F 
$42 
$43 
X, Y,A 

Parameter passed 

1 = Move from main to auxiliary memory. 
0 = Move from auxiliaiy tEf.:'ma4n.memory. 
Source starting address, low-order byte. 
Source starting address, high-order byte. 
Source ending address, low-order byte. 
Source ending address, high-order byte. 
Destination starting address, low-order byte. 
Destination starting address, high-order byte. 
These registers are preserved. 

The MoveAux routine uses the carry bit to select the direction to 
copy the data. To copy data from main memory to auxiliary 
memory, set the carry bit (SEC instruction); to copy data from 
auxiliary memory to main memory, clear the carry bit 
(CLC instruction). 

When you make the subroutine call to MoveAux, the subroutine 
copies the block of data as specified by the A register and the carry 
bit. When it is finished, the accumulator and the X and Y registers 
are just as they were when you called it. 

Transferring control 

You can use the built-in routine named XFerto transfer control to 
and from program segments in auxiliary memory. You must set up 
three parameters before using XFer: the address of the routine you 
are transferring to, the direction of the transfer, and which page $00 
and stack you want to use (Table 2-5). 

Table 2-5 
Parameters for XFer routine 

Name 

Carry 

Overflow 

Location Parameter passed 

$03ED 
$03EE 
X, Y,A 

1 = Transfer from main to auxiliary memory. 
0 = Transfer from auxiliary to main memory. 
1 = Use page $00 and stack in auxiliary 
memory. 
0 = Use page $00 and stack in main memory. 
Program starting address, low-order byte. 
Program starting address, high-order byte. 
These registers are preserved. 

48K memory 43 



Put the transfer address into the two bytes at locations $03ED 
and $03EE, with the low-order byte first, as usual. The direction of 
the transfer is controlled by the carry bit: set the carry bit to transfer 
to a program in auxiliary memory; clear the carry bit to transfer to a 
program in main memory. 

Use the overflow bit to select which page $00 and stack you want to 
use: clear the overflow bit to use the main memory; set the overflow 
bit (cause an overflow condition) to use the auxiliary memory. 

After you have set up the parameters, pass control to the XFer 
routine by a jump instruction, rather than a subroutine call. 

Warning It Is your responsibility as the programmer to save the current 
stack pointer before using XFer and to restore It after regaining 
control. Failure to do so will cause program errors. Refer to 
Appendix E for Instructions on how to do this. 

Using display memory switches 

Selection of main or auxiliary RAM for the 48K memory space is 
described earlier in this chapter. However, under many . 
circumstances your program may want to control reading and 
writing to display pages separately. The switches discussed in this 
section override the effects of RAMRd and RAMWrt for display 
pages only. 

Three switches are involved in the display page selection process. 
Each of them has three locations assigned to it: one to turn it on, 
one to turn it off, and a third to read its state (Table 2-6). One of the 
switches, 80Store, shares its on and off addresses with a keyboard 
reading function. As a result, your program must write to these 
locations to turn the switch on and off. 

44 Chapter 2: Memory Organization and Control 



Table 2-6 
Display memory switches 

Name Action Hex Dec Function 

80Store w $COOO 49152 Off: RAMRd and 
RAMWrt determine RAM 
locations. 

80Store w $C001 49153 On: Page2 switches 
between TIP 1 and 
TIP IX, and (if HiRes on) 
between HRPl and 
HRPlX. 

Rd80Store R7 $C018 49176 Read whether 80Store 
on (1) or off (O). 

Page2 R $C054 49236 Off: Select TIPl and 
HRPl. 

Page2 R $C055 49237 On: If 80Store off, switch 
to TIP2, and (if HiRes 
on) to HRP2. If 80Store 
on, switch to TLPlX, and 
(if HiRes on) to HRP IX. 

RdPage2 R7 $C01C 49180 Read whether Page2 
on (1) or off (O). 

HiRes R $C056 49238 Off: Display text and 
low-resolution page. 

Hi Res R $C057 49239 On: Display high-
resolution pages; make 
Page2 switch between 
high-resolution pages. 

RdHiRes R7 $C01D 49181 Read whether HiRes 
on (1) or off (O). 

IOUDis w $C07E 49278 On: Disable IOU access 
for addresses$C058 to 
$C05F; enable access to 
DHiRes switch•. 

IOUDis w $C07F 49279 Off: Enable IOU access 
for addresses $C058 to 
$C05F; disable access to 
DHiRes switch•. 

48K memory 45 



Table 2-6 (continued) 
Display memory switches 

Name Action Hex Dec Function 

RdIOUDis R7 $C07E 49278 Read IOUDis switch 
-Cl=ofDt-

DHiRes R/ W $COSE 49246 On: (If IOUDis on) turn 
on double high-
resolution. 

DHiRes R/W $C05F 49247 Off: (If IOUDis on) turn 
off double high-
resolution. 

RdDHiRes R7 $C07F 49279 Read DHiRes switch 
(l=on)t. 

• The firmware normally leaves IOUDis on. 
t Reading or writing any address in the range $C070-$C07F also triggers 

the paddle timer and resets VBIInt (see Chapter 9). 

For each switch, you can read bit 7 at its third location to check 
whether the switch is on or off. If the switch is on, bit 7 is 1; if the 
switch is off, bit 7 is 0. 

Here is how these switches work for reading and writing: 

o If HiRes is off, then Page2 switches between text and low
resolution graphics pages (TLP) only. If HiRes is on, then Page2 
switches between TLP and high-resolution graphics pages (HRP). 

o If 80Store is off, RAMRd and RAMWrt (Table 2-2) determine 
whether main or auxiliary RAM locations are used. Page2 selects 
pages for display (Chapter 5), but not for reading and writing. 

o If 80Store is on, it overrides RAMRd and RAMWrt with respect to 
the display pages selected by HiRes and Page2 (Figures 2-14 
and 2-15) . 

46 Chapter 2: Memory Organization and Control 



High-Resolution [ 
Graphics Pages 

Text and 
Low-Resolution [ 
Graphics Pages 

Select memory: 
w $C001 Turn on 80Store 
R $C056 Turn off HiRes 
R $C054 Turn off Page2 

Main RAM 
I I 
r-----, 
I I 
1---r---l 
I I I 
..,._...!..._~ 

I I 

tt+t+++-tt....- TLP2 

~g·"'TLP1 
L----.J 

Read resulting status: 

Auxiliary RAM 
I I 
r-----, 
I I 
1---r---I 
I I I .,___....J.__-1 
I I 

H+t-+++1-H....- TLP2X 

p::a:=CJ:IIl'"' TLP 1 X 
L-~--.J 

R7 $C018 Read 80Store; bit 7 = 1 
R7 $C01D Read HiRes; bit 7 = 0 
R7 $C01C Read Page2; bit 7 = 0 

Inactive memory 

Select memory: 
w $C001 Turn on 80Store 
R $C056 Turn off HiRes 
R $C055 Turn on Page2 

Main RAM 
I I ,.-----, 
I I 
1--,.---1 
I I I 
1--...L..--f 
I I 

tttttttttttt-lt/ T LP2 

jl:m==ll''- TLP 1 
L----.J 

Read resulting status: 

Auxiliary RAM 
I 

r --·- --, 
I I 
1---r--~ 
I I I 
1--...1...--f 
I I 

H+t-+++1-tt....- TLP2X 

~~~'-TLP1X 
L----.J

R7 $C018 Read 80Store; bit 7 = 1
R7 $C01D Read HiRes; bit 7 = 0
R7 $C01C Read Page2; bit 7 = 1

Legend: ~ = Read memory

~ = Write memory

D
ITIIIIII

Controlled by RAMRd and
RAMWrt (See Figs. 2-12 and 2-13)

R = Read

w = Write

R7 = Read, check bit 7

=igure 2-14
)age2 selections, 80Store on and HiRes off

48K memory 47

High-Resolution [
Graphics Pages

Text and
Low-Resolution [
Graphics Pages

Legend: ~

Select memory:
W $C001
R $C057
R $C054

Turn on 80Store
Turn on HiRes
Turn off Page2

Main RAM
I I
,.----,
I I
1--,.---1
I I I
t--.....1....--1
I I

~HRP1

.......,...__,...,,, TLP2

~rslm~~'- TLP1
""----~

Read resulting status:

Auxiliary RAM
I I
r----.,
I I
l--""T"""--1
I I I
1--.....1....--1
I I

HRP2X

11-1-1-1-1-+++.++++L,. TLP2X

IIDJ:IIIIIIDI......_ TLP 1 X
L-----'

R7 $C018 Read 80Store; bit 7 = 1
R7 $C01D Read HiRes; bit 7 = 1
R7 $C01C Read Page2; bit 7 = O

Read memory Inactive memory

Select memory:
W $C001
R $C057
R $C055

Main RAM
I I

Turn on 80Store
Turn on HiRes
Turn on Page2

r----,
I I
1---.--1
I I I
1----'----i
I I

HRP2

M-+-+-+-++++-++++1_,,. TLP2

!Imnmcmf'- TLP 1
L-----'

Read resulting status:

Auxiliary RAM
I I
r----.,
I I
t--.---1
I I I
1--.....L..-~
I I

HRP1X

1++++++1+++1f.ly_,,. TLP2X

mm~'-TLP1X .._ _____

R7 $C018 Read 80Store; bit 7 = 1
R7 $C01D Read HiRes; bit 7 = 1
R7 $C01C Read Page2; bit 7 = 1

~ Write memory

D
!IIIIIII Controlled by RAMRd and

RAMWrt (See Figs. 2-12 and 2-13)

R = Read

W = Write

R7 = Read, check bit 7

Figure 2-15
Page2 selections, 80Store on and HiRes on

48 Chapter 2: Memory Organization and Control

Power On
(Cold Start)

- Read/write main 48K RAM
- Read ROM, write main bank-

switched RAM, use bank 2
- Displ8y 40-column text page $01 ,

primary character set , normal
format, cursor at bottom left

- Enable access to DHiRes switch
- 110 links: keyboard input (KSW),

display output (CSW)
- Ports: startup settings

- Clear keyboard strobe
- Sound the speaker

Figure 2-16
Reset routine flowchart

The reset routine
A procedure called the reset routine (Figure 2-16) puts the Apple Ile
into a known state when it has just been turned on or when you hold
down Control while pressing Reset. The rese~ routine puts the
Apple Ile into its normal operating mode and restarts the program
indicated at locations $03F2 and $03F3 (Table 2-7).

When you initiate a reset, hardware in the Apple Ile sets the
memory-controlling soft switches to normal: main ROM and RAM
are enabled, auxiliary RAM is disabled and the bank-switched
memory space is set up to read from ROM and write to RAM, using
the second bank at $DOOO.

@) - I CONTROL 1-1 RESET I
(Forced Cold Start)

Write trash in one location
per memory page (Including

poVoJer-up validity byte)

Clear screen; display
Apple I Ic, load reset

vector and power-up byte;
initiate disk startup

firmware

I CONTROL 1-1 RESET I
(Warm Start)

No

Display
Check Disk Drive ;

turn off disk motor

Load in
operating system

(110 hooks
not yet loaded)

Yes

Run Applesoft ;
no operating system

Restart Applesoft
or Integer BASIC

Do what it
says to do

Load 1/0 hooks
and rest of

operating system;
run program

The reset routine 49

The reset vector validity check
is described under "The Reset
Vector:

Table 2-7
Page $03 vectors

Vector address

$03FO (1008)
$03Fl (1009)

$03F2 (1010)

$03F4 (1012)

$03F5 (1013)
$03F6 (1014)

$03F7 (1015)

$03F8 (1016)
$03F9 (1017)
$03FA (1018)

$03FB (1019)
$03FC (1020)
$03FD (1021)

$03FE (1022)
$03FF (1023)

Vector function

Address of the subroutine that handles BRK
requests (normally $59, -$FA)

Reset vector (see text) $03F3 (1011)

Power-up byte (see text)

Jump instruction to the subroutine that handles
Applesoft and commands (normally
$4C,$58,$FF)

Jump instruction to the subroutine that handles
user Control-Y commands

Jump instruction to the subroutine that handles
nonmaskable interrupts (not used on Apple Ile)

Interrupt vector (address of the subroutine that
handles interrupt requests) (Appendix E)

The reset routine sets the display-controlling soft switches to display
40-column text Page 1 using the primary character set, then sets the
display window equal to the full 40-column display, puts the cursor
at the bottom of the screen, and sets the text display format to
normal.

The reset routine also sets the keyboard and display as the standard
input and output devices (Chapter 3). It masks mouse interrupts and
sets mouse defaults (Table 9-1). Finally, it enables DHiRes switch
access (by turning on IOUDis), clears the keyboard strobe, and
sounds the speaker.

The Apple Ile has three types of reset: power-on reset, also called
cold-start reset; wann-start reset; and forced cold-start reset. The
procedure described above is the same for any type of reset. What
happens next depends on the reset vector. The reset routine checks
the reset vector to determine whether it is valid or not. If the reset
was caused by turning the power on, the vector will not be valid, and
the reset routine will perform the cold-start procedure. If the vector
is valid, the routine will perform the warm-start procedure.

50 Chapter 2: Memory Organization and Control

The cold-start procedure (power on)
If the reset vector is not valid, either the Apple Ile has just been
turned on or something has caused memory contents to be
changed. The reset routine clears the display and puts the string
Apple© IIc at the top of the display. It loads th~ reset vector and
the validity-check byte, then initiates the startup routine that resides
in the disk controller firmware. The bootstrap routine then loads
whatever operating system resides on the disk in the built-in drive.
When the operating system has been loaded, it displays other
messages on the screen. If there is no disk in the disk drive, the drive
motor keeps spinning for a brief time. Then the firmware shuts it off
and displays the message Check Disk Drive at the bottom of the
screen.

If you press Control-Reset again before the startup procedure is
completed, the reset routine continues without using the disk, and
passes control to the Applesoft BASIC interpreter.

The warm-start procedure (Control-Reset)
Whenever you press Control-Reset when the Apple Ile has already
completed a cold-start reset, the reset vector is still valid and it is
not necessary to reinitialize the entire system. The reset routine
simply uses the vector to transfer control to the program it points
to, which at power-up is the Applesoft interpreter.

If the vector does point to the Applesoft interpreter, your Applesoft
program and variables are still intact. If you are using DOS or
ProDOS, that operating system is . the resident program and it
restarts the BASIC interpreter you were using when you pressed
Control-Reset.

Important A program residing only in bank-switched RAM cannot use the
reset vector to regain control after a reset, because upon reset
the hardware selects the ROM for reading in the bank-switched
memory space.

The reset routine 51

Forced cold start (Open Apple-Control-Reset)
If a program has set the reset vector to point to its own warm-start
address, as described below, pressing Control-Reset causes transfer
of control to that program. If you want to stop such a program
without turning the power off and on, you can force a cold-start
reset by holding down Control and Open Apple, then pressing and
releasing Reset.

Important When you want to stop a program unconditionally-for
example, to start up the Apple lie with some other
program-you should use the forced cold-start reset. Open
Apple-Control-Reset, Instead of turning the power off and on.

UniDisk 3.5 You must hold Open Apple down until the built-in drive starts
to spin. If you release Open Apple before the drive starts to
spin, the Apple lie drops into BASIC instead of rebooting.

The forced cold-start reset works as follows. First, it destroys the
program or data in memory by writing two bytes of arbitrary data
into each page of main RAM. The two bytes that get written over in
page $03 are the ones that contain the reset vector. The warm-start
reset routine finds the error, and so performs a normal cold-start
reset.

Note that if you press both Open Apple and Solid Apple during
power-up or Control-Reset, built-in exercise code is executed. This
code is for production and has no end-user value.

The reset vector
The cold-start reset routine stores the starting address of the built-in
Applesoft interpreter, low-order byte first, in the reset vector
address at locations $03F2 and $03F3. It then stores a validity-check
byte, also called the power-up byte, at location $03F4. The validity
check byte is computed by performing an exclusive-OR of the
second byte of the vector with the constant 165 (hexadecimal $A5).
Each time you reset the Apple He, the reset routine uses this byte to
determine whether the reset vector is still valid.

52 Chapter 2: Memory Organization and Control

You can change the reset vector so that the reset routine will transfer
control to your program instead of to the Applesoft interpreter. For
this to work, you must also change the validity-check byte to the
exclusive-OR of the high-order byte of your new reset vector with
the constant 165 ($AS). If you fail to do this, then the next time you
reset the Apple Ile, the reset routine will determine that the_ reset
vector is invalid and perform a cold-start reset, eventually
transferring control to the disk bootstrap routine or to Applesoft.

There is a subroutine that generates the validity-check byte for the
current reset vector. This subroutine, called SetPWRC, is at
location $FB6F. When your program finishes, it can return the
Apple Ile to normal operation by restoring the original reset vector
and again calling the subroutine to fix up the validity-check byte.

The reset routine 53

Chapter 3

I ntroducti.on
to Apple lie 1/0

SS

This chapter is an introduction to the built-in 1/0 capabilities of the
Apple Ile. It outlines

o standard I/0 links and their functions

o I/0 firmware protocols

o dedicated memory storage locations

o direct I/0

The next six chapters discuss these capabilities in detail.

The standard 1/0 links
You can use some of the routines in the Apple Ilc's firmware for
your own programs. This can save you both program space and the
time and effort of writing all your own I/0 routines.

To use the built-in firmware routines, your program must perform a
JSR to the routine's entry address. The called routine then performs
an indirect jump through an address stored somewhere in RAM and
begins executing. When the routine has finished doing its work, it
returns (with an RTS) to your program at the first instruction
following the JSR used to call the routine. Memory locations used
for transferring control to other subroutines, such as the indirect
jump's address used by the character I/0 routine, are sometimes
called vectors. In this manual, the locations used for transferring
control to the Apple Ilc's 1/0 subroutines are called the l/O links.

In an Apple Ile running without an operating system, each I/0 link
normally contains the address of the standard input or output
subroutine. An operating system will typically place addresses of its
own I/0 routines in these link locations instead.

By calling the I/0 subroutines that then jump to the routines
pointed to by the link addresses instead of calling the standard
subroutines directly, you ensure that your program will work
properly with other software, such as the operating system or a
device driver. The I/0 links contain the addresses of Keyin and
COutl if the enhanced video firmware is off (when the display shows
a flashing checkerboard cursor), and of C3Keyin and C3C0utl if
that firmware is on (when the display shows an inverse solid cursor).

The standard I/0 links are two pairs of locations in the Apple Ile
RAM in the range $36 through $39 that are used for controlling
character input and output.

<• Note: Not all operating systems use the standard I/0 links. For
example, Apple Pascal does not use them.

56 Chapter 3: Introduction to Apple lie 1/0

The Monitor Is discussed In
Chapter 10.

The link at locations $36 and $37 is called CSW(character output
switch). Individually, location $36 is called CSWZ (CSW low) and
location $37 is called CSWH (CSW high). This link holds the
starting address of the subroutine the Apple Ile is currently using for
single-character output. This address is normally $FDFO, the
address of routine COutl.

When you issue either a PR#n from BASIC or an n Control-P from
the Monitor, the Apple Ile changes this link address to the first
address in the ROM space allocated to port n. That address has the
form $Cn00. Subsequent calls for character output are thus
transferred to the firmware starting at that address. When it has
finished, the firmware executes an RTS (return from subroutine)
instruction to return control to the calling program. Sometimes a
PR#n will cause both input and output switches to be changed (as in
the 80-column firmware).

A similar link at locations $38 and $39 is called KSW (keyboard
input switch). Individually, location $38 is called KSWZ (KSW low)
and location $39 is called KSWH (KSW high). This link holds the
starting address of the routine currently being used for single
character input-normally $FD1B, the starting address of the
standard input routine Keyin.

When you issue an IN#n command from BASIC or an n Control-K
from the Monitor, the Apple Ile changes the link address in KSW to
$Cn00, the beginning of an I/0 firmware subroutine. Subsequent
calls for character input are thus transferred to that firmware. The
firmware puts the input character, with its high bit set, into the
accumulator and executes an RTS (return from subroutine)
instruction to return control to the program that requested input.

When a disk operating system (DOS or ProDOS) is running, one or
both of the standard 1/0 links hold addresses of the disk operating
system's input and output routines. The operating system has
internal locations that hold the addresses of the currently active
character input and output routines.

Warning If a program that Is running with DOS or ProDOS changes the
standard link addresses, either directly or via IN# and PR#
commands, the operating system may be disconnected from
the system. To avoid this problem. when programming In BASIC
you should always Issue an empty PRINT statement (to be sure
that what follows begins a new line) before Issuing the PRINT
statement containing Control-D and the IN# or PR# command.

The standard 1/0 links 57

Refer to the section on Input
and output link addresses In the
operating system manuals for
further details.

Getln also provides on-screen
editing features. See ·Editing
With Getln."

After changing either CSW or KSW, your assembly-language
programs running under DOS should call the subroutine at
location $03EA. This subroutine transfers the link address to a
location inside the operating system and then restores the
operating system link address in the standard link lbcation.

Standard input features
The Apple He's firmware includes two different subroutines for
reading from the keyboard, RdKey (read key) and GetLn (get line).

RdKey calls the current character input routine (that is, the one
whose address is stored at KSW). This is normally Keyln or
C3Keyln, which accepts one character from the keyboard. GetLn
accepts a sequence of characters terminated with a carriage return.
Thus GetLn allows line-oriented input using the current input
routine.

RdKey subroutine
A program can get a character from the keyboard by making a
subroutine call to RdKey at memory location $FDOC. RdKey passes
control via the input link KSW to the current input subroutine,
which is normally Keyln.

RdKey displays a cursor at the current cursor position, which is
immediately to the right of whatever character you last sent to the
display (normally by using the COut routine, described below).

Keyln subroutine
Keyln is the standard input subroutine. When your program calls it,
Keyln displays a cursor, waits until someone presses a key, then
inserts the ASCII code of the key just pressed in the accumulator and
returns to the calling program.

If the enhanced video firmware is inactive, Keyln displays a cursor
by alternately storing a checkerboard block in the cursor location,
storing the original character, then storing the checkerboard again.
If the firmware is active, C3Keyln places a block cursor on the
screen by inverting (swapping black for white) the character at the
cursor position.

58 Chapter 3: Introduction to Apple lie 1/0

Keyin also generates a random number. While it is waiting for the
user to press a key, Keyln repeatedly increments the 16-bit number
in memory locations $4E and $4F. This number keeps increasing
from 0 to $FFFF (65535), then starts over again at 0. The value of
this number changes so rapidly that it is very difficult to predict what
it will be after a key is pressed. A program that reads from the
keyboard can use this value as a random number or as a seed for a
pseudo-random number routine.

Getln subroutine
Programs often need strings of characters as input. While you could
call RdKey repeatedly to get several characters from the keyboard,
there is an easier way to do it. The routine that you want to use in this
case is named Getln, and it starts at location $FD6A. Using repeated
calls to RdKey, GetLn accepts characters from the standard input
subroutine-usually Keyin-and puts them into the input buffer
located in the memory page from $0200 to $02FF. GetLn also
provides you with some basic on-screen editing and control
features.

The first thing Getl.n does when you call it is to display a prompt.
The prompt indicates to the user that the program is waiting for
input. Different programs use different prompt characters, helping
to remind the user which prograrri is requesting the input. Table 3-1
shows the prompt characters used by different programs on the
Apple Ile.

GetLn uses the character stored at memory location $33 as the
prompt character. In an assembly-language program, you can
change the prompt to any character you wish. In BASIC, changing
the prompt character has no effect because both BASIC interpreters
and the Monitor restore it each time they request input from the
user.

Table 3-1
Prompt characters

Prompt
character

?

>
*

Program requesttng Input

User's BASIC program ONPUT statement)
Applesoft BASIC (Appendix D) .
Integer BASIC (Appendix D)
Firmware Monitor (Chapter 10)

•) Note: Applesoft uses GetLnl ($FD6F) when a program is
executing. GetLnl does not print a prompt.

Standard Input features 59

As the user types each character, GetLn sends the character to the
standard output routine-normally COutl-which displays it at the
current cursor position and then advances the cursor to indicate the
next character position. Control characters echoed by GetLn are
not executed.

GetLn stores the characters in its buffer, starting at memory
location $0200 and using the X register to index the buffer. GetLn
continues to accept and display characters until the user presses
Return (or Control-X to cancel the line). Then it clears the
remainder of the line the cursor is on, stores the carriage-return
code to mark the end of the buffer, places the cursor at the
beginning of the next line, and returns.

The maximum line-length that GetLn can handle is 255 characters.
If the user types more than this, GetLn sends a backslash (\) and a
carriage return to the display, cancels the line it has accepted so far,
and starts over. To warn the user that the line is getting full, GetLn
sounds a bell (tone) at every keypress after the 248th.

•:• Note: The Applesoft interpreter accepts only 239 characters.

Escape codes with Getln
GetLn has many special functions that you invoke by typing escape
codes on the keyboard. An escape code is sent by pressing Escape,
releasing it, and then pressing some other key, as shown in
Table 3-2.

Important Be sure to release Escape right away. If you hold It too long,
the auto-repeat mechanism begins, which may cancel the
Escape.

60 Chapter 3: Introduction to Apple lie 1/0

Table 3-2
Escape codes with GetLn

Escape code

Escape

Escape A
or Escape a

Escape B
or Escape b

Escape C
or Escape c

Escape D
or Escaped

Escape E
or Escapee

Escape F
or Escape f

Escape I
or Escape i
or Escape Up Arrow

Escape J
or Escape j
or Escape Left Arrow

EscapcK
or Escape k
or Escape Right Arrow

Escape M
or Escape m
or Escape Down Arrow

Escape 4

Function

Clears the window and homes the cursor
(places it in the upper-left corner of
the screen); exits from escape mode

Moves the cursor right one line; exits
from escape mode

Moves the cursor left one line; exits
from escape mode

Moves the cursor down one line; exits
from escape mode

Moves the cursor up one line; exits from
escape mode

Clears to the end of the line; exits from
escape mode

Clears to the bottom of the window; exits
from escape mode

Moves the cursor up one line; remains in
escape mode

Moves the cursor left one space; remains
in escape mode•

Moves the cursor right one space;
remains in escape mode•

Moves the cursor down one line;
remains in escape mode•

Switches to 40-column mode; sets links to
C3Keyln and C3C0utl; restores normal
window size (Table 3-5); exits from
escape modet

Standard Input features 61

Table 3-2 (continued)
Escape codes with GetLn

Escape code

Escape 8

Escape Control-D

Escape Controi-E

Escape Control-Q

Function

Switches to 80-column mode; sets links
to C3Keyln and C3C0utl; restores
normal window size (Table 3-5); exits
from escape modet

Disables control characters; only
carriage retilrn, linefeed, bell, and
backspace have an effect when printed

Reactivates control characters

Deactivates the enhanced video
firmware; sets links to Keyln and COutl;
restor.es normal window size (Table 3-5);
exits from escape modet

• Cursor-control key: see text.
t This code functions only when the enhanced video firmware is active.

In escape mode, you can keep using the arrow keys and the cursor
movement keys I, J, K, and M withoµt pressing Escape again. This
enables you to perform repeated cursor moves by holding down the
appropriate key.

When GetLn is in escape mode, it displays an inverse plus sign as
the cursor. You leave escape mode by typing any key other than a
cursor movement key. ·

+ Note: The escape codes with the arrow keys are the standard
cursor movement keys on the Apple Ile. The escape codes with
i, J, K, and M are the standard cursor movement keys on the
Apple II and II Plus, and are present on the Apple Ile for
compatibility.

Escape sequences can be used in the middle of an input line to
change the appearance of the screen. They have no effect on the
input line.

62 Chapter 3: Introduction to Apple lie 1/0

For an Introduction to editing
with these features. refer to the
App/esoft Tutorial.

See ·Escape Codes With
Getln."

Editing with Getln

Subroutine GetLn provides the standard on-screen editing features
used by the BASIC interpreters and the Monitor. Any program that
uses GetLn for reading the keyboard has these features.

Cancel line

Any time you are typing a line, pressing Control-X causes GetLn to
cancel the line. GetLn displays a backslash (\) and issues a carriage
return, then displays the prompt and waits for you to type a new
line. GetLn takes the same action when you type more than
255 characters, as described above.

Backspace

When you press Left Arrow (or Control-H), GetLn moves its buffer
pointer back one space, effectively deleting the last character in its
buffer. It also sends a backspace character to routine COut, which
moves the cursor back one space. If you type another character
now, it replaces the character you backspaced over, both on the
display and in the line buffer.

Each time you press Left Arrow, it moves the cursor left and deletes
another character, until you are back at the beginning of the line. If
you then press Left Arrow one more time, you have effectively
canceled the lirie, and GetLn issue~ a carriage return and displays
the prompt. The cursor moves even if the deleted character is an
invisible control character. Thus it is possible for screen alignment
and buffer alignment to be different.

Retype

Right Arrow (or Control-U) has a function that is complementary to
the backspace function. When you press Right Arrow, GetLn picks
up the character under the · cursor just as if it had been typed on the
keyboard. You can use this procedure to pick up characters that you
just deleted by backspacing across them. You can use the backspace
and retype functions with the cursor-motion functions to edit data
on the display.

Standard Input features 63

Standard output features
The standard output routine is named COUt (character output). COut
normally calls COutl or C3COutl, which sends one character to the
display, advances the cursor position, and scrolls the display when
necessary. COutl and C3COutl restrict their use of the display to an
active area called the text window, described later in this chapter.

COut subroutine
Your program makes a subroutine call to COut at memory location
$FDED with a character in the accumulator. COut then passes
control via the output link CSW to the current output subroutine,
normally COutl or C3C0utl, which takes the character in the
accumulator and writes it out. If the accumulator contains an
uppercase or lowercase letter, a number, or a special character,
COutl or C3COutl displays it; if the accumulator contains a control
character, COutl or C3COutl either performs one of the special
functions described below or ignores the character.

Each time you send a character to COutl or C3COutl, it displays the
character at the current cursor position, replacing whatever was
there, and then advances the cursor position one space to the right.
If the cursor position is already at the right edge of the window,
COutl or C3C0utl moves it to the leftmost position on the next line
down. If this would move the cursor position past the end of the last
line in the window, COutl or C3C0utl scrolls the display up one
line and sets the cursor position at the left end of the new bottom
line.

The cursor position is controlled by the values in memory
locations $24 and $25. These locations are named CH, for cursor
horizontal, and CV, for cursor vertical. COutl and C3C0utl do not
display a cursor, but the input routines described above do, and
they use this cursor position. However, changing CV directly does
not change the cursor's vertical position until the next carriage
return or reaching the end of the current line causes a call to VTab
(for setting the base address within windows). If some other routine
displays a cursor, it will not necessarily put it in the cursor position
used by COutl or C3COutl.

Werning When the video firmware Is sef for 80-column display, the value
of CH Is kept at 0 and the true horizontal position Is stored
at $0578. When the 80-column video firmware Is active, use
$0578 Instead of CH.

64 Chapter 3: Introduction to Apple lie 1/0

Escape codes are described
under "Escape Codes With
Getln.·

Control characters with COutl

COutl does not ~isplay control characters. Instead, the control
characters listed in Table 3-3 are used to initiate some action by the
firmware. Other control characters are ignored. Most of the
functions listed here can also be invoked from the keyboard, either
by typing the control character listed or by using the appropriate
escape code. The stop-list function, described separately, can only
be invoked from the keyboard.

Table 3-3
Control characters with COutl

Control ASCII
character name

Control-G BEL

Control-H BS

Control-] LF

Control-M CR

Applellc
name

Bell

Backspace

Line feed

Return

Action taken by COutl

Produces a 1000-Hz tone for
0.1 second

Moves cursor position one
space to the left; from left
edge of window, moves to
right end of line above

Moves cursor position down
to next line in window;
scrolls if needed

Moves cursor position to left
end of next line in window;
scrolls if needed

Control characters with C3COutl

When the 80-column firmware is active, COut calls C3C0utl instead
of COutl for character output. C3COutl does not display control
characters, but you can use some control characters to control
some of what the routine does. All other control characters are
ignored.

The control characters listed in Table 3-4 are used to initiate some
action by the firmware. Except for the stop-list function (Control-S)
you can send control characters to C3COutl either from a program
or from the Apple Ilc's keyboard. The stop-list function can only be
invoked from the keyboard. Most of the functions listed here can
also be performed by using an equivalent escape code.

Standard output features 65

Table 3-4
Control characters with C3COutl

Control ASCII Apple Uc
character name name Action taken by C3COut1

Control-G BEL Bell Produces a 1000-Hz tone
for 0.1 second

Control-H BS Backspace Moves cursor position one
space to the left; from left
edge of window, moves to
right end of line above

Control-] LF Line feed Moves cursor position
down to next line in
window; scrolls if needed

Control-K VT Clear EOS Clears from cursor position
to the end of the screen•

Control-L FF Home and Moves cursor position to
clear upper-left comer of window

and clears windo~

Control-M CR Return Moves cursor position to
left end of next line in
window; scrolls if needed

Control-N so Normal Sets display format
normal•

Control-0 SI Inverse Sets display format
inverse•

Control-Q DCl 40-column Sets display to 40-column•

Control-R DC2 SO-column Sets display to 80-column•

Control-S DC3 Stop-list Stops listing characters on
the display until another
key is pressedt

Control-U NAK Quit Turns off enhanced video
firmware•

Control-V SYN Scroll Scrolls the display down
one line, leaving the cursor
in the current position•

Control-W ETB Scroll-up Scrolls the display up one
line, leaving the cursor in
the current position•

66 Chapter 3: Introduction to Apple lie 1/0

Table 3-4 (continued)
Control characters with C3COutl

Control ASCII Apple Uc
character name name Action taken by C3COutl

Control-X CAN Disable Disables MouseText
MouseText character display; uses

inverse uppercase

Control-Y EM Home Moves cursor position to
upper-left comer of window
(but doesn't clear)•

Control-Z SUB Clear line Clears the line the cursor
position is on•

Control-[ESC Enable Maps inverse uppercase
Mouse Text characters to MouseText

characters

Control-\ FS Fwd. space Moves cursor position one
space to the right; from
right edge of window,
moves it to left end of line
below•

Control-] GS Clear EOL Clears from the current
cursor position to the end
of the line (that is, to the
right edge of the window)•

Control-_ us Up Moves cursor up a line, no
scroll

• Doesn't work from the keyboard.
t Only works from the keyboard.

The stop-list feature
You can stop the Apple Ile from updating its display (if it is using
either COutl or C3COutl) by pressing Control-S. Whenever COutl
or C3COutl gets a carriage return from the program, it checks the
keyboard for a Control-S. If a Control-S has been pressed, COutl or
C3C0utl stops and waits for another key to be pressed before
resuming. The character code of the key that is pressed is ignored
unless it is Control-C, which is passed to the program. This feature
lets you exit BASIC programs from stop-list mode.

Standard output features 67

The text window
The active portion of the display is called the text window. After
you start up the computer or perform a reset, the entire display is
the text window. COutl or C3COutl puts characters only into the
window; when it reaches the end of the last line in the window, it
scrolls only the contents of the window.

You can restrict video activity to any rectangular portion of the
display by changing the current text window. Your programs can
thus control the placement of text in the display and protect other
portions of the screen from being written over by new text. To do
this, store the appropriate values into four locations in memory to
set the top, bottom, left margin, and width of the text window. The
following memory locations control the text window:

o The left margin is stored in memory location $20. This number
is normally 0, the number of the leftmost column in the display.
In a 40-column display, the maximum value for this number is 39
(hexadecimal $27); in an 80-column display, the maximum
value is 79 (hexadecimal $4F).

o The width of the text window is stored in memory location $21.
For a 40-column display, this value is normally 40
(hexadecimal $28); for an 80-column display, it is normally 80
(hexadecimal $50).

o The position of the top line of the text window is stored in
memory location $22. This is normally 0, the topmost line in
the display. Its maximum value is 23 (hexadecimal $17).

o The position of the bottom line of the screen plus 1 is stored in
memory location $23. It is normally 24 (hexadecimal $18) for
the bottom line of the display. Its minimum value is 1.

Important Pascal does not use this method of supporting window widths.

Warning Be careful not to let the sum of the window width and the
leftmost position In the window exceed the width of the display
you are using (40 or 80 columns). If this happens, COutl or
C3COutl may put characters Into memory locations outside
the display page. possibly destroying programs or data.

Table 3-5 summarizes the memory locations and the possible
values for the text window parameters.

68 Chapter 3: Introduction to Apple lie 1/0

Table 3-5
Text window memory locations

Location
Window
parameter Dec Hex

Left edge 32 $20
Width 33 $21
fop edge 34 $22
Bottom edge 35 $23

"hese display character sets are
jescrlbed In Chapter 5.

Normal values Maximum values
Minimum

value 40-col. 80-col. 40-col. 80-col.

Dec

00
00
00
01

Hex Dec Hex Dec Hex Dec Hex Dec Hex

$00 00 $00 00 $00 39 $27 79 $4F
$00 40 $28 80 $50 40 $28 80 $50
$00 00 $00 00 $00 23 $17 23 $17
$01 24 $18 24 $18 24 $18 24 $18

Normal, inverse, and flashing text
The way that the Apple Ile displays characters is affected by two
things: the value that is stored in the inverse flag (zero page
location $32), and whether the enhanced video firmware is off or
on. The inverse flag's influence is discussed in the next two
subsections.

If the enhanced video firmware is off, the Apple Ile displays what is
called the primary character set; if the video firmware is on, the
Apple Ile displays what is called the alternate character set.

The primary character set includes normal Oight on dark), inverse
(dark on light), and flashing (alternating normal and inverse)
characters. Lowercase inverse characters are not included in the
primary character set.

The alternate character set includes normal and inverse characters
(including lowercase inverse), and a set of graphic characters called
MouseText. Flashing characters are not included in the alternate
character set.

If you want your program to display a character, it should first load
the character to be displayed in the accumulator, and then call the
character-output subroutine COut. For example, to display the
character corresponding to $C8, you can use something like this:

LDA #$CB
JSR COut

Standard output features 69

For a brief explanation of logical
functions. refer to Appendix H.

Primary character set display

The primary character set is displayed by COutl, which operates
only when the enhanced video firmware is off. The primary
character set includes text in normal, inverse, or flashing format,
but not inverse or flashing lowercase text.

If the value of the character sent to COutl is greater than or equal
to ·$AO, that value is logieally ANDed with the value of the inverse
flag (at location $32), then displayed. (If you're curious about
which ASCII character is being sent, subtract $80 from the value
being sent to COutl.) You can use the following inverse flag values:

o $FF (decimal 255) produces the normal character format.

o $3F (decimal 63) produces the inverse character format.

o $7F (decimal 127) produces the flashing character format.

Important To avoid unusual character display results. use only the three

MouseText Is described more
fully In Chapter 5.

See "MouseText· In Chapter 5.

values $3F. $7F. and SFF. ·

COutl interprets character values from $80 through $9F as control
characters and tries to execute them.

Character values from $00 through $7F are all interpreted as
display characters, not control characters.

AHernate character set display

The alternate character set includes normal and inverse format
characters and the MouseText graphic characters. You should use
C3C0utl, the standard output link when the enhanced video
firmware is active, to display the alternate character set. Here are
the rules for using the alternate character set:

o Control characters are not displayed. Characters sent to
C3COutl are interpreted as control characters if they are in the
range $00 through $ lF or $80 through $9F.

o Characters in the range $20 through $7F and $AO through $FF
are displayed.

o If inverse flag (location $32) bit 7 is 1, the character is normal.

o If inverse flag bit 7 is 0, the character is inverse.

o If MouseText is off, characters $40 through $5F are remapped to
the range $00 through $1F and are displayed as uppercase
inverse characters.

o If MouseText is on, character values $40 through $5F are left
unchanged, and the characters are displayed as MouseText.

70 Chapter 3: Introduction to Apple lie 1/0

Memory expansion

Important

Port 1/0
The Apple Ile is a member of the Apple II family of computers;
however, unlike the Apple II, II Plus, and Ile, the Apple Ile does not
have peripheral connector slots. In place of these, it has
ports-the equivalent of firmware interface cards installed in slots.

Standard link entry points
To maintain compatibility with existing software and its protocols,
each port's I/O firmware has the same standard entry
points ($Cn00) as its equivalent slot in another Apple II would
have. Table 3-6 shows these equivalents, as well as listing the
chapter where each port is described.

The section on the standard VO links describes how and when these
entry addresses are placed in CSW and KSW. For example, issuing
PR#n or IN#n changes the output and input links, respectively, so
that subsequent output or input is handled by the firrriware starting
at address $Cn00, and thus goes to or comes from the selected
device.

The memory expansion version of the Apple 119 places the
mouse at $C700 and the memory expanslo11 card at $C400.

Table 3-6
Port characteristics

Entry
Port point Port connector Use Chapter

1 $C100 Serial port 1 Printers 7
2 $C200 Serial port 2 Communication 8
3 $C300 Video Enhanced video 5

connectors firmware
4 $C400 Mouse Mouse 9
5 $C500 Intelligent disk

port devices
6 $C600 Disk drives Built-in and 6

external drives
7 $C700 No device Reserved 6

The addresses shown In Table 3-6 are not entry points In the
sense that, you can send characters to be printed by sending
them to JSR SCnOO.

Port 1/0 71

Firmware protocol
The Apple Ile supports a standard firmware protocol that, in
addition to the· standard link address, provides a table of device
identification· and entry points to standard and optional firmware
subroutines. The ·protocol is equivalent to the Pascal 1.1 firmware
protocol in use on other Apple II's, and is outlined in Table 3-7.

Table 3-7
Firmware protocol locatlons

Address Value Description

$Cn05 $38 Pascal firmware card/port identifier.

$Cn07 $18 Pascal firmware card/port identifier.

$CnOB $01 Generic signature byte of a firmware card/port.

$CnOC $ci Device signature byte: i is an identifier (not
necessarily unique).

$CnOD ii

$CnOE rr

$CnOF ww

$Cn10 SS

$Cnll $00

72 Chapter 3: Introduction to Apple lie 1/0

c = device class (not all used on the Apple Ile):

$00 reserved
$01 printer
$02 hand control or other X-Y device
$03 serial or parallel 1/0 card/port
$04 modem
$05 sound or speech device
$06 clock
$07 mass-storage device
$08 80-column card/port
$09 network or bus interface
$0A special purpose (none of the above)
$OB-OF reserved

$Cnii is the initialization entry address (Plnit).

$Cnrr is the read routine entry address (PRead)
(returns character read in A register).

$Cnww is the write routine entry address
(PWrite) (enters with character to write in
A register).

$Cnss is the status routine entry address
(PStatus) (enters with request code in A register:
0 to ask "Are you ready to accept output?" or 1 to
ask "Do you have input ready?").

If additional address bytes follow; nonzero if not.

For more Information. refer to
the hardware page memory
map In Appendix B.

Table 3-8
Port 1/0 locations

Port Locations

1
2
6

$C090-$C09F
$COAO-$COAF
$COEO-$COEF

· Each table begins with identification bytes ($Cn05 through $CnOC).
Then, starting with address $CnOD, each byte in the table
represents the low-order byte of the entry-point address of a
firmware routine. The high-order byte of each address is always
$Cn, where n is the port number. Your program uses these byte
values to construct its own jump table for subroutine calls to the
ports.

All port routines require, on entry, that the X register contain $Cn
and that the Y register contain $n0.

All routines, on exit, return an error code in the X register (0 means
no error occurred; 3 means the request was invalid). The carry bit
in the program status register usually contains a reply to a request
code (0 means no; 1 means yes).

All the Apple Ile ports except the disk port conform to this
protocol. The disk port is described in Chapter 6.

Port 1/0 space
By a convention used in other Apple II series machines, each port
or slot has exclusive use of 16 memory locations set aside for data
input and output. The addresses of these locations are of the form
$COBO + #nO, where n is the port or slot number. Table 3-8 lists the
port 1/0 space used in the Apple Ile.

Port ROM space
In the Apple II and Ile, one 256-byte page of memory space is
allocated to each slot. This space is used for read-only memory
(ROM or PROM on the interface card) with driver programs that
control the operation of input/output devices, as outlined in
Table 3-7. On the Apple Ile, this space is dedicated to port
firmware. However, 1/0 ROM space in the Apple Ile is used as
efficiently as possible, and there is not a strict correspondence
between firmware for port n and the $Cn00 space, except as regards
entry points.

Port 1/0 73

Expansion ROM space
The 2K-byte memory space from $C800 to $CFFF in the
Apple Ile-called expansion ROM space on the Apple II, II Plus,
and Ile-contains the enhanced video firmware and port and
memory transfer subroutines. The Apple Ile, unlike the II, II Plus,
or Ile, always has this space switched in.

Port screen hole RAM space
There are 128 bytes of memory (64 in main memory, 64 in auxiliary
memory) allocated to the ports, eight bytes per port, as shown in
Table 3-9. These bytes are reserved for use by the system, except as
described in Chapters 4 through 9.

Table 3-9
Port screen hole memory locations

Base
Ports

address 2 3 4 5 6 7

$0478 $0479 $047A $047B $047C $047D $047E $047F
$04F8 $04F9 $04FA $04FB $04FC $04FD $04FE $04FF
$0578 $0579 $057A $057B $057C $057D $057E $057F
$05F8 $05F9 $05FA $05FB $05FC $05FD $05FE $05FF
$o678 $0679 $067A $067B $067C $067D $067E $067F
$06F8 $06F9 $06FA $06FB $06FC $06FD $06FE $06FF
$0778 $0779 $077A $077B $077C $077D $077E $077F
$07F8 $07F9 $07FA $07FB $07FC $07FD $07FE $07FF

These addresses are unused bytes in the RAM reserved for text and
low-resolution graphics displays, and hence they are sometimes
called screen holes. These particular locations are not displayed on
the screen and their contents are not changed by the built-in output
routines. In other words, they are used by the output routines but
they are not part of the video display.

Warning All the screen holes In auxiliary memory, and many of them In
main memory, are reserved for special use by Apple lie
firmware-for example, to store lnltlallzatlon Information. Do not
use any locations marked reserved In this manual.

The way that port firmware uses these RAM locations and their
addresses is covered in Chapters 4 through 10.

74 Chapter 3: Introduction to Apple lie 1/0

Appendix E describes Interrupt
handling on the Apple lie.

Interrupts
Interrupts are a way to more efficiently use the hardware in a
computer. Interrupt support built into the Apple Ilc's firmware is
described briefly below.

When the IRQ line on the 65C02 microprocessor is activated, the
65C02 transfers program control through the vector in locations
$FFFE through $FFFF of ROM or whichever bank of RAM is switched
in (Chapter 2). If ROM is switched in, this vector is the address of
the Monitor's interrupt handler, which determines whether the
request is due to an interrupt that should be handled internally. If
so, the Monitor handles it and then returns control to the
interrupted program.

If the interrupt is due to a BRK ($00) instruction, control is
transferred through the BRK vector ($03F~3Fl). Otherwise,
control is transferred through the IRQ vector ($03FE-$03FF).

Interrupts 75

Chapter 4

Keyboard
and ~peaker

77

This chapter describes how to use two of the Apple He's buift-in
devices: the keyboard and the speaker.

Keyboard input
Table 4-1 describes the characteristics of the keyboard that relate to
programming. You won't have to write routines to read the
keyboard from all your assembly-language programs since the
Apple · Ile firmware Monitor provides keyboard support through the
three standard input routines described in Chapter 3-RdKey,
Keyln, and GetLn. You can do all your keyboard handling directly
in your programs if you want to, but it's nice to know that you're not
forced to.

Reading the keyboard
For a description of how the
keyboard strobe works. refer to

The keyboard encoder and ROM (see Chapter 11) can generate all
128 ASCII codes, so all the special character codes in the ASCII
character set are available from the keyboard. Your machine
language programs can call RdKey to get characters from the
keyboard. RdKey reads characters a byte at a time from the
keyboard data location ($COOO) shown in Table 4-1.

AppendlxE. ·

Here is how your programs should go about reading the keyboard:

1. Test bit 7 of address $COOO to see if a key has been pressed. Bit 7
is the keyboard strobe bit. ·

2. When bit 7 goes to a 1, you know that the low-order seven bits of
$COOO are a valid· character.

3. Clear the keyboard strobe (bit 7) at $COOO by reading or writing
anythtng to address $C010.

$C010 has another function besides clea!ing the keyboard strobe:
its high bit is a 1 while a key is pressed (except the Apple keys,
Control, Shift, Caps Lock, and Reset). Bit 7 at this location is
therefore called any-key-down. You could use this to let a program
do something useful other than just waiting for the next key to be
pressed. (People are generally a lot slower than the Apple Ile.)
Check $C010 occasionally to see if something should be done.

Important If your program needs to read both the keyboard flag and the
strobe. It must reac;:f the strobe bit first. Any time you read the
any-key-down bit at $C010, you also clear the keyboard strobe
bit at SCOOO.

78 Chapter 4: Keyboard and Speaker

Jn game Input switches, see
:::hapter 9.

.::>n Getln. Getln 1. and RdKey.
;ea Chapter 3.

I

Table 4-1
Keyboard Input characteristics

Port number None

Commands Keyboard is always on, in the sense that any
keypress generates a KSTRB.

lnltlal Reset routine clears the keyboard strobe and sets
characteristics the keyboard as the standard input device (that is,

sets KSW to point to RdKey).

Hardware locations
$COOO Keyboard data and strobe

$C010

$C060

$C061

$C062

Any-key-do'Wn flag and clear-strobe switch

40-coluriln switch status on bit 7; 1 = 40-column
display ,;,, switch down

Open Apple status on bit 7; 1 = pres5ed (also
game input switch O)

Solid Apple status on bit 7; 1 =pressed

Monitor firmware
routines

Location Name Description

$FD6A GetLn Gets an input line with prompt

$FD67 GetLnZ Gets an input line with preceding carriage
return

$FD6F GetLnl Gets an input line, but with no preceding
prompt

$FD1B Key In The keyboard input subroutine

$FD35 Rd Char Gets an input character or escape code

$FDOC RdKey The standard character input subroutine

Use of other paQ••
Page 2 The standard character string input buffer (see GetLn

description)

After your program has cleared the keyboard strobe, the strobe
remains low until another key is pres5ed.

Table 4-2 shows the ASCII codes generated by all the keys on the
Apple Ile keyboard. Remember, if the strobe bit is set, the
character values that your program sees will be equal to the values
given in Table 4-2 plus $80.

Keyboard Input 79

Table 4-2
K_eys and ASCII codes

Key alone +Control + Shift +Both

Key Code Char Code Char Code Char Code Char

Delete 7F DEL 7F. DEL 7F DEL 7F DEL
Left Arrow 08 BS 08 BS 08 BS 08 BS
Tab 09 HT 09 HT 09 HT 09 HT
Down Arrow OA LF OA LP OA LP OA LF
Up Arrow OB VT OB VT OB VT OB VT
Return OD CR OD CR OD CR OD CR
Right Arrow IS NAK IS NAK IS NAK IS NAK
Escape 1B ESC 1B ESC 1B ESC IB ESC
Space 20 SP 20 SP 20 SP 20 SP
I ft 27 27 22 22
,< 2C 2C , 3C < 3C <

2D IF us SF IF us
.> 2E 2:E 3E > 3E >
I ? 2F I 2F I 3F 3F ?
O) 30 0 30 0 29) 29)
I ! 3I I 3I I 2I 2I
2@ 32 2 00 NUL 40 @ 00 NUL
3# 33 3 33 3 23 # 23 #
4$ 34 4 34 4 24 $ 24 $
S% 3S s 3S s 2S % 2S %
6 I\ 36 6 1E RS SE I\ 1E RS
7& 37 7 37 7 26 & 26 &
8 • 38 8 38 8 2A 2A
9(39 9 39 9 28 (28 (
, . 3B 3B 3A 3A
=+ 3D 3D 2B + 2B +
[{ SB [1B ESC 7B { 1B ESC
\ I SC \ IC FS 7C I IC FS
] } SD] · ID GS 7D } ID GS
!- 6o 60 7E 7E
A 6I a OI SQH 4I A OI SQH
B 62 b 02 STX 42 B 02 STX
c 63 c 03 ETX 43 c 03 ETX
D 64 d 04 EQT 44 D 04 EQT
E 6S e OS ENQ 4S E OS ENQ
F 66 f o6 ACK 46 F 06 ACK
G 67 g 07 BEL 47 G 07 BEL
H 68 h 08 BS 48 H 08 BS
I 69 09 HT 49 I 09 HT

80 Chapter 4: Keyboard and Speaker

Keystrokes can also generate
Interrupts. See Appendix E.

l'he reset routine Is described In
C:hapter 2.

For Information on how to have
programs Interpret keystrokes In
a standard way, refer to the
Apple II Design Guidelines listed
in the Bibliography.

Table 4-2 (continued)
Keys and ASCII codes

Key alone +Control + Shift +Both

Key Code Char Code Char Code Char Code Char

J 6A j OA LF 4A J OA LF
K 6B k OB VT 4B K OB VT
L 6C l oc FF 4C L oc FF
M 6D m OD CR 4D M OD CR
N 6E n OE so 4E N OE so
0 6F 0 OF SI 4F 0 OF SI
p 70 p 10 DLE 50 p 10 DLE
Q 71 q 11 DCl 51 Q 11 DCl
R 72 r 12 DC2 52 R 12 DC2
s 73 s 13 DC3 53 s 13 DC3
T 74 t 14 DC4 54 T 14 DC4
u 75 u 15 NAK 55 u 15 NAK
v 76 v 16 SYN 56 v 16 SYN
w 77 w 17 ETB 57 w 17 ETB
x 78 x 18 CAN 58 x 18 CAN
y 79 y 19 EM 59 y 19 EM
2 7A z lA SUB 5A 2 lA SUB

Note: Codes are in hexadecimal here; refer to Table G-8 for decimal
equivalents.

There are several keys that do not generate ASCII codes themselves,
but alter the characters produced by other keys. These modifier keys
are Control, Shift, and Caps Lock.

Your programs can also use the Open Apple and Solid Apple as
character modifier keys while handling keyboard input, and, if one
or both of them are pressed, branch to a special routine, such as a
help program. Your program can read Open Apple at $C061 and
Solid Apple at $C062.

Another key that doesn't generate a code is Reset, located at the
upper-left corner of the keyboard; it is connected directly to the
Apple Ilc's processor. Pressing Reset with Control depressed
normally causes the system to stop whatever program it's running
and restart itself. If you hold Open Apple while pressing Control
Reset, the Apple Ile performs a forced cold start. The restart
sequence is described in Chapter 2.

Keyboard Input 81

Electrical specifications of the
speaker circuit appear In
Chapter 11 .

Monitor firmware support for keyboard input

Chapter 3 describes the three standard Monitor input routines
serving the keyboard: GetLn, RdKey, and Keyln. This section
discusses the three other available Monitor routines.

GetLnZ

GetLnZ (at address $FD67) is an alternate entry point for GetLn that
first sends a carriage return to the standard output, then continues
into GetLn.

GetLnl

GetLnl (at address $FD6F) is an alternate entry point for GetLn that
does not issue a prompt before it accepts the input line. However, if
the user cancels the input line with too many backspaces or with
Control-X, then GetLnl issues the prompt stored at location $33
when it gets another line.

Rd Char

RdChar (at address $FD35) is a subroutine that gets characters from
the standard input subroutine, and also interprets the escape codes
listed in Chapter 3.

If the enhanced video firmware is active, Right Arrow (Control-U)
reads a character from the screen as if it were typed from the
keyboard. This is a function of the Monitor's built-in editing
capability described in Chapter 3.

Speaker output
The Apple Ile has a small speaker mounted near the front of the
bottom plate of its case. The speaker is connected to a soft switch
that toggles; that is, the switch has two states, off and on, and it
changes from one to the other each time it is accessed. Table 4-3
describes the speaker output characteristics.

82 Chapter 4: Keyboard and Speaker

Table 4-3
Speaker output characteristics

Port number

Commands

lnltlal
characteristics

Hardware location

None.

Some programs sound the speaker in response to
Control-G.

Reset routine sounds the speaker.

$C030 Toggle speaker (read only).

Monitor firmware
routines

LocaHon
$FBDD

$FF3A

Name
Belll

Bell

Description
Sends a beep to the speaker.

Sends Control-G to the curr(!nt output.

Using the speaker
If you switch the speaker once, by reading or writing to $C030, it
emits a click; to make longer sounds, access the speaker repeatedly.
The switch for the speaker uses memory location $C030. You can
make various tones and buzres with the speaker by using
combinations of timing loops in your program.

Important You should always use a read operation to toggle the speaker.
If you write to this soft switch. It switches twice In rapid
succession. The resulting pulse Is so short that the speaker
doesn't have time to respond; It doesn't make a sound.

Speaker output 83

See Chapter 3.

Monitor firmware support for speaker output
The Monitor supports the speaker with one simple routine, Belll. A
related routine, Bell, supports the current output device-the one
that CSW points to.

Belll

Belll (at addr~ $FDBB) makes a beep through the speaker by
generating a 1-kHz tone in the Apple Ilc's speaker for 0.1 second.
This routine scrambles the A and X registers.

Bell

The Monitor routine Bell (at location $FF3A) writes a bell control
character (ASCII Control-G) to the current output device. This
routine leaves the accumulator holding $87.

84 Chapter 4: Keyboard and Speaker

Chapter 5

Video .
Display
Output

85

NTSC stands. for National
Television standards
Committee. a group that
formulat~s broadcast and
reception guidelines used by the
USA and several other countries.

The Apple Ilc's primary output device is its video display. You can
use any ordinary color or monochrome video monitor with the
Apple Ile. An ordinary monitor is one that accepts NTSC
corripatible composite video. If ydu use Apple Ile color graphics
with a black-and-white monitor, the display will appear as black,
white, and two shades of gray.

If you are only u5ing graphics modes and 40-column text, you can
uSe a television set for your video display. If the 1V set has an input
connector for composite video, you can connect it directly to your
Apple Ile; otherwise, you inust attach an RF video modulator
between the Apple Ile and the television set.

Important The Apple lie can produce an 80-column text display. However.
If you use an ordinary color or black-and-white teieVlslon set.
80-column text will be too blurry to read. For a clear 80-column
display. you must use a high-resolution video monitor with a
bandwidth of 14 MHz or greater.

Table 5-1 summarizes the video output port's characteristics and
points to other information in this chapter.

Table 5-1
Video output port characteristics

Port number

Commands

lnltlal
characteristics

Hardware
locations

Monitor firmware

routines

1/0 firmware
eritry points

86 Chapter 5: Video Display Output

Output port 3.

See Figure 5-3.

See Figure 5-3.
Note: If a program is to use the enhanced video
firmware, it should turn it on and then
immediately check the 80/40 switch. If the
switch is in the 40 position, the program
should issue a Control-Q.

See Table 5-7.

See Table 5-11.

See Table 5-12.

See "Video Output Signals" In
Chapter 11 for more on video
expansion hardware.

Video display specifications
Table 5-2 summarizes the video display's specifications, and
provides a further guide to other information in this chapter.

Table 5-2
Video display specifications

Display modes

Text capacity

Character set

Display formats

Low-resolution
graphics

High-resolution
graphics

Double high-resolution
graphics

40-column text; map: Figure 5-5
SO-column text; map: Figure 5-6

Low-resolution color graphics;
map: Figure 5-7

High-resolution color graphics;
map: Figure 5-8

Double high-resolution color
graphics; map: Figure 5-9

24 lines by 80 columns (character
positions)

96 ASCII characters (uppercase and
lowercase)

Normal, inverse, flashing,
MouseText (Table 5:.-3)

16 colors (Table 5-4): 40 horizontal
by 48 vertical; map: Figure 5-7

6 colors (Table 5-5): 140 horizontal
by 192 vertical (restricted)

Black and white: 280 horizontal
by 192 vertical; map: Figure 5-8

16 colors (Table 5-6): 140 horizontal
by 192 vertical (no restrictions)

Black and white: 560 horizontal
by 192 vertical; map: Figure 5-9

The video signal produced by the Apple Ile is NTSC-compatible
composite color video available at two places on the back panel of
the Apple Uc: the RCA-type phono jack and the 15-pin D-type
connector. Use the RCA-type phono jack to connect a video
monitor, and the DB-15 connector for an external video modulator
or other video expansion hardware.

Video display specifications 87

See "MouseText."

Text modes
Either of the Apple Ilc's two text modes can display all 96 ASCII
characters: uppercase and lowercase letters, the ten digits,
punctuation marks, and special characters. Each character is
displayed in an area of the screen that is seven dots wide by eight
dots high. The characters are formed by a dot matrix five dots wide
(with a few exceptions, such as underscore), leaving two blank
columns of dots between characters in a row. Except for lowercase
letters with descenders, the characters are only seven dots high,
leaving one blank line of dots between rows of characters.

The normal display has white (or other monochrome color used by
your monitor) dots on a dark baCkground. Characters can also be
displayed as blaCk dots on a white baCkground; this is called
inverse video.

Text character sets
The Apple Ile can display either of two text character sets: the
primary set and an alternate set (Table 5-3). The forms of the
characters in the two sets are actually the same, but the available
display formats are different. The displayformats are

o normal, with white dots on a blaCk screen

o inverse, with blaCk dots on a white screen

o flashing, alternating between normal and inverse

The Apple Ile can display uppercase characters in all three
formats-normal, inverse, and flashing-with the primary
character set. Lowercase letters can only be displayed in normal
format This makes the primary character set compatible with most
software written for the Apple II and II Plus, which can display text
in flashing format but don't have lowercase characters.

The alternate character set trades the flashing format for a complete
set of inverse characters. With the alternate character set, the
Apple Ile can display uppercase letters, lowercase letters, numbers,
and special characters in either normal format or inverse format. It
can also display MouseText.

88 Chapter 5: Video Display Output

To Identify particular characters
and values. refer to Table 4-2.

You can select between character sets with the alternate-text soft
switch, described later in this chapter. Table 5-3 shows the
character codes in decimal and hexadecimal for the Apple Ile
primary and alternate character sets in normal, inverse, and
flashing formats.

Table 5-3
Display character sets

Hex
Primary character set Alternate character set

values Character type Format Character type Format

$00-$1F Uppercase Inverse Uppercase Inverse
letters letters

$20-$3F Special Inverse Special Inverse
characters characters

$40-$5F Uppercase Flashing Mouse Text
letters

$60-$7F Special Flashing Lowercase Inverse
characters letters

$80-$9F Uppercase Normal Uppercase Normal
letters letters

$AO-$BF Special Normal Special Normal
characters character

$CO-$DF Uppercase Normal Uppercase Normal
letters letters

$EO-$FF Lowercase Normal Lowercase Normal
letters letters

Each character on the screen is stored as one byte of display data.
The low-order six bits make up the ASCII code of the character
being displayed. The remaining two (high-order) bits select format
and the group within ASCII.

Text modes 89

Mouse Text
The alternate character set contains 32 graphics characters called
MouseText in place of the primary set's inverse uppercase
characters from $40 through $5F. These graphics are especially
convenient to use with a mouse because they can be generated by
character codes instead of groups of high-resolution byte values,
and they can be moved around quickly. To use MouseText
characters, do the following:

1. Tum on the enhanced video firmware with PR#3 or 6 Control-P.

2. Set inverse mode: use the INVERSE command or put $3F in
location $32, or print Control-0.

3. Turn on MouseText with PRINT CHR$(27); or pass $1B to COut
in the accumulator.

4. Print the uppercase letter (or other ASCII character in the range
$40 through $5F:@[\J /\ or _) that corresponds to the
MouseText character you want.

5. Turn off MouseText with PRINT CHR$(24); or pass $18 to COutl
in the accumulator.

6. Set normal mode: use the NORMAL command or put $FF in
location $32, or print a Control-N.

Here is a sample Applesoft program that prints all the MouseText
characters:

10 D$=CHR$(4)
20 PRINT PRINT D$;•PRt3"
30 INVERSE
40 PRINT CHR$(27);"ABCDEFGHIJKLMNOPQRSTUVWXYZ[]~_";
50 PRINT CHR$(24);
60 NORMAL

MouseText characters and their corresponding ASCII characters are
shown in Figure 5-1.

90 Chapter 5: Video Display Output

• 0 ~ x v • ~ --
@ A B c D E F G

f- + 1' - +I I :-f •••
H J K L M N 0

~- .. ~ - L 7 • • -- I
p a R s T u v w

c I + - .JL :!] I :=. - ., ...
x y z \

Figure 5-1
MouseText characters

40-column versus 80-column text
The Apple Ile has two text display modes: 40-column and 80-
column. The number of dots in each character does not change,
but the characters in 80-column mode are only half as wide as the
characters in 40-column mode. Compare the two displays in
Figure 5-2. On an ordinary color or black-and-white television set,
the narrow characters in the 80-column display blur together; you
must use the 40-column mode to display text on a television set.

Text modes 91

]LIST 0,100

10 REM APPLESOFT CHARACTER DEMO

20 TEXT : HOME

30 PRINT : PRINT "Applesoft Char

acter Demo"

40 PRINT : PRINT "Which characte

r set--"

50 PRINT : INPUT "Primary (P) or

Alternate (A) ?";A$

60 IF LEN (A$) < 1 THEN 50

65 LET A$ = LEFT$ (A$, 1)

70 IF A$ "P" THEN POKE 49166,

0
80 IF A$ "A" THEN POKE 4 9167,

0
90 PRINT PRINT ", .• printing th

e same line, first"
100 PRINT " in NORMAL, then INVE

RSE ,then FLASH:": PRINT

]LIST

10 REM APPLESOFT CHARACTER DEMO

20 TEXT : HOME
30 PRINT PRINT "Applesoft Character Demo"

40 PRINT : PRINT "Which character set--"
50 PRINT : INPUT "Primary (P) or Alternate (A) ?";A$

60 IF LEN (A$) < 1 THEN 50
70 LET A$= LEFT$ (A$,1)
80 IF A$~ "P" THEN POKE 49166,0
90 IF A$= "A" THEN POKE 49167,0
100 PRINT : PRINT " ... printing the same line, first"
150 PRINT " in NORMAL, then INVERSE ,then FLASH:": PRINT

160 NORMAL : GOSUB 1000
170 INVERSE : GOSUB 1000
180 FLASH : GOSUB 1000
190 NORMAL : PRINT : PRINT : PRINT "Press any key to repeat." GET A$

200 GOTO 10
1000 PRINT : PRINT "SAMPLE TEXT: Now is the time--12:00"

1100 RETURN

l•

Figure 5-2

I

40-column and 80-column text with alternate character set

92 Chapter 5: Video Display Output

Figure 5-3 shows the characteristics of the text display modes and
how to switch between them.

Power On

Cursor: square box
Input hook: C3Keyln
Output hook: C3COut1
Window: 40 columns,

24 llnes
Character Set: alternate

Figure 5-3

(ESC) 8

(Do not affect 1/0 hooks)

Text mode characteristics and switching

(ESC)(CONTROL)-@)

40-column window

Cursor: checkerboard
Input hook: Keyln
Output hook: COut1
Window: 40 columns,

24 llnes
Character Set: primary

Cursor: narrow box
Input hook: C3Keyln
Output hook: C3COut1
Window: 80 columns,

24 llnes
Character Set: alternate

Text modes 93

Table 5-4
Low-resolution graphics
colors

Nibble value

Dec Hex Color

0 $00 Black
1 $01 Magenta
2 $02 Dark blue
3 $03 Purple
4 $04 Dark green
5 $05 Gray 1
6 $06 Medium blue
7 $07 Light blue
8 $08 Brown
9 $09 Orange
10 $0A Gray2
11 $OB Pink
12 $0C Light green
13 $OD Yellow
14 $OE Aquamarine
15 $OF White

Note: colors may vary, depending
on adjustment of monitor or
television set.

Graphics modes
The Apple Ile can produce color video graphics in any of three
different modes:

o low-resolution graphics, 48 rows by 40 columns

o high-resolution graphics; 192 rows by 280 columns

o double high-resolution graphics, 192 rows by 560 columns

Each graphics mode treats the screen as a rectangular array of
spots. Normally, your programs will use the features of some high
level language to draw graphics dots, lines, and shapes on the
screen; this section describes the way the resulting graphics data are
stored in the Apple Ilc's memory.

Low-resolution graphics
The Apple Ile displays an array of 48 rows by 40 columns of colored
blocks in the low-resolution graphics mode. Each block can be any
one of sixteen colors, including black and white. On a black-and
white monitor or television set, these colors appear as black, white,
and two shades of gray. There are no blank dots betWeen blocks;
adjacent blocks of the same color merge to make a larger shape.

The low-resolution graphics display data are stored in the same part
of memory as the data for the 40-column text display. Each byte
contains data for two low-resolution graphics blocks. The two blocks
are displayed on~ atop the other in a display space the same size as
a 40-column text character, seven dots wide by eight dots high.

Half a byte-four bits, or one nibble-is assigned to each graphics
block. Each 'nibble can have a value from 0 to 15, and this value
determines which one of sixteen colors appears on the screen. The
colors and their corresponding nibble values are shown in
Table 5-4. In each byte, the low-order nibble sets the color for the
top block of the pair, and the high-order nibble sets the color for
the bottom block. Thus, a byte containing the hexadecimal
value $D8 produces a brown block atop a yellow block on the
screen.

94 Chapter 5: Video Display Output

As explained earlier in this chapter, the text display and the low
resolution graphics display use the same area in memory. Your
programs should usually clear this part of memory when they
change display modes, but you can store data as text and display
them as graphics, or vice versa. All you have to do is change the
mode switch, described later in this chapter, without changing the
display data. 1bis usually produces meaningless jumbles on the
display, but some programs have used this technique to good
advantage for producing complex low-resolution graphics displays
quickly.

High-resolution graphics
In the high-resolution graphics mode, the Apple Ile displays an
array of colored dots in 192 rows and 280 columns. The colors
available are black, white, purple, green, orange, and blue,
although the colors of the individual dots are limited, as described
below, by the color of adjacent dots. Adjacent dots of the same
color merge to form a continuous colored area.

High-resolution graphics display data are stored in either of two
8192-byte areas in memory. These areas are called high-resolution
Page 1 and Page 2; think of them as display data buffers. Normally,
your programs will use the features of some high-level language to
draw graphics dots, lines, and shapes to display; this section
describes the way the resulting graphics data are stored in the
Apple Ilc's memory.

The Apple Ile high-resolution graphics display is bit-mapped: each
dot on the screen corresponds to a bit in the Apple Ilc's memory.
The seven low-order bits of each display byte control a row of seven
adjacent dots on the screen, and 40 adjacent bytes in memory
control a row of 280 (J times 40) dots. The eighth bit (the most
significant) of each byte is not displayed; it selects one of two color
sets, as described below. The least significant bit of each byte is
displayed as the leftmost dot in a row of seven, followed by the next
least significant bit, and so on, as shown in Figure 5-4.

Graphics modes 95

Bits in Data Byte

6 5 4 3 2 0

0 2 3 4 5 6

Dots on Graphics Screen

Figure 5-4
High-resolution display bits

There is a simple correspondence between bits in memory and dots
on the screen on a black-and-white monitor. A dot is white if the bit
controlling it is on (1), and the dot is black if the bit is off (O). On a
black-and-white television set, pairs of dots merge together;
alternating black and white dots merge to a continuous gray.

A dot whose controlling bit is off (0) is black on an NTSC color
monitor or a color television set. If the bit is on, the dot is white or a
color, depending on its position, the dots on either side, and the
setting of the high-order bit of the byte. Call the leftmost column of
dots column 0, and assume (for the moment) that the high-order
bits of all the data bytes are off (O). If the bits that control them are
on, dots in even-numbered columns, 0, 2, 4, and so forth, are
purple, and dots in odd-numbered columns are green-but only if
the dots on either sid~ are black. If two adjacent dots are both on,
they are both ~hite.

You select the 'othet two colors, blue and orange, by turning the
high-order bit (bit 7) of a data byte on (1). The colored dots
controlled by a byte with the high-order bit on are either blue or
orange: the dots in even-numbered columns are blue, and the dots
in odd-numbered columns are orange (again, only if the dots on
either side are black). Within each horizontal line of seven dots
controlled by a single byte, you can have black, white, and one pair
of colors. To change the color of any dot to one of the other pair of
colors, you must change the high-order bit of its byte, which affects
the colors of all seven dots controlled by the byte.

96 Chapter 5: Video Display Output

For more details about the way
the Apple lie produces color on a
TV set. see Chapter 11. For a
table of reversed bit patterns.
refer to Appendix H.

In brief, high-resolution graphics displayed on a color monitor or
television set are made up of colored dots, according to the
following rules:

o Dots in even-numbered columns can be black, purple, or blue.

o Dots in odd-numbered columns can be black, green, or orange.

D If adjacent dots in a row are both on, they are both white.

o The colors in each row of seven dots controlled by a single byte
are either purple and green, or blue and orange, depending on
whether the high-order bit is off (O) or on (1).

These rules are summarized in Table 5-5. The blacks and whites are
numbered to remind you that the high-order bit is different.

Table 5-5
High-resolution graphics colors

Bits 0-6 Bit 7 off Bit 7 on

Adjacent columns off Black 1 Black 2
Even columns on Purple Blue
Odd columns on Green Orange
Adjacent columns on White 1 White 2

Note: Colors may vary, depending on adjustment
of monitor or television set.

The peculiar behavior of the high-resolution colors reflects in part
the way NTSC color television works. The dots that make up the
Apple Ile video signal are spaced to coincide with the frequency of
the color subcarrier used in the NTSC system. Alternating on and

· off dots at this spacing cause a color monitor or 1V set to produce
color, but two or more on dots together do not.

Double high-resolution graphics
The horizontal resolution of double high-resolution graphics is
560 dots per line, with 192 lines. Double high-resolution graphics
maps the low-order seven bits of the bytes in the two double high
resolution graphics pages. A double high-resolution page is made
up of a 8192-byte page in main memory and an equivalent page
having the same address in auxiliary memory. In most cases, only
the first double high-resolution graphics page is used.

Graphics modes 97

The bytes in the main-memory and auxiliary-memory pages are
displayed in exactly the same manner as the characters in 80-
column text: of each pair of identical addresses, the auxiliary
memory byte is displayed first, and the main-memory byte is
displayed second. A dot whose controlling bit is off (0) is black
when displayed.

Unlike high-resolution color, double high-resolution color has no
restrictions on which colors can be adjacent Color is determined
by any four adjacent dots along a line. Think of a four-dot-wide
window moving across the screen: at any given time, the color
displayed corresponds to the 4-bit value from Table 5-6 that
corresponds to the window's position (Figure 5-9). Effective
horizontal resolution with color is 140 (56o divided by 4).

Table 5-6 describes the data values used to produce colors in
double high-resolution graphics. To use the table, divide the
column number by four and use the remainder to find the correct
column: abO is a byte residing in auxiliary memory corresponding
to a remainder of 0 (byte 0, 4, 8, and so on), mbl is a byte residing
in main memory corresponding to a remainder of 1 (byte 1, 2, 9
and so on), and similarly for ab2 and mb3.

Mixed-mode displays
Any of the graphics displays can have four lines of text, either 40-
column or 80-column, at the bottom of the screen. Graphics
displays with text at the bottom are called mtxed-mode dtsplays. To
use them, the TEXT switch must be off (read $C050) and the MIXED
switch on (read $C053).

Important You cannot display 40-column text with double high-resolution
graphics.

To determine what appears where in mixed-mode displays, refer to
Figures 5-5 through 5-9 later in this chapter. See the bottom sixth of
the appropriate text display (Figure 5-5 or 5-6) and the upper five
sixths (down to the heavy horizontal line) in the appropriate
graphics' display (Figures 5-7 to 5-9).

98 Chapter 5: Video Display Output

Table 5-6
Double high-resolution graphics colors

Repeated
Color abO mbl ab2 mb3 bit pattern

Black $00 $00 $00 $00 0000
Magenta $08 $11 $22 $44 0001
Brown $44 $08 $11 $22 0010
Orange $4C $19 $33 $66 0011
Dark green $22 $44 $08 $11 0100
Gray 1 $2A $55 $2A $55 0101
Green $66 $4C $19 $33 0110
Yellow $6E $5D $3B $77 0111
Dark blue $11 $22 $44 $08 1000
Purple $19 $33 $66 $4C 1001
Gray2 $55 $2A $55 $2A 1010
Pink $5D $3B $77 $6E 1011
Medium blue $33 $66 $4C $19 1100
Light blue $3B $77 $6E $5D 1101
Aqua $77 $6E $5D $3B 1110
White '$7F $7F $7F $7F 1111

Note: C.Olors may vary, depending on adjustment of monitor or television
set.

Display pages
The Apple Ile uses data stored in specific areas in memory to
generate its video displays. These areas, called display pages, serve
as buffers where your programs can put data to be displayed. Each
byte in a display buffer controls an object-a character, a colored
block, or a group of adjacent dots-at a certain location on the
display, depending on the current display mode.

Display pages 99

The 40-column-text and low-resolution-graphics modes use two
display pages of 1024 bytes each. These are called text Page 1 and
text Page 2, and they are located at $0400 through $07FF and $0800
through $0BFF in main memory. Normally, only Page 1 is used, but
you can put text or graphics data into Page 2 and switch between
displays. Either page can be displayed as 40-column text, low
resolution graphics, or mixed-mode (four lines of text at the
bottom of a graphics display).

The 80-column text mode displays twice as much data as the 40-
column mode-1920 bytes-but it cannot switch pages when the
enhanced video firmware is active. The 80-column text display uses
a combination page made up of text Page 1 in main memory plus
another page in auxiliary memory. This additional memory is not
the same as text Page 2-in fact, it is text Page l:X, and it occupies
the same address space as text Page 1 (see Figure 2-11). The built-in
firmware 1/0 routines described in Chapter 3 take care of this extra
addressing automatically; that is one reason to use these routines
for all normal text output.

Important The built-In video firmware always displays Pagel text. You
cannot write text to Page 2 with the bullt-ln firmware.

The high-resolution graphics mode also has two display pages, but
each page is 8192 bytes long. In the 40-column text and low
resolution graphics modes each byte controls a display area seven
dots wide by eight dots high. In high-resolution graphics mode
each byte controls an area seven dots wide by one dot high. Thus, a
high-resolution display requires eight times as much data storage as
a low-resolution display, as shown in Table 5-7.

The double high-resolution graphics mode interleaves the two
high-resolution pages (Pages 1 and IX) in exactly the same way as
80-column text mode interleaves the text pages: column 0 and all
subsequent even-numbered columns come from the auxiliary page;
column 1 and all subsequent odd-numbered columns come from
the main page.

l 00 Chapter 5: Video Display Output

Table 5-7
Video display page locations

Display
Display mode page Lowest address Highest address

40-column text, 1 $0400 1024 $07FF 2047
low-resolution 2• $0800 2048 $0BFF 3071
graphics .

80-column text 1 $0400 1024 $07FF 2047
2• $0800 2048 $0bFF 3071

High-resolution 1 $2000 8192 $3FFF 1638~
graphics 2 $4000 16384 $5FFF 24575

Double high- lt $2000 8192 $3FFF 16383
resolution 2t $4000 6384 $5FFF 24575
graphics

• This is not supported by firmware; for instructions on how to switch
pages, refer to "Display Mode Switching."

t See "Double High-Resolution Graphics."

Display mode switching
Table 5-8 shows the reserved locations for the soft switches that
control the different display modes. The column of the table
labeled Action indicates what to do to aclivate or read a switch
setting: R means read the location, W means write anything to the
location, RIW means read or write, and R7 means read the
location and then check bit 7.

Table 5-9 lists the display modes that the firmware can set up
automatically. In the 40-column modes, the contents of the
standard 1/0 hooks KSW and CSW (Chapter 3) determine whether
the enhanced video firmware features are available or not. The
firmware also takes care of setting or clearing AltChar.

Table 5-10 lists other display modes available but not supported by
firmware. For modes that display Page 2 with the 80Col switch on,
your program may have to turn 80Store off after the firmware has
turned it on.

Double low-resolution shows on the display screen when HiRes is
off and both 80Col and DHiRes are on. It is the low-resolution
graphics equivalent of 80-column text, and it uses the same map
(Figure 5-6), giving you 48 rows of 80 blocks.

Display mode switching 101

The IOUDis ($C07E) switch must be on to allow you to use locations
$COSE and $COSF to change DHiRes. The firmware in fact leaves it
on-and your program should, too-unless it wants to use locations
$COSE and $COSF to change mouse values (Chapter 9).

Tabl• 5-8
Display soft switches

Name Action Hex Function

AltChar w $COOE Off: Display text using
primary character set

Alt Char w $COOF On: Display text using
alternate character set

RdAltChar R7 $C01E Read AltChar switch (I = on)

80Col w $COOC Off: Display 40 columns

80Col w $COOD On: Display 80 columns

Rd80Col R7 $COIF Read 80Col switch (1 = on)

SOS tore w $COOO Off: Cause Page2 on to select
auxiliary RAM

80Store w $COOI On: Allow Page2 to switch
main RAM areas

Rd80Store R7 $COI8 Read 80Store switch (1 = on)

Page2 R/W $COS4 Off: Select Page I

Page2 R/W $COSS On: Select Page IX (80Store
on) or 2

RdPage2 R7 $COIC Read Page2 switch (1 = on)

TEXT R/W $COSO Off: Display graphics or (if
MIXED on) mixed

TEXT R/W $COSI On: Display text

RdTEXT R7 $COIA Read TEXT switch (1 = on)

MIXED R/W $COS3 Off: Display only text or only
graphics

102 Chapter 5: Video Display Output

Table 5-8 (continued)
Display soft switches

Name Action Hex Function

MIXED R/W $C054 On: (If TEXT off) display text
and graphi~

RdMIXED R7 $C01B Read MIXED switch Cl = on)

Hi Res R/W $C057 Off: (If TEXT off) display
low-resolution graphics

HiRes R/W $C058 On: (If TEXT om display
high.:resolution or (if DHiRes
on) double high-resolution
graphics ·

RdHiRes R7 $C01D Read HiRes switch (1 = on)

IOUDis w $C07E On: Disable IOU access for
addresses $C058 to $C05F;
enable access to DHiRes
switch

IOUDis w $C07F Off: Enable IOU access for
addresses $C058 to $C05F;
disable access to DHiRes
switch•

RdIOUDis R7 $C07E Read IOUDis switch (1 = off)t

DHiRes R/W $COSE On: (If IOUDis on) turn on
double high-resolution

DHiRes R/W $C05F Off: (If IOUDis on) turn off
double high-resolution

RdDHiRes R7 $C07F Read DHiRes switch (1 = on)t

• The firmware noqnally leaves IOUDis on. See also the following
footnote.

t Reading or writing any address in the range $C070-$C07F also triggers
the paddle timer and resets VBLint (Chapter 9).

Display mode switching l 03

Table 5-9
Display modes supported by firmware. Including Applesoft

Display
Switches

col/res Type Page 80Col aostor• Page2 TEXT MIXED HIRes DH I Res

40-column Text 1 Off Off On Off Off Off
80-column Text 1 On On
Low-res Graphics 1 Off Off Off Off Off Off
40/low .Mixed 1 Off Off Off On Off
80/low Mixed 1 On Off Off On Off Off
Hi-res Graphics 1 Off Off Off Off On
Hi-res Graphics 2 Off On Off Off On
40/high Mixed 1 Off Off Off On On
80/high Mixed 1 On Off Off On On Off

• 80Store is set by the firmware when 80Col is turned on.

Table 5-10
Other display modes

Display
Switches

col/res Type Page 80Col aostore Page2 TEXT MIXED HI Res DH I Res

40-column Text 2 Off On On
80-column 2 On Off On On
Low-res Graphics 2 Off On Off Off Off
40/low Mixed 2 Off On Off On Off
80/low Mixed 2 On Off On Off On Off Off
Dbl-low Graphics 1 On Off Off Off Off On
Dbl-low Graphics 2 On Off On Off Off Off On
80/dbl-low Mixed 1 On Off Off On Off On
80/dbl-low Mixed 2 On Off On Off On Off On
40/high Mixed 2 Off On Off On On
80/high Mixed 2 On Off On Off On On Off
Dbl-high Graphics 1 On Off Off Off On On
Dbl-high Graphics 2 On Off On Off Off On On
80/dbl-high Mixed 1 On Off Off Oh On On
80/dbl-high Mixed 2 On Off On Off On On On

• 80Store is set by the firmware when 80Col is turned on, and must be turned off to use the second 80-column
or double high-resolution page. This means that you cannot use firmware routines such as COut when
displaying Page 2 modes not supported by firmware.

104 Chapter 5: Video Display Output

For example, to switch to mixed 80-column and double high
resolution display Page 1, you can use these instructions in your
program:

STA $COOD Turns on 80Col; firmware then turns on 80Store.
LDA $C054 Turns off Page2; you could also have done a ST A.
STA $C050 Turns off TEXT; that is, turns on graphics mode.
STA $C053 Turns on MIXED; it works now that TEXT is off.
STA $C057 Turns on HiRes; it works now that TEXT is off.
STA $C07E Makes sure IOUDis is on so you can access DHiRes.
LDA $COSE Turns on DHiRes; it works now that IOUDis is on.

Display page maps
You should never have to store directly into display memory. Most
high-level languages let you write statements that control the text
and graphics displays. Similarly, if you are programming in
assembly language, you should use the display features of the built
in VO firmware.

Warning Never call any firmware with 80Col on or with 80Store and
Page2 both on. If you do. the firmware will not function
properly. As a general rule. always leave Page2 off.

All the different display modes use the same basic addressing
scheme: characters or graphics bytes are stored as rows of
40 contiguous bytes, but the rows themselves are not stored at
locations corresponding to their locations on the display. Instead,
the display address is transformed so that three rows that are eight
rows apart on the display are grouped together and stored in the
first 120 locations of each block of 128 bytes ($80 hex). For
example, the first 128-byte block contains the data for rows 0, 8,
and 16. The next 128-byte block contains data for rows 1, 9, and 17,
and so on.

The display memory maps are shown in Figures 5-5 through 5-9.
For a full description of the way the Apple Ile hardware handles
display memory, see Chapter 11.

Display page maps 1 OS

For more details about the way
the displays are generated. see
Chapter 11 .

High-resolution graphics data are stored in much the same way as
text, but there are eight times as many bytes to store, because eight
rows of dots occupy the same space on the display as one row of
characters.

The first 1024 bytes of the high-resolution display page contain the
first row of dots from each of the 24 groups of eight rows of dots.
The second 1024 bytes of the high-resolution display page contain
the second row of dots from each group of eight rows of dots, and
so on for all eight rows of all the groups. This fills up the 8192 bytes
of the high-resolution display page.

The display maps show addresses only for each Page 1. To obtain
addresses for text or low-resolution graphics Page 2, add 1024
($0400); to obtain addresses for high-resolution Page 2, add 8192
($2000).

The 80-column display works a little differently. Half of the data are
stored in the normal text Page 1 memory, and the other half are
stored in the auxiliary memory text Page 1. The display circuitry
fetches bytes from the same address in both memory areas
simultaneously and displays them sequentially: first the byte from
the auxiliary memory, then the byte from the main memory. The
characters in the even-numbered columns of the display are stored
(starting with column 0) in main memory, and the characters in the
odd-numbered columns of the display are stored (starting with
column 1) in main memory.

To store display data in auxiliary memory, first turn on the 80Store
soft switch by writing to location $C001. With 80Store on, the page
select switch Page2 selects between the portion of the 80-column
display stored in Page 1 of main memory and the portion stored in
the auxiliary memory. To select auxiliary memory, tum the Page2
soft switch on by reading or writing at location $C055.

The double high-resolution graphics display stores information in
the same way as high-resolution graphics, except there is an
auxiliary memory location as well as a main memory location
corresponding to each address. The two sets of display information
are interleaved in a manner similar to the interleaving of two 40-
column displays to create an 80-column text display (Figure 5-9).

l 06 Chapter 5: Video Display Output

Row
0 $400 1024

1 $480 1152

2 $500 1280

3 $580 1408

4 $600 1536

5 $680 1664

6 $700 1792
-

7 $780 1920

8 $428 1064

9 $4A8 1192

10 $528 1320

11 $5A8 1448

12 $628 1576

13 $6A8 1704

14 $728 1832

15 $7A8 1960

16 $450 1104

17 $400 1232

18 $550 1360

19 $500 1488

20 $650 1616

21 $600 1744

22 $750 1872

23 $700 2000

Figure 5-5
Map of 40-column text display

Display page maps 107

Main Memory L -
$00 $01 $02@ $03 $04~ $05 $06 ~~
1W:TJ21~ .J~' .. ~ 2~i~~~ · .~~~· . s _±1!J .ifio/,

ow ; , ,. »o ,r

0 $400 1024 I•' I"' •• ,. '
R

1 $480 1152
~

,,
i l;r

'-"'
2 $500 1280 l~1 ~' I l11!i 1 . .,~ I ~
3 $580 1408 ~ ·I

IT " ;;
l'.!l'.. L

4 $600 1536 i-.• ~ 1~,,,

5 $680 1664 I ~ 011ru1 i hid fl ~
6 $700 1792 pr p, ~ f':if
7 $780 1920 1 ~

8 $428 1064 I 11 I ~ ~ If~ ,,,TT

9 $4A8 1192 f"1F 1,·w. T I •'
10 $528 1320 I ~ iiJ ,,,I
11 $5A8 1448 [4~~ ~:: IPi] l 11ii~ l ·!li fl~] l~
12 $628 1576 r'iil ,, [T

;'fil_J

13 $6A8 1704 ,; ~ ,, .!J
14 $728 1832 I [I 1:·1mr: rt t~t 1.]
15 $7A8 1960 1° ··1 pr

I'· tl!i'l :--;-

16 $450 1104 ··I
·~·

17 $400 1232 I]] ''~!T 1¥~!' 1 ill! ~ ~
18 $550 1360 l:f .,, T ~

19 $500 1488 F ~

20 $650 1616 rnr_ ij~~ :'~m:· 'ili!~ j .mi :ru,: 1·1:,r -
21 $600 1744 "l I~

22 $750 1872 r,.

23 $700 2000 Ii~ ~ ~ ~ ;;~ f ~ ~,,

...... '---
$00 $01 $02 $03 $04 $05 $06 $07

0 1 2 3 4 5 6 7
Auxiliary Memory j

Figure 5-6
Map of 80-column text display

l 08 Chapter 5: Video Display Output

I" 1-

l
11i8 l.®ill! [111:
"'!!:' I! -;;'

'

ll
I •&:~ I 1 .1~1.

r' k '

($2o=$21"""'$2~$2:3'"$24"""'$25"'$26=-$2~
- - - - - - \ 32 33 34 35 36 37 38 39

Row
O I $400
1 I 1024
2 I $480 3 I 1152
4 I $500 5 I 1280
6 I $580 7 I 1408
8 I $600 9 I 1536

10 I $680
11 I 1664
12 I $700
13 I 1792
14 I $780
15 I 1920
16 I $428
17 I 1064
18 I $4A8
19 I 1192
20 I $528
21 I 1320
22 I $5A8
23 I 1448

24 I $628
25 I 1576
26 I $6A8
27 I 1704

28 I $728
29 I 1832

30 I $7A8
31 I 1960
32 I $450
33 I 1104
34 I $400
35 I 1232
36 I $550
31 I 1360
38 I $500
39 I 1488

40 I $650
41 I 1616
42 I $600
43 I 1744
44 I $750
45 I 1872
46 I $700
47 I 2000

Figure 5-7
Map of low-resolution graphics display

Display page maps l 09

Row
0 $2000 8192

1 $2080 8320

2 $2100 8448

3 $2180 8576

4 $2200 8704

5 $2280 8832

6 $2300 8960

7 $2380 9088

8 $2028 8232

9 $20A8 8360

10 $2128 8488

~ 11 $21A8 8616
............__

12 $2228 8744 ~ [I
-.......

13 $22A8 8872 l l l J+ 0 +$0000

14 $2328 9000

I 15 $23A8 9128 ~
+ 1024 +$0400

16 $2050 8272 j I + 2048 + $0800
17 $2000 8400

18 $2150 8528 ~ I +3072 +$0COO

19 $2100 8656 _\
I 20 $2250 8784 1 +4096 +$1000

21 $2200 8912

I 22 $2350 1
+5120 +$1400

9040

23 $2300 9168 1 I +6144 +$1800

I I I I] +7168 +$1COO

Figure 5-8
Map of high-resolution graphics display

110 Chapter 5: Video Display Output

Ro w

2

2

2

2

0 $2000

1 $2080

2 $2100

3 $2180

4 $2200

5 $2280

6 $2300

7 $2380

8$2028

9 $20A8

0 $2128

1 $21A8

2 $2228

3 $22A8

4 $2328

5 $23A8

6 $2050

7 $2000

8 $2150

9 $2100

0 $2250

1 $2200

2 $2350

3 $2300

Figure 5-9

·MalnM .
[f$00 ', $o ' $03 ~$<>4"''$0~ p"l - - - - - - \ ~ $20 f21" $22·" $23 :$24~ $25' S26,~~7J ~~

~ 0 1 r-t 2,.-- 3 r- 4 ~5~!i r-i\ . 32 < 33~34 35 ... ' 37 r-~id~g· r--1 r- :. r'- r- . i'- •.;M . . •
8192 m\ 1 ~

~ I '
, l ~l 1~:- :;1~ 1 I'~! ~11,;

8320 :;,;;::
. ~,~

Jlf
•I w r' 1 ~~ ~ , .. •I

8448 ,,
'

,.,
I ~ IF')I

..ll: I..:!
8576 I ~ ~- 11 ·~ [!,; ,,,, Jj¥l ,~:·

8704 n~} ;. I ~ ~· ~~'i ~~ [;j
~- ;~ ~~l f:!!

8832 11~' -~ [•Iii; [t.')~i,' •r l'"'i ~ l..:i 1::.
8960

"''
r·: [" l !!J ~'f·

9088 I'" l,j ,,
H ; -~'. 1 ~ l1 l•li

-~
8232 " .lili 'I; [L ~ ~ ; ~ ;,v, ,, ~
8360 [,iii\. tfI

~
t~•, -'. l'1f •"' ~

8488 I •S7 ._,,
l!:

I ~

l!..c l r:J j ..:::
8616 I• I · -.....;::

~ ll '"· ..2 .-.'. ~ l l l l 8744 if1
". ~ ~ ,llm l l J+ o +soooo ~ -

8872 If~ ~ 'iW r;i,1 ,," I + 1024 +$0400 -.....
9000

" ~ - ~ -~ 9128 ,,; lo ..,
+ 2048 + $0800 -

~ ~ lZi t 1~~ 1;1;, I•, ,\ 8272
·""

iii
I- -

8400 • fl

~ ~~ .. ~! !~111 l''.11 ~ +3072 +$0COO _ ~ pi' [i 1 r; 8528 '::"
,.,

_I:
,.ji '1\,

l°'i '" +4096 +$1000 -r-8656 ,,
~ I~ ·ii~ - -

8784 1 ~ ~ _!.] I- '.'ii r;:~ I~
+5120 +$1400 -~

8912 :·
J'' jri -t-

9040 h. 1.3!!.
' ,, +6144 +$1800 -,, .. b r-

I~ J]ii: 1 ~ 9168 1 ·~ '!1_ , ... I ~ ~~ ..t:;:
r;~~ ~~- 1 1 1 l 1 1 0 $01 $02 $03 $04 $05 $06 $07 j +7168 +$1COO

1 2 3 4 5 6 7
.\

Auxiliary Memory j - - - - -

\/lap of double high-resolution graphics display

Display page maps 111

Monitor support for video display output
Table 5-11 summarizes the addresses and functions of the video
display support routines the Monitor provides. Except for COut and
COutl, which are explained in Chapter 3, these routines are
described in the subsections that follow.

Table 5-11
Monitor firmware routines

Name

ClrEOL

CIEOLZ

ClrEOP

ClrScr

ClrTop

COut

COutl

CR Out

CROutl

HLine

HOME

PLOT

PrB12

Pr Byte

Pr Err

Pr Hex

112 Chapter 5: Video Display Output

Location

$FC9C

$FC9E

$FC42

F832

$F836

$FDED

$FDFO

$FD8E

$FD8B

$F819

$FC58

$F800

$F94A

$FDDA

$FF2D

$FDE3

Description

Clears to end of line from current cursor
position

Clears to end of line using contents of
Y register as cursor position

Clears to bottom of window

Clears the low-resolution screen

Clears top 40 lines of low-resolution screen

Calls output routine whose address is
stored in CSW (normally COutl,
Chapter 3)

Displays a character on the screen
(Chapter 3)

Generates a carriage return character

Clears to end of line, then generates a
carriage return character

Draws a horizontal line of blocks

Clears the window and puts cursor in
upper-left corner of window

Plots a single low-resolution block on the
screen

Sends 1 to 256 blank spaces to the output
device whose address is in CSW

Prints a hexadecimal byte

Sends ERR and Control-G to the output
device whose output routine address is in
csw
Prints four bits as a hexadecimal number

Table 5-11 (continued)
Monitor firmware routines

Name

PrntAX

SCRN

SetCol

VTabZ

VLine

ClrEOL

Location

$F941

$F871

$F864

$FC24

$F828

Description

Prints contents of A and X in hexadecimal

Reads color value of a low resolution block
on the screen

Sets the color for plotting in low resolution

Sets cursor vertical position (setting CV at
location $25 does not change vertical
position until a carriage return)

Draws a vertical line of low-resolution
blocks

ClrEOL clears a text line from the cursor position to the right edge
of the window. This routine destroys the contents of A and Y.

CIEOLZ

ClEOLZ clears a text line to the right edge of the window, starting at
the location given by base address BASL indexed by the contents of
the Y register. This routine destroys the contents of A and Y.

ClrEOP

ClrEOP clears the text window from the cursor position to the
bottom of the window. This routine destroys the contents of A
and Y.

Cir Ser

ClrScr clears the low-resolution graphics display to black. If you call
this routine while the video display is in text mode, it fills the screen
with inverse-mode at-sign(@) characters. This routine destroys the
contents of A and Y.

ClrTop

ClrTop is the same as ClrScr, except that it clears only the top
40 rows of the low-resolution display.

COut

COut calls the current character output subroutine. The character to
be sent to the output device should be in the accumulator. COut
calls the subroutine whose address is stored in csw aocations $36
and $37), usually the standard character output COutl.

Monitor support for video display output 113

COutl

COutl displays the character in the accumulator on the display
screen at the current cursor position and advances the cursor. It
places the character using the setting of the inverse mask
Oocation $32). It handles these control characters: carriage return,
line feed, backspace, and bell. When it returns control to the
calling program, all registers are intact.

CR Out

CROut sends a carriage return to the current output device.

CROutl

CROutl clears the screen from the current cursor position to the
edge of the text window, then calls CROut

HLine

Hline draws a horizontal line of blocks of the color set by SetCol on
the low-resolution graphics display. Call Hline with the vertical
coordinate of the line in the accumulator, the leftmost horizontal
coordinate in the Y register, and the rightmost horizontal
coordinate in location $2C. HLine returns with A and Y scrambled
and X intact.

HOME

HOME clears the display and puts the cursor in the upper-left
corner of the screen.

PLOT

PLOT puts a single block of the color value set by SetCol on the low
resolution display screen. Call PLOT with the vertical coordinate of
the line in the accumulator, and its horizontal position in the
Y register. PLOT returns with the accumulator scrambled, but X
and Y intact.

PrB12

PrB12 sends from 1 to 256 blanks to the standard output device.
Upon entry, the X register should contain the number of blanks to
send. If X = $00, then Pr Blank will send 256 blanks.

114 Chapter 5: Video Display Output

Pr Byte

PrByte sends the contents of the accumulator in hexadecimal to the
current output device. The contents of the accumulator are
scrambled.

Pr Err

PrErr sends the word ERR, followed by a bell character (ASCII $07),
to the standard output device. On return, the accumulator is
scrambled.

Pr Hex

PrHex prints the lower nibble of the byte in the accumulator as a
single hexadecimal digit On return, the contents of the
accumulator are scrambled.

PrntAX

PrntAX prints the contents of the A and X registers as a four-digit
hexadecimal value. The accumulator contains the first byte printed,
and the X register contains the second. On return, the contents of
the accumulator are scrambled.

SCRN

SCRN returns the color value of a single block on the low-resolution
display. Call it with the vertical position of the block in the
accumulator and the horizontal position in the Y register. The
block's color is returned in the accumulator. No other registers are
changed.

SetCol

SetCol sets the color used for plotting in low-resolution graphics to
the value passed in the accumulator. The colors and their values are
listed in Table 5-4.

VLine

VLine draws a vertical line of blocks of the color set by SetCol on the
low-resolution display. Call VLine with the horizontal coordinate of
the line in the Y register, the top vertical coordinate in the
accumulator, and the bottom vertical coordinate in location $2D.
VLine returns with the accumulator scrambled.

Monitor support for video display output 115

1/0 firmware support
for video display output
Apple Ile video firmware conforms to the 1/0 firmware protocol
described in Chapter 3. However, it does not support windows
other than the full 80-by-24 window in 80-column mode, and the
full 40-by-24 window in 40-column mode.

The video (port 3) protocol table is shown in Table 5-12.

Table 5-12
Port 3 firmware protocol table

Address

$C30B
$C30C
$C30D
$C30E
$C30F
$C310

Plnlt

Value

$01
$88
$ii
$rr
$ww
$ss

Description

Generic signature byte of firmware cards
80-column card device signature
$C3ii is entry point of initialization routine (Pinit)
$C3rr is entry point of read routine (PRead)
$C3ww is entry point of write routine (PWrite)
$C3ss is entry point of the status routine (PStatus).

Pinit does the following:

o sets a full 80-colll;mn window

o sets 80Store ($C001)

o sets 80Col ($COOD)

o switches on AltChar ($COOP)

o clears the screen; places cursor in upper-left corner

o displays the cursor

PRead

PRead reads a character from the keyboard and places it in the
accumulator with the high bit cleared. It also puts a 0 in the
X register to indicate IOResult = GOOD.

116 Chapter 5: Video Display Output

PW rite

PWrite should be called after placing a character in the accumulator
with its high bit cleared. PWrite does the following:

o turns the cursor off

o if the character in the accumulator is not a control character,
turns the high bit on for normal display or off for inverse display,
displays it at the current cursor position, and advances the
cursor; if at the end of a line, does carriage return but not line
feed

o carries out control functions as shown in Table 5-13

Table 5·13
Pascal video control functions

Control·

E ore

Forf

Gorg

H orh

J or j

Kork

L orl

Morro

Norn

0 oro

Vorv

Worw

Yory

Z orz

Hex

$05

$06

$07

$08

$0A

$OB

$0C

$00

$OE

$OF

$16

$17

$19

$1A

Function

Turns cursor on (enables cursor display)

Turns cursor off (disables cursor display)

Sounds bell (beeps)

Moves cursor left one column; if cursor was at
beginning of line, moves it to end of previous
line

Moves cursor down one row; scrolls if needed

Clears to end of screen

Clears screen; moves cursor to upper-left
position on screen

Moves cursor to column 0

Displays subsequent characters in normal
video; characters already on display are
unaffected

Displays subsequent characters in inverse
video; characters already on display are
unaffected

Scrolls screen up one line; clears bottom line

Scrolls screen down one line; clears top line

Moves cursor to upper-left (home) position on
screen

Clears entire line that cursor is on

1/0 firmware support for video display output 117

Table 5-13 (continued)
Pascal video control functions

Control- Hex

I or\ $1C

} or 1 $1D

"or 6 $1E

Function

Moves cursor right one column; if ai end of
line, does Control-M

Clears to end of the line the cursor is on,
including ciJrrent cursor position; does not
move cursor

GOTOxy: Initiates a GOTOxy sequence;
interprets the next two characters as x+32 and
y+32, respectively

$1F If not at top of screen, moves cursor up one line

When PWrite has completed this, it

o tl.ims the cursor back ori (if it was not intentionally turned off)

o puts a 0 in the X register OOResult = GOOD) and returns to the
calling program

PStatus

A program that calls PStatus must first put a requeit code in the
accumulator: either a 0 (meaning "Ready for output?") or a 1
(meaning "Is there any input?"). PStatus returns with the reply in the
carry bit: 0 (no) or 1 (yes). If the request was not 0 or 1, PStatus
returns with a 3 in the X register OOResult = IllEGAL
OPERATION); otherwise, PStatus returns with a 0 in the X register
(IOResult = GOOD).

118 Chapter 5: Video Display Output

Chapter 6

Block
Device 1/0

119

A block-type device, or block
devlce, executes 1/0 operations
by grouping data Into bundles,
called blocks. A block may be
made up of virtually any number
of bytes, but in the Apple lie a
standard block is S 12 bytes.

Original lie

The Apple Ile supports both built-in and external block-type
devices. External block devices may be 5.25-inch Disk Ile drives,
UniDisk 3.5-inch disk drives, a memory expansion card, and other
similar devices. If you use a 5.25-inch Disk Ile as an external drive,
you must install it as the last device in the daisy chain.

The orlglnal Apple lie does not support devices other than Its
Internal 5.25-lnch disk drive and an (optional) external
5.25-lnch Disk lie drive.

The external block device interface is provided by the Smartport
firmware. The Smartport is described later in this chapter.

UnlDlsk 3.5 The UnlDlsk 3.5 ROM contains an older version of the Smartport.
the Protocol Converter. The description of the Smartport applies
to the Protocol Converter, and vice versa.

The external disk drive
connector Is described under
"Disk 110· In Chapter 11.

Disk drive 1/0
Disk 1/0 firmware for the 5.25-inch drives resides in the $C600
address space on the main side of the ROM. The built-in 5.25-inch
drive is supported as if it were slot 6, drive 1, and the external
5.25-inch drive as if it were slot 6, drive 2.

Disk VO firmware for the UniDisk 3.5 drive resides in the
$C500-$C58D address space on the main side, and in the
$C880-$CFFF address space on the auxiliary side of the ROM.

Table 6-1 summarizes the disk 1/0 port characteristics.

Table 6-1
Disk 1/0 port characteristics

Port number 1/0 port 6 drive 1 (built-in 5.25-inch drive).
1/0 port 6 drive 2 (external 5.25-inch
drive). 1/0 port 5 drive 1 (external 3.5-inch
drive).

Commands IN#6 or PR#6 CALL-151 (to get to the
Monitor from BASIC), then 6 Control-K or
6 Control-P.

Initial characteristics All resets except Control-Reset with a valid
reset vector eventually pass control to the
built-in disk drive.

120 Chapter 6: Block Device 1/0

Table 6-1 (continued)
Disk 1/0 port characteristics

Hardware locatlon
$COEO-EF

Monitor firmware
routines

1/0 firmware
entry points

Reserved.

None.

$C600 (port 6).

Use of screen holes Port 6 main and auxiliary memory screen
holes are reserved.

Startup
The Apple Ile has two ways to start up-a cold start and a warm start.
A cold start clears the machine's memory and tries to load an
operating system from disk. A warm start halts the program that is
running and leaves the machine in Applesoft with the contents of
memory intact.

Cold start

A cold start can be initiated by any of the following:

o turning the machine on

o pressing Open Apple-Control-Reset

o issuing a reboot command from the Monitor, BASIC, or a
program

o pressing Control-Reset, if a valid reset vector does not exist

The startup routine first sets a number of soft switches to their
initialization settings (see Chapter 2) and then passes control to the
memory expansion card 1/0 entry point at $C400. Because the
contents of the memory expansion card's RAM are invalid in all
cold-start situations, the Apple Ile cannot boot from card and
control is returned to the startup routine.

Original lie The original Apple lie does not support the memory expansion
card; the restart routine In the original lie begins with the
Internal 5.25-lnch drive.

Startup 121

When control is returned to the startup routine by the memory
expansion card, it will attempt to boot the Apple Ile from the
internal 5.25-inch drive. Control is passed to the 5.25-inch disk I/0
entry point at $C6o0. The code at this address turns on the internal
drive motor, recalibrates the read/write head at track 0, then reads
sector 0 from that track. The sector contents are loaded into main
memory, starting at address $0800. Once the contents of sector 0
have been loaded into main memory, control passes to $0801. The
program loaded depends on the operating system or application
program on the disk in internal drive.

If for any reason the Apple Ile is unable to boot from the internal
drive, control is returned to the startup routine. The startup routine
then attempts to boot the Apple Ile from the external UniDisk 3.5
drive. Control is passed to the UniDisk 3.5 1/0 entry point at
$C500, and the startup attempt proceeds in the same manner as that
of the internal 5.25-inch drive.

Orlglnal lie The orlglnal Apple lie does not support the UnlDlsk 3.5 drive.
However. It Is possible to start the orlglnal Apple lie from the
external 5.25-lnch drive. If you want to start your Apple lie from
the external 5.25-lnch drive. you must use the ProDOS
operating system. To start from the external drive. Insert a
ProDOS disk In the drive and

o From the Monitor. type CALL -151 and press 7 Control-P.

0 From BASIC, type PRf7.

To force a cold restart of the system:

o From BASIC, issue a PR#6 command.

o From the Monitor, issue 6 Control-P.

o From a machine-language program, JMP $C600.

Memory expansion To force a cold restart from a machine-language program In an
Apple lie that supports the memory expansion card. JMP $C400
(the memory expansion card entry point).

UnlDlsk 3.5 The Apple lie that supports the UnlDlsk 3.5 can force a cold
restart that skips the Internal 5.25-lnch drive and passes control
to the external drive port at $C500 entry point. This allows the
system to start up from the first lntelllgent drive connected to
the external drive port. You can use the ProDOS or Pascal
operating system If you want to start the system from an
external drive. but DOS and versions of Pascal earlier than 1 .3
wlll not work.

122 Chapter 6: Block Device 1/0

Warm start
A warm start is initiated by pressing Control-Reset. The warm start
routine checks $F800-$FFFF on the main side ROM for a valid reset
vector. Provided a valid reset vector exists, control is turned over to
the entry point specified by the vector. Generally, a warm start
leaves you in BASIC with memory unchanged.

If there is no valid reset vector, a number of things may happen:

o The Apple Ile passes control to $C600 on the main side ROM and
the cold-start boot procedure begins.

o The Apple Ile beeps.

o The Apple Ile does nothing.

Memory expansion In the Apple lie that supports the memory expansion card,
control ls turned over to $C400 on the main side ROM In the
event there Is no valid reset vector.

Memory expansion card 1/0
The memory expansion card provides up to lMb of RAM, in 256K
steps, for storage of program and data files. In this sense, it is like a
very fast disk drive. Programs can be loaded into the memory
expansion card's RAM, but in order to be executed they must be
moved, in whole or in part, to the Apple Ilc's main memory.

The memory expansion card is a block-type device, so 1/0
operations involving the card use the operating system or
Smartport 1/0 interface. The Smartport 1/0 interface is described
later in this chapter.

More information on the memory expansion card can be found in
the Apple Ile Memory Expansion Card Technical Reference.

The Smartport 1/0 interface

Important The rest of this chapter applies only to the UnlDlsk 3.5 and
memory expansion versions of the Apple lie.

The Smartport 1/0 Interface 123

UnlDlsk 3.5 The Smartport and the Protocol Converter are essentially the
same firmware Interface with different names. All the
specifications given In this manual for the Smartport Interface
apply to the Protocol Converter as well.

The rest of this chapter is about the Smartport, which is a set of
assembly-language routines used to support external 1/0 devices,
such as UniDisk 3.5. To ProDOS and Pascal 1.3, the Smartport
appears to be a block device.

At the end of this chapter is an example of an assembly-language
program that uses a Smartport call.

Locating the Smartport
The Smartport code in the Apple He's firmware always begins at
address $C500. To ensure compatibility of your programs with the
Apple Ile, however, your Smartport routines should always begin
with a search for the Smartport. Your program can identify the
Smartport by finding the following bytes:

$Cn01=$20
$Cn03=$00
$Cn05=$03
$Cn07=$00

where n can be an integer from 1 to 7. The Smartport entry point is
then found at address $Cn00 + ($CnFF) + 3, where ($CnFF) refers
to the value of the byte located at $CnFF. The sample program at
the end of this chapter illustrates such a search.

Important The Smartport firmware Is present even when the Memory
Expansion Card Is not. To check for the Memory Expansion
Card, Issue a STATUS call, code $03, from the operating system

· or the Smartport. If the data returned Indicates O bytes
available, the card Is not present.

124 Chapter 6: Block Device 1/0

On MU calls. see the ProDOS
Technical Reference Manual.
Chapter 4.

Register

N

Successful
call x

Unsuccessful
call x

v

x 1

x 1

Issuing a call to the Smartport
Smartport calls are coded like ProDOS Machine Language Interface
(MU) calls: the program executes a JSR to a dispatch routine at
address $CSOO + ($CSFF) + 3, where ($CSFF) refers to the value of
the byte located at $CSFF.

The Smartport call number and a two-byte pointer to the call's
parameter list must immediately follow the call. Here is an example
of a call to the Smaitport:

IWMCALL
JSR DISPATCH
DFB CmdNum
DW CmdList
BCS ERROR

Calls PC command dispatcher
Specifies the command type
2-byte Oow, high) pointer to parameter list
Sets carry on an error

The command number (CmdNum) defines which Smartport call
you want to make. Most Smartport calls include a two-byte pointer
to a parameter list. The parameter list can contain information to
be used by the call, or can provide space for information to be
returned by the call. The length and content of the parameter list
depend on the call being made. The format of each Smartport call's
parameter list is described later in this chapter.

When the call has finished, the program resumes execution at the
statement following the pointer to the parameter list. In the
example above, the DFB and DW statements are skipped and
execution resumes with the BCS statement. If the call is successful,
the C flag (in the processor status register) is cleared (O), and the
accumulator (the A register) is cleared to all O's. If the call is
unsuccessful, the C flag is set (1) and the error code is placed in the
A register. After the Smartport call, the contents of the 6SC02's
registers are as follows:

Processor status x y A PC s
B D z c

u 0 u x 0 x x 0 JSR+3 u

u 0 u x 1 x x Error JSR+3 u

x - undefined, except in cases where index information is returned in X and Y registers
u = unchanged

Issuing a call to the Smartport 125

On reading and writing to RAM.
see "Bank-Switched Memory·
In Chapter 4.

Cautions

You must observe the following cautions when using the Smartport,
or your program will crash:

o Leave space on the stack for the Smartport The SmartpCirt
requires up to 35 bytes of stack space. Be sute to take this into
account when calculating the stack space used by your program.
If you don't do this, your program will fail if it tries to access data
that used to be on the stack.

o Be sure that all RAM that you intend the Smartport to access is
both read-enabled and write-enabled. The Smartport must be
able to read from the RAM after 'Writing to it, to obtain a
checksum. Failure to observe this rule results in an error
(BusErt $06).

o Don't pas5 data to or from the Smartport through any zero page
locations. Some of these locations are reserved for temporary
storage of data by the Smartport, and your data will get changed.

Descriptions of the Smortport calls
Calls to the Smartport are used

o to obtain status information about a device

o to re5et a device

o to format the medium in a device

o to read from a device

o to write to a device

o to send control information tb a device

The Smartport talls, in command-number sequence, are

STATUS ($00)

READ BLOCK ($01)

Returns status information about a
particular device, includihg general status
(character or block device, read or write
protection, format allowed, device on
line); the device control block (set with
the CONTROL call); the device newline
status (character devices oniy); and
device-specific information (number of
blocks, ID string, device name, device
type, device firmware version).

Reads one 512-byte block from a disk
device, and writes it to memory.

126 Chapter 6: Block Device 1/0

WRilE BLOCK ($02)

FORMAT ($03)

CONTROL ($04)

INIT ($05)

OPEN ($o6)

CLOSE ($07)

READ ($08)

WRilE ($09)

Writes one 512-byte block from memory
to a disk device.

Prepares all blocks on a block device for
reading and writing.

Controls some device functions,
including soft resets, setting the device
control block (which controls global
aspects of the device's operating
environment), setting newline status
(character devices only), and device
interrupts. Several CONTROL calls are
device-specific.

Resets all resident devices. A global reset
is done automatically qn startup or system
resets from the keyboard; an application
should never have to reset all devices.

Prepares a character device for reading or
writing.

Tells a character device that a sequence of
reads or writes is over.

Reads a specified number of bytes from a
specified device.

Writes a specified number of bytes from
memory to a specified device.

The following sections describe each Smartport call, including the
command number, the parameter list, and error codes. The calls
are discussed in · command-number order in this format:

Command name: The name used to identify the call.

Command number: A hexadecimal number that specifies which
call is being made to the Smartport.

Parameter list: A list of required call parameters.

General description: What the call does and what you use it for.

Parameter descriptions: A description of each parameter and
the data it refers ~o. When a parameter refers to a status or co11trol
code, the meaning of each code nu~ber is discussed.

Possible errors: A list of the error codes that can be returned by
this call. A complete list of Smartport error codes is included at the
end of this chapter.

Descriptions of the Smartport calls 127

STATUS
Command
number

Parameter
llst

$00

$03 (parameter count)
Unit number
Status list pointer Oow byte, high byte)
Status code

The STATUS call returns status information about a specified
device. The type of information returned is determined by the
device and its status-code parameter. The status list pointer defines
where the status irlrormation is returned to.

STATUS returns the number of bytes of status information that it
generates in the X and Y registers, the low byte of this number in
the X register, and the high byte in the Y register.

Parameter descriptions

Parameter
count
1-byte value

Unit number
1-byte value

Three for this call.

The Smartport assigns each device a unique number
during initialization (on startup and cold reset).
The number8 are in the range $01-$7E and are
assigned according to the devices' positions in
the chain. · ·

Important You can get the status of the Smartport Itself if you use a unit
number of $00 and a status code of $00 In a STATUS call (see the
discussion beginning ·status code= $00." below).

128 Chapter 6: Block Device 1/0

Status list
pointer
2-byte value

Status code
1-byte value

Points to the buffer to which the status is to be
returned. The length required for the buffer varies
depending on the status request being made.

Indicates what kind of status request is being made.
Status codes are in the range $00-$FF, as follows:

Code Status returned

$00 Return device status
$01 Return device control block (DCB) (not

supported by UniDisk 3.5)
$02 Return newline status (character devices

only) (not supported by UniDisk 3.5)
$03 Return device information block (DIB)
$05 Return UniDisk 3.5 status

Status code = $00 returns a device status consisting of four bytes.
The first is the general status byte, with the following format:

Bit Description

7 0 = character device, 1 = block device
6 1 = write allowed
5 1 = read allowed
4 1 = device on line or disk in drive
3 0 = format allowed
2 0 = medium write protected (block devices only)
1 1 = device currently interrupting
0 1 = device currently open (character devices only)

If the STA WS call is for a block device, the next three bytes Oow
byte first) are the size in 512-byte blocks. The maximum size is
16 million ($FFFFFF) blocks (about 8 gigabytes). If the call is for a
character device, these three bytes must be set to 0.

Descriptions of the Smartport calls 129

On newline read mode. see
Chapter 4 In the ProDOS
Technical Reference Manual.

A STATUS call with status code= $00 and unit number= $00 returns
the status of the Smartport itself. In this case, the status list consists
of 8 bytes, as follows:

STAT LIST DFB Number Devices
DFB Inter rupt_Status
DFB
DFB
DFB
DFB
DFB
DFB

Devices hooked to PC
Bit 6 dear = interrupt sent
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved

The Number_Devices byte returns the total number of intelligent
devices attached to the Smartport. The Interrupt_Status byte is a
copy of the asynchronous communications interface adapter
(ACIA) status register at the time of the interrupt, and is used to
indicate that a device requires interrupt servicing. If the sixth bit of
this byte equals 0, one or more devices in the Smartport bus daisy
chain must be serviced; your interrupt handler must poll each
device on the chain to determine which ones.

•> About tnterntpts: Devices that require interrupt servicing must
use the EXTiNT line on the Apple Ilc's external disk port
connector to be supported by the Smartport.

For example, UniDisk 3.5 does not support this line, and so
cannot generate interrupts to the Smartport. See the
description of the CONTROL command for instructions on
enabling Smartport interrupts. See Appendix E for more
information about programming with interrupts.

Status code= $01 !returns the device control block (DCB). The
DCB is used to control various operating characteristics of a device
and is device dependent. Each device has a default DCB, which can
be altered with a CONTROL call. The first byte (the count byte) gives
the number of bytes in the control block (not including the count
byte), so the length never exceeds 256 bytes (257 including the
count byte). Note that UniDisk 3.5 has no DCB and returns an error
(BadCtl $21) in response to

1
this call.

Status code = $02 returns newline status. Newline status applies only
to character devices. A status code = $02 passed to a block device
returns a BadCtl ($21) error.

130 Chapter 6: Block Device 1/0

Status code = $03 returns the device information block (DIB). The
device's information block identifies the device, its type, and
various other attributes. The returned status list has the following
form:

STAT LIST DFB Device_Statbytel Same as byte 1 in status
code= 0

DFB Device Size Lo Number of blocks - -
(block device)

DFB Device Size Med Number of blocks
(middle byte)

DFB Device Size Hi Number of blocks (high
byte)

DFB ID_String_Length Length in b,ytes (16 max.)
ASC '<device name>' 7-bit ASCII, uppercase,

padded with spaces, 8th
bit always=O (16 bytes)

DFB Device_Type_Code
DFB Device_Subtype_Code

DW Version Device firmware version
number

Status code= $05 returns the UniDisk 3.5 status. This call allows a
diagnostic program to get more detailed information about the
cause of a read or write error, and to examine the contents of the
65C02's registers after a CONTROL call with control code = $05.
The returned status list has this form:

STAT LIST DFB $00

DFB Error Soft Error byte (see below)
DFB Retries Number of retries (see below)
DFB $00
DFB A_Value Ace value after a CONTROL EXEClITE

call
DFB X Value X value after EXEClITE
DFB Y_Value Y value after EXEClITE
DFB P Value Processor status value after EXEClITE

Descriptions of the Smartport calls 131

The Error byte returned by a STATUS call with status code = $05
contains the following bits:

Bit Description

7 0
6 0
5 1 = address field mark or checksum error
4 1 = data field checksum error
3 1 = data field bitslip mark mismatch
2 1 = seek error; unexpected track value found

in address field
1 0
0 0

The Retries byte returned by a STATUS call with status code= $05
specfies the number of address fields that had to be passed before
the operation was completed. This information could be used, for
example, to determine the number of passes necessary to read a
data field correctly: If Retries is found to be greater than the number
of sectors on the target track, then more than one pass was required.

The last four bytes of the status list are set only after a CONfROL call
with control code= $05, and are 0 after any other call (STATUS
calls do not clear the status bytes).

Possible errors

The following errors can be returned by the STATUS call:

$01
$04
$06
$21
$30-$3F

BadCmd
BadPCnt
BusErr
BadCtl

An unimplemented command was issued
Bad call parameter count
Communications error
Invalid status code
Device-specific errors

READ BLOCK
Command $01
number

Parameter
list

132 Chapter 6: Block Device 1/0

$03 (parameter count)
$03 (parameter count)
Unit number
Data buffer Oow byte, high byte)
Block number Oow byte, mid byte, high byte)

The READ BLOCK call reads one 512-byte block into memory from
the block device specified by the unit-number parameter. The block
of data is placed in a buffer starting at the address specified by the
data-buffer parameter.

Parameter descriptions

Parameter
count
1-byte value

Unit number
1-byte value

Data buffer
2-byte value

Block number
3-byte value

Possible errors

Three for this call.

The Smartport assigns each device a unique
number during initialization (on startup and cold
reset). The numbers are in the range $01-$7E and
are assigned according to the devices' positions in
the daisy chain. A unit number of $00 in the
STATUS call returns the number of devices
connected to the Smartport.

Points to the buffer into which the data are read.
The buffer must be 512 or more bytes in length.

The logical address of a block of data to be read.
There is no general connection between block
numbers and the layout of tracks and sectors on
the disk. The translation from logical to physical
blocks is performed by the device. (The most
significant byte is 0 for all devices currently in use.)

The following errors can be returned by the READ BLOCK call:

$01
$04
$06
$27
$28
$20
$2F

BadCmd
BadPCnt
Bus Err
IO Error
NoDrive
BadBlock
OffLine

· An unimplemented command was issued
Bad call parameter count
Communications error
1/0 error
No device connected
Invalid block number
Device off-line or no disk in drive

Descriptions of the Smartport calls 133

WRITE BLOCK
Command $02
number

Parameter
llst

$03 (parameter count)
Unit number
Data buffer Oow byte, high byte)
Block number Oow byte, mid byte, high byte)

The WRI1E BLOCK call writes one 512-byte block from memory to
the disk device specified by the unit-number parameter. The block
in memory starts at the address specified by the data-buffer
parameter.

Parameter descriptions

Parameter
count
1-byte value

Unit number
1-byte value

Data buffer
2-byte value

Block number
3-byte value

134 Chapter 6: Block Device 1/0

Three for this call.

The Smartport assigns each device a unique
number during initialization (on startup and cold
reset). The numbers are in the range $01-$7E and
are assigned according to the devices' positions in
the daisy chain. A unit number of $00 in the
STATUS call returns the number of devices
connected to the Smartport.

Points to the buffer from which the data are to be
written.

The logical address of a block of data to be written.
There is no general connection between block
numbers and the layout of tracks and sectors on
the disk. The translation from logical to physical
blocks is performed by the device. (The most
significant byte is 0 for all devices currently in use.)

Possible errors

The following errors can be returned by the WRITE BLOCK call:

$01 BadCmd An unimplemented command was issued
$04 BadPCnt Bad call parameter count
$06 BusErr Communications error
$27 IO Error VO error
$28 NoDrive No device connected
$2B No Write Disk write protected
$20 Ba dB lock Invalid block number
$2F OffLine Device off-'line or no disk in drive

FORMAT
Command $03
number

Parameter
llst

$01 (parameter count)
Unit number

The FORMAT call prepares all blocks on the recording medium of a
block device for reading and writing. The formatting done by this
call is specific to each device and is not linked to any operating
system; for example, bitmaps and catalogs are not written by this
call.

Parameter descriptions

Parameter
count
1-byte value

Unit number
1-byte value

One for this call.

The Smartport assigns each device a unique
number during initialization (on startup and cold
reset). The numbers are in the range $01-$7E and
are assigned according to the devices' positions in
the daisy chain. A unit number of $00 in the
STATUS call returns · the number of devices
connected to the Smartport.

Descriptions of the Smartport c9lls 135

Possible errors

The following errors can be returned by the FORMAT call:

$01
$04
$06
$27
$28
$2B
$2F

BadCmd
BadPCnt
Bus Err
IO Error
NoDrive
No Write
Offline

An unimplemented command was issued
Bad call parameter count
Communications error
1/0 error
No device connected
Disk write protected
Device off-line or no disk in drive

CONTROL

Command $04
number

Parameter
llst

$03 (parameter count)
Unit number
Control list Oow byte, high byte)
Control code

The CONTROL call sends control information to the device. The
information can be of a general nature (such as resets or interrupts),
or device-specific (such as Download to UniDisk 3.5 RAM)~

Important A CONTROL call to unit number $00 sends control Information to
the Smartport Itself. See the discussions of control code = $00
and control code= $01. below.

Parameter descriptions

Parameter
count
1-byte value

Unit number
1-byte value

136 Chapter 6: Block Device 1/0

Three for this call.

The Smartport assigns each device a unique
number during initialization (on startup and cold
reset). The numbers are in the range $01-$7E and
are assigned according to the devices' positions in
the daisy chain. A unit number of $00 in the
STATUS·call returns the number of devires
connected to the Smartport Use a unit
number of $00 in the CONTROL call to send
control information to the Smartport itself.

Control list
2-byte value Points to the buffer containing the control

information. The first two bytes (the count bytes,
low byte first) of the control list specify the number
of bytes in the list (not including the count bytes);
the remainder of the list contains the control
information passed to the device.

Important Every CONTROL call must have a control list; If no control
Information Is being passed. then the control list consists of the
count bytes only:

CTRL LIST DW $00

Control code
1-byte value

The number of the control request being made.
Control codes are in the range $00-$FF. The
following requests are not device specific:

COde Control function

$00 Reset the device
$01 Set device control block (DCB)
$02 Set newline status (character devices only)
$03 Service device interrupt

Control requests to unit number $00 are .sent to the
Smartport itself:

Code Control function

$00 Enable interrupts from Smartport
$01 Disable interrupts from Smartport

Specific devices may respond to some or all of
these additional control requests:

Code Control function

$04 Eject disk
$05 Run a 65C02 subroutine
$06 Set download address
$07 Download to device RAM

Descriptions of the Smartport calls 137

Control code = $00 performs a warm reset of the device and
generally returns "housekeeping" values to some reset value. The
control list for this call is device dependent.

The control list for this call for UniDisk 3. 5 devices is

CTRL_LIST DW $00 No parameters are passed.

A CONTROL call with control code = $00 and unit number = $00
enables interrupts from the Smartport. This informs the firmware
that external interrupts are possible, and directs it to call the user's
interrupt handler if an interrupt occurs. It also turns on the ACIA for
port 1.

When the user's interrupt handler identifies an external interrupt,
you can determine if it came from the Smartport by making a
STATIJS call with unit number = $00 and control code= $00. See
Appendix E for more information on handling interrupts.

Control code = $01 alters the contents of the device control
block (DCB). The DCB is used to set global aspects of a device's
operating environment. Each device has a default setting for the
DCB, set on initialization. Because the length of the DCB is device
dependent, you should first read in the DCB with the STATIJS call,
then alter the bits of interest, and finally, use the same byte string as
the control block for the CONTROL call. The first byte (the count
byte) of the DCB gives the number of bytes in the control block (not
including the count byte), so the length never exceeds 257 bytes,
including the count byte.

Note that because UniDisk 3.5 has no DCB, a Set DCB CONTROL
call to UniDisk 3.5 returns an error (BadCtl $21).

A CONTROL call with control code = $01 and unit number = $00
disables interrupts from the Smartport. This call turns off the ACIA
for port 1 and sets the least significant bit of the ACIA control
register to 0.

Control code = $02 setS a character device to newline enabled or
newline disabled.

138 Chapter 6: Block Device 1/0

Control code= $03 sends a device service interrupt. This code is to
be used as needed for interrupt-driven devices.

Control code = $04 ejects a disk. This code is to be used for devices
that support an auto-eject feature. This code causes UniDisk 3.5 to
auto-eject a disk. There are no parameters in the control list, and
no errors are returned if the disk ejected correctly or there was no
disk in the drive. Error code $27 OOError) is returned if the eject
failed-that is, if a disk is still in the drive. The control list for
UniDisk 3.5 is

CTRL LIST DW $00 No parameters are passed.

Warning Control codes $05 and higher are reseNed; use of some of
these codes can cause your system to crash.

Possible errors

The following errors can be returned by the CONTROL call:

$01 BadCmd An unimplemented command was
issued

$04
$06
$21
$22
$30-$3F

INIT

BadPCnt
BusErr
BadCtl
BadCtlParm

Bad call parameter count
Communications error
Invalid control code
Invalid parameter list
Device-specific errors

Command $05
number

Parameter
llst

$01 (parameter count)
$00 (unit number)

The INIT call resets all intelligent devices attached to the Smartport.
The Smartport goes through an initialization sequence, cold
resetting all devices and sending each its unit number. This call is
made automatically on startup; an application should never have to
make this call.

Descrlpttons of the Smartport calls 139

Parameter descriptions

Parameter

count

1-byte value

Unit number

1-byte value

One for this call.

The unit number used in this call is always $00.

Possible errors

The following errors can be returned by the INIT call:

$01
$04
$06
$28

BadCmd
BadPCnt
BusErr
NoDrive

An unimplemented command was issued
Bad call parameter count
Communications error
No device connected

OPEN

Command $06
number

Parameter

llst

$01 (parameter count)
Unit number

The OPEN call prepares a character device for reading or writing.

Note that since UniDisk 3.5 is a block device, it does not accept this
call. An attempt to use an OPEN call with UniDisk 3.5 will result in
an error (BadCmd $01).

Parameter descriptions

Parameter
count

1-byte value

Unit number

1-byte value

140 Chapter 6: Block Device 1/0

One for this call.

The Smartport assigns each device a unique
number during initialization (on startup and cold
reset). The numbers are in the range $01-$7E and
are assigned according to the devices' positions in
the daisy chain. A unit number of $00 in the
STATUS call returns the number of devices
connected to the Smartport.

Possible errors

The following errors can be returned by the OPEN call:

$01
$04
$06
$28
$2F

BadCmd
BadPCnt
BusErr
NoDrive
OffLine

An unimplemented command was issued
Bad call parameter count
Communications error
No device connected
Device off-line or no disk in drive

CLOSE
Command $07
number

Parameter

llst

$01 (parameter count)
Unit number

The CLOSE call tells a character device that a sequence of reads or
writes is over.

Note that since UniDisk 3.5 is a block device, it does not accept this
call. An attempt to use a CI.OSE call with UniDisk 3.5 will result in an
error (BadCmd $01). ·

Parameter descriptions

Parameter
count

1-byte value

Unit number

1-byte value

One for this call.

The Smartport assigns each device a unique
number during initialization (on startup and cold
reset). The numbers are in the range $01-$7E and
are assigned according to the devices' positions in
the daisy chain. A unit number of $00 in the
STATUS call returns the number of devices
connected to the Smartport.

Descriptions of the Smartport calls · 141

Possible errors

The following errors can be returned by the CLOSE call:

$01
$04
$06
$28
$2F

BadC~d
BadPCnt
BusErr
No Drive
OffLine

An unimplemented command was issued
Bad call parameter count
Communications error
No device connected
Device off-line or no disk in drive

READ
Command $08
number

Parameter

list

$04 (parameter count)
Unit number
Buffer pointer Oow byte, high byte)
Byte count Oow byte, high byte)
Address pointer Oow byte, mid byte, high byte)

The READ call reads into memory the number of bytes specified by
the byte-count parameter. The bytes are placed in a buffer starting
at · the address specified by the buffer-pointer parameter.

Parameter descriptions

Parameter

count

1-byte value

Unit number

1-byte value

Buffer pointer

2-byte point

142 Chapter 6: Block Device 1/0

Four for this call.

The Smartport assigns each device a unique
number during initialization (on startup and cold
reset). The numbers are in the range $01....:$7E and
are assigned according to the devices' positions in
the daisy chain. A unit number of $00 in the
STATUS call returns the number of devices
connected to the Smartport.

Points to the buffer into which the data is read.
The buffer must be large enough to contain the
number of bytes · requested by the byte-count
parameter.

Byte count
2-byte value Specifies the number of bytes to be transferred.

Address
pointer
3-byte value Specifies the address to start reading from. The

meaning of this parameter depends on the device
being read.

Possible errors

The following errors can be returned by the READ call:

$01
$04
$06
$27
$28
$2D
$2F

WRITE

BadCmd
BadPCnt
BusErr
IO Error
NoDrive
BadBlock
OffLine

An unimplemented command was issued
Bad call parameter count
Communications error
1/0 error
No device connected
Invalid block number
Device off-line or no disk in drive

Command $09
number

Parameter
llst

$04 (parameter count)
Unit number
Buffer pointer Oow byte, high byte)
Byte count Oow byte, high byte)
Address pointer Oow byte, mid byte, high
byte)

The WRITE call writes from memory the number of bytes specified
by the byte-count parameter to the specified unit. The bytes in
memory start at the address indicated by the buffer-pointer
parameter. The meaning of the address pointer depends on the
type of device (see parameter descriptions).

Descriptions of the Srnartport calls 143

Parameter descriptions

Parameter

count
I-byte value

Unit number

1-byte value

Buffer pointer

2-byte value

Byte count

2-byte value

Address
pointer

3-byte value

Possible errors

Four for this call.

The Smartport assigns each device a unique
number during initialization (on startup and cold
reset); The numbers are in the range $01-$7E and
are assigned according to the devices' positions in
the daisy chain. A unit number of $00 in the
STATUS call returns the number of devices
connected to the Protocol Converter.

Points to the buffer from which the data is to be
written.

Specifies the number of bytes to be transferred.

Specifies the address to start writing from. The
meaning of this parameter depends on
the device being written to.

The following errors can be returned by the WRITE call:

$01
$04
$06
$27
$28
$2D
$2F

144 Chapter 6: Block Device 1/0

BadCmd
BadPCnt
BusErr
IO Error
NoDrive
BadBlock
OffLine

An unimplemented command was issued
Bad call parameter count
Communications error
1/0 error
No device connected
Invalid block number
Device off-line or no disk in drive

0000:

0000:
0000:
0000:
0000:
0000:
0000:

0000:

0000:
0000:

0000:
0000:
0000:

0000:
0000:
0000:
0000:

0000:
0000: 0006
0000:
0000: 0007
0000:

0000: FDED
0000: FD8E
0000:

0000: 0000
0000:
0000:
0300: 0300
0300:

10300:
0300:

0300:
0300:20 43 03
0303:BO lC 0321
0305:
0305:
0305:

1 *
2 *
3 *

An example: issuing a Smartport call
Here is an example of a program that issues a STATUS call to the
Smartport to obtain information about a device.

The code for the Smartport in the version of the Apple Ile that
supports UniDisk 3.5 always begins at address $C500; however, to
ensure compatibility with the Apple Ile, your programs should
always do a search for the Smartport, as in this example.

4 * This example shows how to find
5 * and use a PC interface. A search
6 * is made for a PC, and when one is
7 * found, a vector is set up which
8 * points to the PC entry. Then a

9 * Device Information Block STATUS call

10 * is made, and if successful, the name
11 * string embedded in the DIB is output
12 * to the screen. Only the first device
13 * in the chain is accessed.

14 *
15 *
16

17 *
18 *
19 ZPTempL

20 *
21 ZPTempH

22 *
23 COut

24 CROut

25 *
26 StatusCmd

27 *
28 *
29

30 *

MSB

equ

equ

equ

equ

equ

org

ON

$0006 ;Temporary zero
page storage

$0007

$FDED ;Console output
$FD8E ;Carriage return

0

$300

31 * Find a Smartport in one of the

32 * slots.

33 *
34 jsr FindPC
35 bes Error

36 *
37 * Now make the DIB call to the first guy

38 *

An example: Issuing a Smart-Port call 145

0305:20 67 03 39 jsr Dispatch

0308:00 40 dfb StatusCmd

0309:6A 03 41 dw DP arms
030B:BO 14 0321 42 bes Error

030D: 43 *
030D: 44 * Got the DIB; now print the name string

030D: 45 *
030D:A2 00 46 ldx iO

030F: 030F 47 morechars equ *
030F:BD 74 03 48 lda DIBName,x

0312:09 80 49 ora i$80 ;COut wants high

0314 50 * Bit set

0314: 51 * 0314: 20 ED FD 52 jsr COut

0317:E8 53 inx

0318:EC 73 03 54 cpx DIBNameLen
031B:90 F2 030F 55 blt morechars

0310: 56 *
0310:20 BE FD 57 jsr CR Out ;Finish it off

0320: 58 * with a return

0320: 59 *
0320:60 60 rts
0321: 61 *
0321: 62 *
0321: 0321 63 Error equ *
0321: 64 *
0321: 65 * There's either no PC around, or there
0321: 66 * was no Unit u ... give message
0321: 67 *
0321 :A2 00 68 ldx iO
0323: 0323 69 errl equ *
0323:BD 2F 03 70 lda Message,x
0326:FO 06 032E 71 beq er rout
0328:20 ED FD 72 jsr COut
032B:E8 73 inx
032C:DO F5 0323 74 bne errl
032E: 75 *
032E: 032E 76 er rout equ *
032E:60 77 rts
032F: 78 *
032F:CE CF AO DO 79 Message asc 'NO PC OR NO DEVICE'
0341:8D 00 80 dfb $8D,O

0343: 81 *
0343: 82 *
0343: 0343 83 FindPC equ *
0343: 84 *
0343: 85 * Search slot 7 to slot 1 looking for
0343: 86 * signature bytes

0343: 87 *
0343:A2 07 88 ldx i7 ;Do for seven

0345: 89 * slots

146 Chapter 6: Block Device 1/0

0345:A9 C7 90 lda i$C7
0347:85 07 91 sta ZPTempH
0349:A9 00 92 lda i$00
034B:85 06 93 sta ZPTempL
034D: 94 *
034D: 034D 95 news lot equ *
034D:AO 07 96 ldy *7
034F: 97 *
034F: 034F 98 again equ *
034F:Bl 06 99 lda (ZPTempL) , y
035l:D9 70 03 100 cmp sigtab,y ;One of four
0354: 101 * byte signature
0354:FO 07 035D 102 beq maybe ;Found one
0356: 103 * signature byte
0356:C6 07 104 dee ZPTempH
0358:CA 105 ~ex

0359:DO F2 034D 106 bne news lot
035B: 107 *
035B: 108 * If we get here, it's because we couldn't
035B: 109 * find a Smartport.
035B: llO * Exit with the carry set.
035B: lll *
035B:38 ll2 sec
035C:60 ll3 rts
035D: 114 *
035D: 115 * If we get here, it means that one or
035D: ll6 * more of the signature bytes
035D: ll 7 * for this card are what we're looking
035D: ll8 * for. Decrement the byte
035D: 119 * counter and branch back to verify any
035D: 120 * remaining bytes.
035D: 121 *
035D: 035D 122 maybe equ *
035D:88 123 dey
035E:88 124 dey ; If N=l then
035F: 125 * all sig bytes okay
035F:l0 EE 034F 126 bpl again
0361: 127 *
0361: 128 * Found a Smart port interface.
0361: 129 * Set up the call address.
0361: 130 * We already have the high byte ($CN);
0361: 131 * we just need the low byte.
0361: 132 *
0361: 0361 133 foundPC equ *
036l:A9 FF 134 lda i$FF
0363:85 06 135 sta ZPTempL
0365:AO 00 136 ldy to ;For
0367: 137 * indirect load
0367:Bl 06 138 lda (ZPTempL) , y ;Get the
0369: 139 * byte

An example: Issuing a Smartport call 147

0369: 140 *
0369: 141 * Now the Ace has the low order ProDOS

0369: 142 * entry point. The PC entry is
0369: 143 * three locations past this ...
0369: 144 *
0369:18 145 clc
036A: 69 03 146 adc f3
036C:85 06 147 sta ZPTempL

036E: 148 *
036E: 149 * Now ZPTempL has the PC entry point.

036E: 150 * Return with carry clear.

036E: 151 *
036E:l8 152 clc
036F: 60 153 rts
0370: 154 *
0370: 155 *
0370: 156 * These are the PC signature bytes in
0370: 157 * their relative order.

0370: 158 * The $FF bytes are filler bytes and

0370: 159 * are not compared.
0370: 160 *
0370:FF 20 FF 00 161 sigtab df b $FF,$20,$FF,$00
0374:FF 03 FF 00 162 dfb $FF,$03,$FF,$00
0378: 163 *
0378: 164 *
0378: 0378 165 Dispatch equ *
0378:6C 06 00 166 jmp (ZPTempL) ;Simulate
037B: 167 * an indirect JSR to PC
037B: 168 *
037B: 169 *
037B: 037B 170 DP arms equ *
037B:03 171 DPParmCt dfb 3 ;Status
037C: 172 * calls have three parameters
037C:Ol 173 DP Unit dfb 1
0370:80 03 174 DPBuf fer dw DIB
037F:03 175 DPStatCode dfb 3
0380: 176 *
0380: 177 *
0380: 0380 178 DIB equ *
0380:00 179 DIBStatBytel dfb 0
0381:00 00 00 180 DIBDevSize dfb 0,0,0
0384:00 181 DIBNameLen dfb 0
0385: 0010 182 DIBName ds 16,0
0395:00 183 DIBType dfb 0
0396:00 184 DIBSubType dfb 0
0397:00 00 185 DIBVersion dw 0
0399: 186 *
0399: 187 *

148 Chapter 6: Block Device 1/0

Command STATUS

CmdNum $00

CmdList Byte
0 J..03
1 Unit Num
2 Stat List Ptr
3
4 Stat Code

__5_

6

Command INIT

CmdNum $05

CmdList Byte
0 .101
.l 100
2

_a
A
5
6
1
8

Unused bytes C=:J
Figure 6-1
Summary of Smartport calls

Summary of commands and parameters
The following is a summary of Srnartport calls. In each case, byte 0
of the command parameter list (CmdLst) specifies the number of
parameters in the command list (not including byte O). Parameters
that require more than one byte (the status list pointer, for
example) are entered low byte first The meaning of the address
pointer parameter is device specific. See the · sections on the
individual calls in this chapter for a discussion of each parameter.

READ BLOCK WRITE BLOCK FORMAT CONTROL

$01 $02 $03 $04

.103 J..03 JQ..l 1$03
lLnitNum JlnitNum _Unit Num LUnii N_llIIl_
Buffer Ptr Buffer Ptr Ct! List Ptr

I Ct! Code
Block Num Block Num

OPEN CLOSE READ WRITE

$06 $07 $08 $09

j_Ol .101 jQ_4 jQ_4
Jin.itNJ.lm urlit:Nllm IlnitNum_ llnit_Num

Buffer Ptr Buffer Ptr

Byte Count Byte Count

Address Ptr Address Ptr

summary of commands and parameters 149

Summary of error codes
The following is a summary of Smartport call error codes, including
a brief description of the possible causes fqr each. If there is no
error, the C flag (in the processor status register of the 65C02
microprocessor) is cleared (O) and the accumulator (the A register)
contains Os; if the call was tinsuccessful, the C flag is set (1) ahd the
A register contains the error code.

$00

$01

$04

$06

$11

$21

$22

150 Chapter 6: Block Device 1/0

BadCmd

BadPCnt

BusErr

Bad Unit

BadCtl

BadCtlParm

No error.

A nonexistent command wa:s issued.
Check the command number in the
Smartport call.

Bad call parameter count. The call
parameter list was not properly
constructed. Make sure the parameter
list has the correct number of
parameters.

A communications error between the
devke controller and the host. Make
sure that RAM is both read-enabled
and write-enabled. Check the
hardware (cables and connectors)
between the device and the host.
Check for noise sources. Make sure the
cable is properly shielded.

Unit number $00 was used in a call
other than STATUS, CON1ROL, or
INIT.

The control or status code is not
supported by the device.

The control parameter list contains
invalid information. Make sure each
value is within the range allowed for
that parameter.

$27 IO Error The .device encountered an 1/0 .error
when trying to read or write to the
recording medium. Make sure that the
medium in the device is formatted
and not defective and that the device
is operating correctly.

$28 NoDrive The device is not connected. This can
occur if the device is not connected
but its controller is, or if there is no
device with the unit number specified.

$2B No Write The medium in the device is write
protected.

$2D BadBlock The block number is outside the range
allowed for the medium in the device.
Note that this range depends on the
type of device and the type of medium
in the device (single-sided versus
double-sided disk; for example).

$2F Offline Device off-line or no disk in drive.
Check the cables and connections.
Make sure that the medium is preserit
in the drive and that the drive is
functioning correctly.

$30-$3F DevSpec Errors that differ from device to
device. See the technical mariual for
the device in question for details.
$40~$4F; Reserved for future
expansion.

$50-$7F NonFatal A device-specific soft error. The
operation completed succe.sSfully, but
some exception condition was
detected. See the technical manual for
the device in question for details.

Summary of error codes 151

Chapter 7

Serial 1/0
Port 1

153

Serial port 1 is one of two serial I/O ports available on the
Apple Ile. It is intended primarily as an output port for RS-232
devices, such as printers and plotters. It can be changed to a serial
communication port Oilce port 2) by using the System Utiltties disk
or from a program.

Warning Although the Apple lie serlal ports are slmllar to the Apple lie
Super Serlal Card, there are Important differences. Refer to
Appendix F for a summary of these differences.

Table 7-1 summarizes the characteristics of this port if used as a
printer/plotter port, and is a guide to the other information in this
chapter. If you change port 1 to a communication port, refer to the
descriptions in Chapter 8, and use 1 instead of 2 for the port
number when required.

The serial port back panel connectors are described in Chapter 11.

Table 7-1
Serial port 1 characteristics

Port number

Commands

Initial characteristics

Hardware page
locations

Monitor firmware
routines

1/0 firmware

entry points

Use of screen holes

Use of other pages

154 Chapter 7: Serial 1/0 Port 1

Serial port 1.

Keyboard command: PR#l.
BASIC command: PR#l.
Monitor command: 1 Control-P
(does not work if there is an operating
system in RAM).
All other commands: See Table 7-2.

See "Characteristics of Port 1 at
Startup."

See Table 7-3.

None.

See Table 7-4.

See Table 7-5.

None.

Refer to Table 7-4 for the
standard firmware entry points
that Pascal 1.1 and 1.2 use.

Using serial port 1
You can access the firmware from BASIC in the usual way-that is,
by issuing Control-D (if DOS or ProDOS is in RAM) and PR#l.
Subsequent output is directed to the printer (or other device)
connected to serial port 1.

To direct Pascal output to the printer, you can use either #6: or
PRINTER:.

Your programs can also access the port by changing the value of
CSW (see Chapter 3).

Table 7-2 lists the commands you can use with serial port 1, either
from a program or from the keyboard, after you issue PR#l.

UniDisk 3.5 Commands followed by an asterisk In Table 7-2 (with the
exception of L) are avallable only on the version of the
Apple lie that supports UnlDlsk 3.5. These commands can be
toggled by following them directly with E (enable) or D
(disable).

Each command must be preceded by Control-I (the command
character). As soon as you issue the command character, the serial
port firmware displays a flashing question mark cursor to indicate it
is awaiting a command. You do not have to press Return after
commands that you have entered from the keyboard, or send the
return character from your program if it is sending commands to
the port. You can type more than one command on a line, but each
must be preceded by the command character.

Table 7-2
Printer port commands

Command

nnn

nnB

Description

Sets new line width of nnn (from 1 through 255).This
command must be followed by N (see below) or by a
carriage return.

Sets baud rate to value corresponding to nn:

nn Rate nn Rate nn Rate

1 50 6 300 11 3600
2 75 7 600 12 4800
3 110 (109.92) 8 1200 13 7200
4 135 (134.58) 9 1800 14 9600
5 150 10 2400 15 1920

Using serial port 1 155

Tal:)le 7-2 (continued)
Printer port commands

Command

nD

I

K

156 Chapter 7: Serial 1/0 Port l

Description

When enabled, this command causes a carriage
return character to be sent automatically whenever
the column count exceeds the printer line width. The
command is normally enabled.

Sets data format to values corresponding to n:

n Data Stop n Data Stop
bits bits bits bits

0 8 1 4 8 2
1 7 1 5 7 2
2 6 1 6 6 2

3 5 1 7 5 2

When this command is enabled, your Apple Ile
accepts data from the keyboard as well as from the
serial port. You can use this to disable the keyboard
before receiving or sending data to prevent accidental
keystrokes from disrupting the data flow. Be sure that
your program reenables the keyboard when the data
transfer is complete. This command is available only
from BASIC and is normally enabled.

Echoes printer output on the screen.

Disables automatic line feed after carriage return.

Generates line feed after carriage return. Normally,
this command is enabled. Disabling it has the same
effect as the K command.

When this command is enabled, all incoming line
feed characters are masked (removed from the data
stream). Normally this command is enabled.

Table 7-2 (continued)
Printer port commands

Command

nnnN

nP

R

s

z

Description

Changes line width to nnn (from 1 through 255;
nnn is optional); does not echo printer output on the
screen. Note: ON does not disable automatic
generation of carriage return; to do so, use
Z command, put 0 directly in location $0579, or use
the System Uttltttes disk.

Sets parity corresponding to n:

n Parity n Parity

0 None 4 None
1 Odd 5 MARK (1)
2 None 6 None
3 Even 7 SPACE (O)

Resets port 1 and exits from serial port 1
firmware.

Sends a 233-millisecond BREAK character (used with
some printers to synchronize with serial ports).

When enabled, this command turns on the
XON/XOFF protocol: the Apple lie looks for the
XOFF ($13) character and responds by halting
transmission until an XON ($11) is received.
Normally this command is disabled.

Zaps (ignores) further command characters until
Control-Reset or PR#l. Does not format output or
insert carriage returns into output stream.

Note: The commands themselves are letter commands, not control
characters.
• Command (with the exception of L) is available only on the version of

the Apple Ile that supports UniDisk 3.5. Command can be toggled: If
you follow the command with E (with no intervening space), the
command is enabled. If you follow the command with D (with no
intervening space), command is disabled. The L command is available
on the earlier Apple Ile, but cannot be toggled there.

Using serial port 1 157

The serial port 1 command character is set as Control-I when the
Apple Ile is turned on. You can change it to a different control
character by sending the current control character followed
immediately by the new control character you want. This is useful if
you want to be able to send Control-I to the printer without firmware
intervention. For example, to Change the command character from
Control-I to Control-V, send Control-I Control-V either from the
keyboard or from a program. (Control-V and Control-Ware the
recommended substitute control characters.) To change the
command character back again, send Conti'ol~v Control-I. · Don't
slip any spaces between the control characters that you send.

Warning Do not uSe Control-A. -B. -C. -H. -J. -L. -M. or .-Y: Apple lie
firmware may Intercept these control characters. causing
unpredictable results.

The following are examples of valid commands and command
sequences. These examples all show commands being entered from
the keyboard, but your programs can send the characters just as
well. Remember to issue a PR#l before starting to send commands
to serial port 1.

To echo output to the display screen:

Control-I I

To set line width 72, disable line feed, arid echo:

Control-I K Control-I 7 2 N

To change control character to Conti'ol-V:

Control-I Control-V Return

To set up the serial port to allow sending Control-I as part of a
character stream:

Control-V (command) Return

158 Chapter 7: Serlai 1/0 Port 1

ACIA stands for asynchronous
communication Interface
adapter. a serial 1/0 chip. Note In
Chapter 11 that some of the bit
assignments for this port differ
from those for port 2.

Warning

Characteristics of port 1 at startup
After power-up, the printer firmware sets the following
configuration:

o 9600 baud

o eight data bits, no parity bits, two stop bits

o 80-column line width; no echo to display screen

o firmware supplies line feed after carriage return

o command tjiaracter is set to Control-I (see below)

These values are stored in the auxiliary memory screen holes
(Table 7-5). You can change some of these settings from the
keyboard by typing PRU, the command character, and one of the
commands listed iil Table 7-2. How port characteristics change as a
result of various activities is described under "Changing Port 1
Characteristics" later in this chapter.

Hardware page locatio~s for port 1
Table 7-3 lists for serial port 1 the addresses and bit assignments of
its hardware registers on page $CO. The registers are internal to a
6551 AOA; their bit assignments are described in Chapter 11.

This table Is for your Information only. To avoid having problems
with the system. you should never try to directly access the
hardware. Instead, use the Apple.llc's built-In firmware In your
programs.

Table 7~3
Port l hardware page locations

Location

$C090-$C097
$C098
$C099
$C09A
$C09B
$C09C-$C09F

Description

Reserved
ACIA transmit/receive data register
ACIA status register
ACIA command register
ACIA control register
Reserved

Hardware page locations for port l 159

The ACIA register bits are
defined In Chapter 11.

1/0 firmware support for port 1
Table 7-4 lists the locations and values of the I/0 firmware protocol
table. This standardized protocol is available for use by any
application program. Chapter 3 describes how to use this protocol.

Table 7-4
Port l 1/0 firmware protocol

Address Value DescrlpHon

$C105
$C107
$C10B
$C10C
$C10D
$C10E
$Cl OF
$C110
$Clll

$38
$18
$0l
$3i
$ii
$rr
$ww
$ss
non
zero

Pascal ID byte.
Pascal ID byte.
Generic signature byte of firmware cards.
Same ID as for Super Serial Card.
$Clii is entry point of initialization routine (Plnit).
$Clrr is entry point of read routine (PRead).
$Clww is entry point of write routine (PWrite).
$Clss is entry point of the status routine (PStatus).
No optional routines.

Screen hole locations for port 1
Table 7-5 lists the screen hole locations that serial port 1 uses. Note
that the auxiliary memory locations are reserved for startup value
settings, which are listed and interpreted in the table.

Table 7-5
Port l screen hole locations

Auxiliary memory scrHn holes (firmware loads values at power-up)

locaHon

$0478

$0479

$047A

DescrfpHon

$9E (ACIA control reg: eight data + two stop bits,
9600 baud)

$OB (ACIA command reg: no parity)

$40 (flags: no echo, auto LP after CR, serial port)

Bit Interpretation

7 Echo output on display (O =no echo)
6 Generate LF after CR (0 = no LF)

5--1 Always= 0 (reserved)
0 1 = communication port; 0 = serial printer port

160 Chapter 7: Serial 1/0 Port l

--·

Table 7-5 (continued)
Port l screen hole locations

Auxlllary memory screen holes (firmware loads values at power-up)

Location Description

$047B $50 (printer width: 80 columns)

Bit Interpretation

7-0 Printer width (O = do not insert CR)

Main memory screen holes

Location

$0479

$04F9

$0579

$05F9

$0679

$06F9

$0779

$07F9

Description

Reserved

Reserved

Printer width (1-255; 0 = disable formatting)

Temporary storage location

Bit 7 = 1 while the firmware is parsing a command
string

Current command character (initially Control-I)

Bit 7 = 1 if echo to display is on; bit 6 = 1 if firmware is
to generate a line feed after carriage return

Current printer column

Changing port 1 characteristics
Figure 7-1 is a diagram of where the port characteristics are stored
and moved under different circumstances. You can see the
following from the figure:

o When the power is first turned on, the Monitor reset firmware
moves the predefined set of port characteristics listed earlier in
this chapter from ROM into the auxiliary memory screen holes
listed in Table 7-5.

o If you specify new characteristics using the System Utilities disk,
the SUD software changes the values in the auxiliary memory
screen holes. Your programs can do the same thing.

Changing port l characteristics 161

Port 1
Values in

Firmware Locations

Figure 7-1

o The values stored in the auxiliary memory screen holes are
affected by power-on reset, but not by either Open Apple
Control-Reset or a simple Control-Reset. This feature is
provided so that a port that has been reconfigured will remain
that way while some other program (such as an application
program) is started up. (See Figure 7-1.)

o PR#l causes the firmware to move the characteristics stored in
the auxiliary memory screen holes into the main memory screen
holes.

o A program can change values in the main memory screen holes
directly. However, the only value guaranteed to be in the same
place for the entire Apple II series is the line length in main
memory location $0579.

o The firmware uses the port as it is defined in the main memory
screen holes at any given time. You should use the commands
listed in Table 7-2 to change them.

System Utilities Disk
PIN Number Selection

(See Appendix H)

Auxiliary RAM
Screen Holes
(See Table 7-5)

Line Width = o

Reset

PR#1

Printer Port
Commands

(See Table 7-2)

Port 1
MainRAM

Screen Holes
(See Table 7-5)

Reserved Screen Holes

Diagram of port 1 characteristics storage

162 Chapter 7: Serial 1/0 Port 1

Data format and baud rate
Serial data transfer consists of a string of l's and O's sent down a wire
at a prearranged rate of transmission, called the baud rate.

Before transfer begins, both sender and receiver look for a
continuous value of 1: this is called the carrier (Figure 7-2). When
the value goes to 0, the receiver presumes it is a start bit-that is, the
bit that designates the beginning of a character of data. If it lasts
longer than a bit could possibly last, it is considered a BREAK
signal, which some printers use for synchronization.

If the first 0 proves to be a bit, it is interpreted as the start bit. Next
come the seven or eight data bits (six is seldom used with
computers), low-order bit first. If parity is on, it comes next in the
message. Finally, one or two stop bits appear. The stop bits have a
value of 1, like the carrier. The next start bit begins transfer of the
next character of data.

The parity bit provides a simple check of data validity. Odd parity
means the sender counts the number of l's among the data bits, and
sends the appropriate parity bit to make the total number of l's
odd. With even parity, the sender adds the appropriate parity bit to
make the total number of 1 bits even. MARK parity is always a 1 bit;
SPACE parity is always a 0. The receiver can then check that the
parity bit is correct.

If the baud rate is 300 and the data format is one start bit plus
seven data bits plus one parity bit plus one stop bit (totaling ten bits
transmitted for each byte of data sent), then the actual transfer rate
is about 30 characters per second.

n {No}
= 1 or MARK 7 Odd 1

1 Start + { } Data + Even Parity + { } Stop

U = OorSPACE 8 MARK 2
SPACE

1---

o---
Start
Bit

LSB

0 0

MSB Carrier

----t ----L
Odd Stop

Parity Bit
Next
Start
Bit

ASCII letter M = $40; sent as 8 data, odd parity, 1 stop bit

Figure 7-2
Data format

Changing port 1 characteristics 163

Carriage return and line feed
If you are using a typewriter and you push the carriage all the way to
the right (in other words, position the printing mechanism at the
left margin), you have performed a carriage return. On the other
hand, turning the platen so the paper moves to the next line (or
using the index key on an electric typewriter) is called a line feed.
Most typewriters perform a line feed automatically after a carriage
return, and so the two seem to be one-but they are not.

Carriage return and line feed are separate ASCII codes. Carriage
return is sometimes denoted CR; it is ASCII code 13 ($OD). Line
feed, sometimes · denoted IF, is ASCII code 10 ($OA). Down Arrow
on the Apple Ile keyboard generates a LF.

Some printers can supply a line feed automatically after detecting a
carriage return; others cannot. If the printer does not supply a line
feed after a carriage return and it is not supplied in the data stream,
the printer keeps printing over and over on the same line. On the
other hand, if both the printer and the Apple Ile firmware supply LF
after CR, double line-spacing results.

If the print head keeps moving too far to the right across the page
and then prints many characters on top of one another on the right,
then the firmware should be instructed to furnish CR after a certain
line width has been reached. If the printer prints too short a line
before moving to the next line, then probably the firmware is using
too small a line width.

If the printer misses characters at the beginning of each line but
otherwise prints correctly, there is probably not enough time for
the print mechanism to return to the left margin in response to CR.
You must use a lower baud rate with such a printer.

164 Chapter 7: Serial 1/0 Port l

Sending special characters
If you want to send special characters (control characters) to the
printer without having them intercepted and executed by the
Apple Ile firmware, use the Z command (see Table 7-2). If the only
special character that causes a problem is the command character
(normally Control-I for port 1), you can change just the command
character instead of using the zap (Z) command. If you use the zap
command, the firmware does no formatting; that is, it doe~ not ·
check line width or insert carriage returns or line feeds. This may be
necessary to send · graphics to a · printer or plotter.

Displaying output on the screen
You can display printer output on the screen, but if the printer line
width exceeds the 40 or 80 columns you have selected for display,
you should turn off video display. .

Changing port 1 characteristics 165

. "

Chapter 8

S~rial 1/0
Port 2

167

Serial port 2 is one of two serial I/0 ports available on the
Apple Ile. It is intended primarily as a communication port for
modems. You can change it to a serial printer port (like port 1)
using the System Uti/tt1es disk or from a program.

Warning Although the Apple lie serial ports are slmllar to the Apple lie
Super Serlal Card. there are Important differences. Refer to
Appendix F for a summary of these differences.

Table 8-1 summarizes the characteristics of this port and is a guide
to the other information in this chapter. If you change port 2 to a
serial printer port, refer to the descriptions in Chapter 7 and use 2
instead of 1 for the port number when required. ·

The serial port connectors are described in Chapter 11.

Table 8-1
Serlal port 2 characteristics

Port number

Commands

lnltlal characteristics

Hardware page
locations

Monitor firmware
routines

1/0 firmware
entry points

168 Chapter 8: Serial 1/0 Port 2

Serial port 2.

Keyboard commands:
IN#2 before Table 8-2 commands,
IN#2 to accept port 2 input,
PR#l to echo input to printer,
PR#2 to echo input back to port 2.

BASIC commands: same.

Monitor command: 2 Control-P
(does not work if there is an operating
system in RAM).

All other commands: see Table 8-2.

See "Characteristics of Port 2 at Startup."

See Table 8-3.

None.

See Table 8-4.

Important

Refer to Table 8-4 for the
standard firmware entry points
that Pascal 1.1 and 1.2 use.

UnlDlsk 3.5

Table 8-1 (continued)
Serial port 2 characteristics

Use of screen holes

Use of other pages

See Table 8-5.

In terminal mode, firmware uses auxiliary
memory locations $0800-$087F to store
keyboard input, and $0880-$08FF as a
serial input buffer.

Using serial port 2
You can access the firmware from BASIC in the usual way-that is,
by issuing Control-D (if DOS or ProDOS is in RAM) followed by
IN#2 or PR#2. Subsequent input and output are routed through the
modem (or other device) connected to serial port 2.

In terminal mode. the modem port commands listed In Table 8-2
must follow Control-D and IN#2 (not PR#2) and the command
character (which Is usually Control-A).

To transfer files to the modem under Pascal, specify REMOUT:
or #8:. To transfer files from the modem under Pascal, specify
REMIN: or #7:.

Table 8-2 lists the commands you can use with serial port 2, either
from a program or from the keyboard, after you issue IN#2.

Commands followed by an asterisk In Table 8-2 (with the
exception of L) are available only on the version of the
Apple lie that supports UnlDlsk 3.5. These commands can be
toggled by following them directly with E (enable) or D
(disable).

Each command must be preceded by Control-A (the command
character). As soon as you issue the command character, the serial
port firmware displays a flashing question mark cursor to indicate it
is awaiting a command. If you press Return, you get the current
video cursor again. You do not have to press Return (or send a
return character) after commands. You can type more than one
command on a line, but each must be preceded by the commapd
character.

Using serial port 2 169

Table 8·2
Modem port commands

Command Descrlptton

nnn Sets new line width of nnn (from 1 through 255); this
must be followed immediately by N (see below) or by
carriage return.

nnB Sets baud rate to value corresponding to nn:

nn Rate nn Rate ' nn Rate

~1 50 6 300 11 3600
2 75 7 600 12 4800
3 110 (109.92) 8 1200 13 7200
4 135 (134.58) 9 1800 14 9600
5 150 10 2400 15 19200

C • When enabled, this command causes a carriage
return character to be sent automatically whenever the
column count exceeds the printer line width. The
command is normally enabled.

nD Sets data format to values corresponding to n:

n Data Stop n Data Stop
bits bits bits bits

0 8 1 4 8 2
1 7 1 5 7 2
2 6 1 6 6 2
3 5 1 7 5 2

P When this command is enabled, your Apple Ile
accepts data from the keyboard as well as from the
serial port. You can use this to disable the keyboard
before receiving or sending data to prevent accidental
keystrokes from disrupting the data flow. Be sure that
your program reenables the keyboard when the data
transfer is complete. This command is available only
from BASIC and is normally enabled.

I Echoes output on the screen.

K Disables automatic line feed after carriage return.

L • Generates line feed after carriage return. Normally,
this command is enabled. Disabling it has the same
effect as the K command.

170 Chcpter 8: Serial 1/0 Port 2

Table 8-2 (continued)
Modem port commands

Command Description

M • When this command in enabled, all incoming line
feed characters are masked (removed from the data
stream). Normally this command is enabled.

nnnN · Sets line width to nnn (from 1 through 255); does not
echo output on the screen. Note: ON does not disable
automatic generation of carriage return; to do so, use
the Z command, put 0 directly in location $057 A, or
use the System Utilities disk.

nP Sets parity corresponding to n:

n Parity n Parity

0 none 4 none
1 odd 5 MARK (1)
2 none 6 none
3 even 7 SPACE (O)

Q Quits terminal mode.

R Resets port 2 and exits from serial port 2
firmware.

S Sends a 233-millisecond BREAK character.

T Enters terminal mode. Use this command after IN#2
only. Also, if you follow this command by PR#2, the
Apple Ile echoes input to output Of the other device
does so too, the first character loops endlessly,
locking up the system. Use Control-Reset to get out.)

X • When enabled, this command turns on the
XON/XOFF protocol: the Apple Ile luoks for the
XOFF ($13) character and responds by halting
transmission until an XON ($11) is received.
Normally this command is disabled.

Z Zaps (ignores) further command characters until
Control-Reset. Does not format output or insert
carriage returns into output stream.

Control-T This command from a remote device puts the
Apple Ile in terminal mode if IN#2 is already in effect.
It is the same as Control-A T typed locally.

Using serial port 2 1 71

Table 8-2 (continued)
Modem port commands

Command Descrlptton

Control-R This command from a remote device undoes the
terminal mode command. If IN#2 and PR#2 are in
effect, the remote keyboard and display become the
input and output devices of the local Apple Ile. It is
the same as Control-A Q typed locally.

Note: The commands themselves are letter commands, not control
characters.
• Command (with the exception of L) available only on the version of the

Apple Ile that supports UniDisk 3.5. Command can t5e toggled: If you
follow the command with E (with no intervening space) the command is
enabled. If you follow the command with D (with no intervening space)
the command is disabled. The L command is available on the earlier
Apple Ile, but it cannot be toggled there.

When the Apple Ile is turned on, the serial port 2 command
character is defined as a Control-A. You can change it to a different
control character by typing the current control character followed
immediately by the new control character you want. This is useful if
you want to be able to send Control-A to the output device without
firmware intervention.

For example, to change the command character from Control-A to
Control-V, send Control-A Control-V either from the keyboard or
from a program. (Control-V and Control-W are the recommended
substitute control characters.) To change the command character
back again, send Control-V Control-A.

Warning Do not use Control-B. -C. -H. -1. -J, -L. -M. or -Y: Apple lie
firmware may Intercept these control characters. causing
unpredictable results.

The following are examples of valid commands and command
sequences. These examples show commands being entered from
the keyboard, but your programs can send the characters just as
well.

To enable echo to the screen:

Control-A I

To send a break character to a remote device:

Control-AB

172 Chapter 8: Serial 1/0 Port 2

To change the control character to Control-V (for example, so you
can send Control-A as part of a character stream):

Control-A Control-V Control-V(command)

Characteristics of port 2 at startup
After power-up, the firmware sets the following configuration:

o 300 baud

o eight data bits, no parity bits, one stop bit

D firmware does not supply line feed after carriage return

o firmware does not insert carriage returns into output stream

D firmware does not ecqo output to the display screen

D command character is set to Control-A

These values are stored in the auxiliary memory screen holes
(Table 8-5). You can change some of these settings from the
keyboard using the command character followed by one of the
commands listed in Table 8-2. How port characteristics change as a
result of various activities is described later in this chapter.

If you change any of these values using keyboard commands or
commands from a program, subsequent acce$ses to the port
firmware (even by another program) use the new settings instead of
the power-up values. This allows you to change the settings once at
system startup and ~et the desired configuration for subsequent
uses.

Hardware page locations for port 2
Table 8-3 lists for serial port 2 the addresses ofits hardware registers
on page $CO. The registers are internal to a 6551 ACIA; their bit
assignments are described in Chapter 11.

Warning This table Is for your Information only. To avoid having problems
with your system. you should never try to directly access the
hardware. Instead. Use the Apple llc's built-In firmware In your
programs.

Hardware page locations for port 2 17 3

Note In Chapter 11 that some
of the · bit osslgnments for this
port differ from those for port 1.

The ACIA register bits are
defined In Chapter 11.

Table 8-3
Port 2 hardwqre page locations

~ocatlon

$COAO-$COA7
$COA8
$COA9
$COAA
$COAB
$COAC-$COAF

DescrlpHon

Reserved
ACIA transmit/receive data register
ACIA status register
ACIA command register
ACIA control register
Reserved

1/0 firmware support for port 2
Table 8-4 lists the values in the 1/0 firmware protocol table for

serial port 2. This standardized protocol is available for use by any

application program. Chapter 3 describes how to use this protocol.

Table 8-4
Port 2 1/0 firmware protocol

Address Value DescrlpHon

$C205
$C207
$C20B
$C20C
$C20D
$C20E
$C20F
$C210
$C21l

$38
$18
$01
$31
$ii
$rr
$ww
$ss
non
zero

Pascal ID byte.
Pascal ID byte.
Generic signature byte of firmware cards.
Same ID as for Su per Serial Card.
$C2ii is entry point of initialization routine (Pinit).

$C2rr is entry point of read routine (PRead).

$C2ww is entry point of write routine (PWrite).

$C2ss is entry point of the status routine (PStatus).

No optional routines.

Screen hole locations for port 2
Table 8-5 lists the screen hole locations that serial port 2 uses. Note

that the auxiliary rpemory locations are reserved for startup value

settings, which are listed and interpreted in the table.

174 Chapter 8: Serlal 1/0 Port 2

Table 8-5
Port 2 screen hole locations

Auxlilary memory screen holes (firmware loads values at power-up)

Locaflon

$047C

$047D

$047E

$047F

Descrlpflon

$16 (ACIA control reg: eight data+ one stop bit,
300 baud)

$OB (ACIA command reg: no parity)

$01 (flags: no echo; no auto LF after CR,
communication port)

Bit Interpretation

7 Echo output on display (O = no echo)
6 Generate LF after CR CO = no LF'.)

5-1 Always = 0 (reserved)
0 1 = communication port; 0 = serial

printer port

$00 Oine length: do not add any CR to output stream)

Bit Interpretation

7~ Line length (O ==do not insert CR)

Main memory screen holes

Location

$047A

$04FA

$057A

$05FA

$067A

$06FA

$077A

$07FA

Descrlpflon

Reserved

Reserved

Line length (1-255; 0 =disable formatting)

Temporary storage location

Bit 7 == 1 if and only if the firm'Ware is rurrently parsing
a command string

Current command character (initially Control.:.!)

Bit 7 = 1 if echo to display is on; bit 6 = 1 if firmware is
to generate a line feed after carriage rettirn

Current column

Screen hole locatlon5 for port 2 175

Changing port 2 characteristics
Figure 8-1 is a diagram of where the port characteristics are stored
and moved under different circumstances. You can see the
following from the figure:

o When the power is first turned on, the Monitor reset firmware
moves the predefined set of port characteristics listed in Table 8-
2 from ROM into the auxiliary memory screen holes listed in
Table 8-5.

o If you specify new characteristics using the System Uttllttes disk,
the utility software changes the values in the auxiliary memory
screen holes.

o The values stored in the auxiliary memory screen holes are
affected by power-on reset, but not by either Open Apple
Control-Reset or a simple Control-Reset. This feature is
provided so that a port that has been reconfigured will remain
that way while some other program (s\Jch as an application
program) is started up.

o IN#2 causes the firmware to move the characteristics stored in the
auxiliary memory screen holes into the main memory screen
holes.

o A program can change values in the main memory screen holes
directly. However, the only value guaranteed to be in the same
place for the entire Apple II series is the line length in main
memory location $057 A.

0 The firmware uses the port as it is defined in the main memory
screen holes at ariy given time. You should use the commands
listed in Table 8-2 to change these characteristics.

176 Chapter 8: Serial 110 Port 2

Port 2
Values In

Firmware Locations

Figure 8-1

System Utilities Disk
PIN Number Selection

(See Appendix H)

Port 2
Auxiliary RAM
Screen Holes

(See Table 8-5)

Reset

PR#2 or
IN#2

Communication Port
Commands

(See Table 8-2)

Port 2
Main RAM

Screen Holes
(See Table 8-5)

Reserved Screen Holes

Diagram of port 2 characteristics storage

Data format and baud rate
Chapter 7 describes data format and baud rate, and explains how
they apply to printers. Refer to that chapter for definitions of terms.

A noteworthy characteristic of data communication is its
strangeness: sometimes the oddest changes make a given
communication arrangement work or not work. You must keep this
notion firmly in mind when working with serial port 2.

For example, modem communication involves quite a few elements
(Figure 8-2):

o the Apple Ile and its firmware, with the baud rate, data format,
and other characteristics you have selected

o the cable from the Apple Ile to the modem

o the modem

D possibly an acoustic coupler for a telephone handset

Cha.nglng port 2 characteristics 177

D
Monitor

Local DTE
(Data Terminal

Equipment)

Figure 8-2

o the telephone lines, with their switching equipment, boosters,
and noise

o some combination of modem, cable, and remote computer or
terminal

As you can imagine, some method is required for successful data
transmission. If you have problems, change only one variable at a
time and then cycle through the other variables one at a time. Take
nothing for granted. The data format advertised for an information
service, for example, may be different from the one you end up
using with the Apple Ile.

Telephone
and Modem

Local DCE
(Data Communication

Equipment)

Transmission Line

Mainframe

RemoteDCE Remote DTE

Devices In a typical communication setup

178 Chapter 8: Serial 1/0 Port 2

=or a further description of what
rermlnal mode does and how to
;iet Into and out of It. refer to
rhe last section of this chapter.

Carriage return and line feed
If you are communicating with a computer or terminal, carriage
return and line feed may or may not be involved. Start off without
generating them, and tum on automatic generation only as needed.
They are described as used with printers in Chapter 7.

Routing Input and output
This section discusses the possible ways that serial port 2 can route
information. Sometimes the cause of communication problems is
that information is not going where you think it is, or it is and you
cannot see evidence of the fact Figures 8-3 through 8-6 show some
of the patterns of information flow you can select

It is best to read all this material as a unit; questions that arise while
you read one description may be answered elsewhere.

The simplest serial port 2 command is IN#2 (Figure 8-3). Port 2
becomes the input device. Data coming into the port gets passed to
the input buffer (page $02 of main memory). Applesoft firmware
and system software can see the data and carry out commands in the
normal way.

Of course, you can also use just the PR#2 command-for example,
if you want to send a listing to the modem.

To use port 2 for data communication, you ordinarily put it into
terminal mode. Following IN#2, pressing Control-A gets the
attention of the port 2 firmware, which displays a blinking question
mark (?) as a prompt Now type T to put the computer in terminal
mode. In this mode, the firmware displays a blinking underscore
character (_) as a prompt.

In the discussion that follows, local refers to your Apple Ile.
Remote refers to some other device, usually in a distant location
and at the other end of a communication link. The remote device
can be any ASCII-generating unit: a terminal or a computer.

If a remote computer is another Apple Ile or an Apple II series
machine with a Super Serial Card in it, then most of the commands
described here apply to it as well.

Changing port 2 characteristics 179

0
Printer

Figure 8-3
Effect of IN#2

EJ

r;;;t71
~

MON

Remote
.--~Communication

Device ~--_.,,.. ___ --t Communication
Device

Remote
Terminal

or Computer

Keyboard

Half-duplex operation

In half-duplex operation, information can flow from A to B or
from B to A, but in only one direction at a time. In a half-duplex
setup, the host does not echo back to the terminal what the terminal
sends it For half-duplex operation, use IN#2 and Control-A T
(Figure 8-4) whether the Apple Ile is the host or the terminal.

180 Chapter 8: Serlal 1/0 Port 2

a
Printer

Figure 8-4

IN#2 pll.lS Control-A T is the best way to set up the computer for
auto~answer operation. The T command allows port 2 firmware to
exchange information With the local modem without interference
from the local firmware or system software. (The remote device can
always cancel the T command with Control-R if necessary, and
restore terminal mode With Control-T.) Avoiding PR#2 at this point
means that the Apple Ile can operate as a half-duplex terminal,
half-duplex host, or full-duplex terminal. (The remote device can
also issue Control-A PR#2 if PR#2 is required at the local
computer.)

Keyboard

~--..t Communication Remote
Device ..,_ ___ ,,,.,. ___ __. Communication

Device

Remote
Terminal

or Computer

Effect of IN#2 and T command, half duplex

In half-duplex operation, the output hook is available for other
uses. For example, you can issue PR#l to print incoming messages
from port 2. ·Use the Control-A I command to display information
on the screen.

Changing port 2 characteristics 181

a
Printer

Figure 8-5

Full-duplex operation

In full-duplex operation, information can flow from A to B and
from B to A simultaneously. Typically, one of the computers (the
host computer) echoes. its input tci output, so the other computer
(the terminal) can ea5ily verify that the communication is taking
plate.

Figure 8-5 sho-WS the flow of information when the Apple Ik is a full
duplex terminal. (The setup commands, IN#2 and Control-A T, are
the same as for half duplex.)

Keyboard

Communication Remote
~--+:! Device t--.....,,i,.,.--...... -f Communication

Device

2

Echo

Remote
Terminal

or Computer

Effect of IN#2 and T command, full-duplex terminal

If your Apple Ile is the terminal in full-duplex operation, use the _
N command to rum off echoing input to the screen. If the Apple Ile
does echo input to the screen in this setup, everything you type will
appear twice: once from the Apple Ile and once from the host
computer.

182 Chapter 8: Serlal 1/0 Port 2

a
Printer

Figure 8-6

In this mode of operatiori, if you echo input to the printer you can
get a printed record of both sides of the communication session:
the input from the host, and the Apple Ile output as echoed by the
host.

, Figure 8-6 shows the flow of information whert the Apple Ile is a full
duplex host. In this. case, the local Apple Ile must echo input to
output for the remote device. The setup commands include PR#2 in
this case.

Keyboard

Remote
--~Communication i--___ ,,_ __ ,__-4 Communication

Device
Device

(No Echo)

Remote
Terminal

or Computer

Effect of IN#2, PR#2, and T command, full-duplex host

Warning If the Apple lie echoes Input to output and the other computer
does too, then the first subsequent keypres5 will echo back and
forth endlessly and lock up the Apple lie. This will require a
Control-Reset to get out.

If you echo Input to output when using an information service.
the host will end up seeing the echo of what It sent you as
though you had typed It.

Changing port 2 characteristics 183

In this arrangement, the local output hook is not available for using
the printer or other device. To display keyboard and port 2 input
on the screen, issue Control-A I.

Terminal mode

Terminal mode makes the Apple Ile act like a dumb terminal-one
that just sends and receives information, but does not process it.
Input and output flow through special serial 1/0 buffers on page $08
of auxiliary memory. Applesoft firmware and system software
cannot see or interpret the data: only the serial port 2 firmware
deals with it.

In most terminal mode setups, the firmware will not display port 2
input unless you use the Control-A I command.

Warning When using terminal mode, $0800-$08FF of auxlllary RAM is
used for buffering. Any data stored there wlll be overwritten
when terminal mode Is enabled.

Control-A T turns on terminal mode, and Control-A Q turns it off.

The remote device can go into terminal mode, and then turn off the
local Apple Ilc's terminal mode with the Control-R command. If it
then issues Control-A PR#2, local output will go to the remote
device. The remote keyboard and display then become the input
and output devices of the local Apple Ile processor. This is remote
mode.

In remote mode, the local Apple Ile does not use the serial I/0
buffers (as it does in terminal mode); therefore, local firmware and
system software detect and interpret all input and output data. So,
for example, if you type CATALOG at the remote device keyboard,
the local Apple Ile will execute the command and list the disk
catalog on the remote device's display. (In terminal mode, the
local computer would simply display the word CATALOG on its
screen.)

The retnote device can turn the local Apple He's terminal mode
back on with Control-T. Control-A T issued at the remote device
only turns on the remote device's terminal mode, unless the
command character there has already been changed to something
else.

184 Chapter 8: Serial 1/0 Port 2

Chapter 9 -,

Mouse and
Game Input

185

This chapter describes the Apple Ilc's mouse port and hand
controller (game) input capabilities. The mouse and hand
controllers use the same 9-pin connector on the back panel; the
firmware uses the port as directed by keyboard or program
commands.

Mouse input
Table 9-1 summarizes the mouse port's characteristics and guides
you to other information in this part of the chapter.

Warning If you want your programs that use the mouse on the Apple lie
and other Apple II series computers to work with the Apple lie.
always use the 1/0 firmware entry points listed In Tables 9-4
and 9-5. rather than dealing directly with the mouse hardware
and RAM locations.

The mouse back panel connector is described in Chapter 11.

Table 9-1
Mouse Input port characteristics

Port number

BASIC commands

Initial characteristics

Hardware page
locations

Monitor firmware
routines

1/0 firmware
entry points

Use of screen holes

186 Chapter 9: Mouse and Game Input

Mouse input port 4.

Turn on mouse:
PRINT CHR$(4)"PR#4":PRINT CHR$(1)

Turn off mouse interrupts:
PRINT"PR#4":PRINT CHR$(0)

Turn on graphics character set: See
"MouseText" in Chapter 5.

After a reset, all mouse interrupts are off
and the rising edge of XO and YO are
selected for interrupts.

See Table 9-2.

None.

See Tables 9-3 and 9-4.

See Table 9-5.

Memory expansion The memory expansion version of the Apple lie places the
mouse at input port 7 and the memory expansion card at
port 4. Thus. ail ·pR4· entries become ·pRr entries.

Mouse connector signals
The mouse uses the same DB-9 connector as the hand controllers.
However, the interpretation of the signals arriving on the pins
differs depending · on the commands and signals received.
Figure 11-37 shows,the names of the pin assignments when a mouse
is connected.

Mouse operating modes
This section tells what the mouse operating modes are for. Later
sections of this chapter describe how to set the various mouse
operating modes.

Your program should call the ServeMouse routine to determine the
source of an interrupt as soon as it receives one, in all the interrupt
modes except transparent mode.

Transparent mode

In transparent mode, your program must read screen holes to check
for mouse movement. An interrupt routine in the Apple Ile
firmware updtttes mouse position counters each time the mouse is
moved, then returns control to the main program task. The findings
of the interrupt routine are placed in the screen holes for your
program to find. Table 9-5 lists the screen holes with the
information that your program should look for.

This is the only mouse mode available to BASIC programs.

Movement interrupt mode

On the Apple Ile, a signal called VB/Int can interrupt the processor
whenever a video vertical blanking signal occurs. This can make it
easier for your programs to smoothly move the mouse cursor in
response to mouse movements.

Mouse Input 187

"MouseText" In Chapter 5
contains recommendations for
using MouseText characters
with a mouse.

In movement interrupt mode, the mouse firmware arms VBllnt
whenever the mouse is moved at least one count in any direction.
When VBllnt occurs, program control passes to the vector address
contained at locations $03FE and $03FF; the interrupt handler in
your program can then update the cursor smoothly to its next
screen position.

Your program's interrupt handler must first call ServeMouse
(Table 9-3) to see if the mouse caused the interrupt. It should then
call ReadMouse to get mouse status and its current X-Y position. _
The routine can also change the mouse mode and position if
desired.

The maximum amount of mouse movement that can occur between
successive VBllnt interrupts is limited to the distance someone can
move a mouse in one-sixtieth of a second.

Button interrupt mode

The Apple Ile mouse-button hardware location does not generate
interrupts. However, a program can simulate mouse-button
interrupts by polling the button whenever VBllnt occurs, and acting
on the interrupt whenever the button state has changed. This lets
your program provide fast response to the mouse movement
without too much program overhead.

Movement/button interrupt mode

The movement/button interrupt mode is a combination of the two
modes just described. It provides the best response possible without
constant polling of the mouse position and button. Your program
can effectively process a main task concurrently with cursor and
menu updating, as well as menu-selected command processing.

Vertical blanking active modes

The vertical blanking active modes are the same as the four just
described except that they allow VBL interrupts to be sent to the
user.

188 Chapter 9: Mouse and Game Input

Mouse soft switches
The soft switches assigned to the mouse interface are shown in
Table 9-2. On power-up or reset, the hardware selects the rising

Appendix E explains how the edge of XO and YO (mouse movement signals) and masks out all
firmware handles Interrupts. mouse interrupts.

Warning Table 9-2 Is Included here for your Information only. You should
u5e the built-In firmware to access the mouse; doing so Is much
easier than writing your own mouse Interrupt handler and
guarantees compatlblllty with all other Apple II-series
computers.

Table 9-2
Mouse soft switches

Name Action Hex Function

IOUDis w $C07E On: Disable IOU access for
addresses $C058 to $C05F;
enable access to DHiRes
switch•

IOUDis w $C07F Off: Enable IOU access for
addresses $C058 to $C05F;
disable access to DHiRes
switch•

RdIOUDis R7 $C07E Read IOUDis switch (1 = off)t

DisXY R/W $COSS Disable (mask) XO and YO
movement interrupts:j: ·

EnbXY R/W $COS9 Enable (allow) XO and YO
movement interrupts:J:

RdXYMsk R7 $C040 Read status of XO/YO interrupt
mask (1 = mask on)

RstXY R $C048 Reset XO/YO interrupt flags

XO Edge R/W $C05 Select rising edge of XO for
interrupt:j:

XO Edge R/W $C05D Select falling edge of XO for
interrupt:j:

RdXOEdge R7 $C042 Read status of XO edge selector
(1 = falling)

RstXInt R $C015 Reset mouse XO interrupt flag

Mouse Input 189

Table 9-2 (continued)
Mouse soft switches

Name

YO Edge

YO Edge

RdYOEdge

RstYint

DisVBI

EnVBl
RdVBIMsk

RstVBl

PT rig

RdBtnO

Rd63

MouXl

MouYl

Action

R/W

R/W

R7

R

R/W

R/W
R7

R

R/W

R7

R7

R7

Hex

$COSE

$COSF

$C043

$C017

$C05A

$C05B
$C041

$C019

$C070

$C061

R7

$C066

$C067

Function

Select rising edge of YO for
interrupt:!:
Select falling edge of YO for
interrupt:!:
Read status of YO edge selector
Cl = falling)
Reset mouse YO interrupt flag

Disable (mask) VBL
interrupts*
Enable (allow) VBL interrupts*
Read status of VBL interrupt
mask (1 = ma5k on)
Read and then reset VBIInt
flag
Reset VBllnt flag; trigger
paddle timer

Read first rriotise button status
(1 = pressed)§
$C063 Read second mouse
button statils (O = pressed)9[
Read status of Xl (mouse
X direction) (1 = high)
Read stattis of Yl (mouse
Y direction) (1 = high)

• When IOUDis is on, $C058-$CoSF do not affect mouse, and $C05E
and $C05F become DHiRes (fable 5-8).

t Read or write to $C07x also resets VBIInt and triggers paddle timers.
* These work only if IOUDis is off.
S This location is also the Open Apple key (fable 4-1).
<[This is also the location of the Shift-key mod (Appendix F).

Mouse firmware sets interrupts in response to mode settings under
program control. The vertical blanking interrupt (VBllnt) . is armed
if the mouse button is pushed or moves at least a colint of 1 in the
XO or YO coordinates. Read $C070 to reset the VBL interrupt.
Because a VBL occurs every sixtieth of a second, that is the
maximum time that can elapse before the resulting interrupt can be
acknowledged and acted upon.

Software can also select which edge of XO and YO information will
cause the Xlnt or Ylnt.

190 Chapter 9: Mouse and Game Input

When an interrupt has occurred, you can read the direction of the
mouse's Xl movement by reading address $C066 bit 7, and
Yl movement by reading address $C067 bit 7.

A program can read the status of the soft switches by reading one of
the locations $C040-$C043 and then testing data bit 7. The soft
switches are described in Table 9-2.

The section on mouse input in Chapter 11 explains what XO, YO,
Xl, Yl are and what they µiean with respect to mouse movement.

If you write your own mouse interrupt handler, it should enable the
main bank-switched memory, set up its own IRQ vectors at
addresses $FFFE and $FFFF, keep track of video modes and the
alternate stack, and check for the interrupt source in the same
manner as the mouse firmware listed in Appendix I, beginning at
address $C400.

Important The listing In Appendix I provides source code only for the
memory exP,<mslon version of the Apple lie. Mouse code starts
at $C700 In the new ROM. There are Instructions for obtaining
listings for the orlglnal and UnlOlsk 3.5 versions In Appendix I.

UnlDlsk 3.5 The 32K ROM Includes a new feature for programs that need to
use mouse Interrupts for their own purposes. If your program sets
bit 7 of the mouse port mode byte at $07FC ($C7FF In the
memory expansion lie) to l, mouse movement Interrupts will be
passed to the Interrupt handler of your program. VBL Interrupts
will still be handled by the Apple llc's firmware. You should use
this feature only If the mouse firmware can't keep up with your
needs.

1/0 firmware support for mouse input

Memory expansion The memory expansion version of the Apple lie places the
mouse at $C700 and the memory expansion card at $C400. This
means that the mouse Is supported on page $C7 In the new
Apple lie, so change all SC4 and $40 addresses to SC7 and $70.

Mouse Input 191

The Apple Ile supports the mouse with firmware starting at address
$C400. This firmware is necessary because the mouse requires fast,
transparent interrupt processing to work effectively.

In assembly language you can use direct firmware support for
sophisticated mouse applications. To enable the mouse, first load a
mode byte into the accumulator (and $C4 in X, $40 in Y) and then
do a JSR to the firmware routine called SetMouse (Table 9-3). Valid
mode bytes are the following:

$00 Turns mouse off
$01 Sets transparent mode
$03 Sets movement interrupt mod
$05 Sets button interrupt mode
$07 Sets movement or button interrupt mode
$08 Turns mouse off, VBllnt active
$09 Sets transparent mode, VBllnt active
$OB Sets movement interrupt mode, VBllnt active
$OD Sets button interrupt mode, VBllnt active
$OF Sets movement or button interrupt mode, VBllnt active

The firmware then initializes the mouse. To read the current
position and status of the mouse, first load $C4 into the X register,
load $40 into the Y register, save processor status, disable
interrupts, and then JSR to the firmware routine called ReadMouse

(Table 9-3), which stores the information in the port 4 screen holes
(Table 9-5).

Table 9-3 lists the mouse port firmware routine offsets. Each
address contains the low byte of the entry point of the routine
described. The calling setup for all routines (except ServeMouse) is
the same: the X register must contain $C4, and the Y register must
contain $40. When the routine has finished, the A, X, and
Y register contents are undefined. ·

Memory expansion The memory expansion version of the Apple lie places the
mouse at $C700 and the memory expansion card at $C400.
Thus, all mouse firmware routines start at a $C7XX address,
Instead of $C4XX.

192 Chapter 9: Mouse and Game Input

Table 9-3
Mouse firmware routines

LocaHon Offset for Description

$C412 SetMouse Sets the mouse mode to the value in
the accumulator.
Input: A register contains mode (see
$07FC, Table 9-5) ($07FF in new
Apple Ile).
Output: Carry bit = 0 means mode
was legal; carry bit= 1 means mode
was not legal.

$C413 ServeMouse Services mouse interrupt if needed.
Input: X, Y, A registers-doesn't
matter.
Output: Carry bit = 0 means rriouse
caused the interrupt; carry bit = 1
means something else caused it.
This routine updates $077C ($077F in
new Apple Ile) to show which event
caused the interrupt (values in
Table 9-5).

$C414 ReadMouse Updates screen holes to show current
mouse X-Y position and button
status; clears VBlint, button and
movement interrupt bits in the status
byte. Doesn't reenable interrupts
until after retrieving position values.
Output: Carry bit = 0.

$C415 ClearMouse Sets the mouse position to 0, though
not necessarily within clamping
boundaries; leaves button and
interrupt bits in status byte

_, unchanged.
Output: Carry bit = 0.

$C416 PosMouse Sets the mouse. coordinates to new
values.

· Input: X and Y screen holes contain
new X and Y positions.
Output: Carry bit = 0.

Mouse input 193

Table 9-3 (continued)
Mouse firmware routines

Locatton Offset for

$C417 ClampMouse

$C418 HomeMouse

$C419 InitMouse

DescrlpHon

Sets new clamping boundaries (see
Table 9-5). Does not affect mouse
position or update mouse position
screen holes; use ReadMouse to do
that.
Input: A register = 0 means set new
X boundaries; A register = 1 means
set new Y boundaries.
Output: Carry bit = 0.

Sets the internal mouse position to
the upper-left corner of the clamping
window. Does not update mouse
position screen holes; use
ReadMouse to do that.

Sets startup internal values; does not
update mouse-position screen holes.
Output: Carry bit = 0.

Here is a sample sequence of events and calls:

1. Four screen holes contain the mouse's X and Y coordinates, and
one contains the status of the last mouse movement (Table 9-5).

2. Call InitMouse.

3. Inhibit interrupts, set up the boundaries you want, then call
ClampMouse.

4. Use PosMouse, HomeMouse, or ClearMouse to position the
mouse where you want it

5. Put the mouse mode (see address $07FC in Table 9-5) that you
want to use in the accumulator, then call SetMouse (use address
$07FF for the new Apple Ile).

6. If you have set one of the interrupt modes, then when an interrupt
arrives, call ServeMouse to determine the source of the interrupt.

7. Disable interrupts and call ReadMouse. Retrieve the position
values, then reenable interrupts.

194 Chapter 9: Mouse and Game Input

Pascal support

Table 9-4 lists the locations and values of the 1/0 firmware protocol
that Pascal 1.1 and later versions use. However, Pascal must use a
special attach driver to support the mouse.

Memory expansion The memory expansion version of the Apple lie places the
mouse at $C700 and the memory expansion card at $C400.
Thus, all mouse firmware routines start at a $C7XX address,
Instead of $C4XX.

Table 9-4
Mouse port 1/0 firmware protocol

Address Value Descrlptton

$C405 $38 Pascal ID byte

$C407 $18 Pascal ID byte

$C40B $01 Generic signature byte of firmware cards

$C40C $20 2 = X-Y pointing device; 0 = identification
code

$C40D Initialization routine (not implemented;
returns error code)

$C40E Standard read routine (not implemented;
returns error code)

$C40F Standard write routine (not implemented;
returns error code)

$C410 Standard ,status routine (not implemented;
returns error code)

$C411 $00 Optional routines follow

$C4FB $06 A mouse identification byte

BASIC and assembly-language support

Memory expansion The memory expansion version of the Apple lie places the
mouse at $C700 and the memory expansion card at $C400. This
means that all ·pR4· or ·1N4· calls change to ·pR7· or ·1Nr
calls.

Mouse Input 195

In BASIC you must turn the mouse on by printing PR#4 and then
CHR$(1) before you can get input from the mouse. This sets
transparent mode. After that, reenable video output with PR#3 and
take subsequent input from the mouse by issuing IN#4. The first
input statement after that (INPUT X,Y,S) initializes and enables the
mouse and returns a three-element string

+xxxx,+yyyy,+st

representing the x-coordinate, y-coordinate, and status digits.

The coordinates will be integers between 0 and + 1023. These are
called the clamping boundaries of the mouse.

The sign preceding the status digits is normally positive; it becomes
negative when you press a key on the keyboard.

The first digit, s, of the status is 0. The second digit, t, of the status
is 1 if the mouse button is still pressed, 2 if it was just pressed, 3 if it
was just released, and 4 if it is still released.

To disable the mouse, use these statements:

PRINT CHR$(4)"PRt4"
PRINT CHR$ (0)
PRINT CHR(4)"PRf3"

Important Change all 4's to 7's for the memory expanslon version.

Screen holes

Table 9-5 lists the screen holes that the mouse firmware uses. Note
that the mouse firmware reserves port 5 screen holes for its own use.
Also, the auxiliary page counterparts of the port 4 addresses are
reserved for startup values.

Important Some screen holes are different for the Apple lie mouse. Refer to
Appendix F.

196 Chapter 9: Mouse and Game Input

Table 9-5
Mouse port screen hole locations

Scratch area

Location

$0478
$04F8
$0578
$05F8

Description

Low byte of clamping minimum
Low byte of clamping maximum
High byte of clamping mimimum
High byte of clamping maximum

Port 4 screen holes

Location

$047C
$04FC
$057C
$05FC
$067C
$06FC
$077C

$07FC

Description

Low byte of X coordinate
Low byte of Y coordinate
High byte of X coordinate
High byte of Y coordinate
Reserved
Reserved
Status byre

Bit 1 Equals

7 Button down
6 Button was down on last read and still down
5 Movement since last read
4 Reserved
3 Interrupt from VBllnt
2 Interrupt from button
1 Interrupt from movement
0 Reserved

Mode byte (current mode; mask out bits 4-7 when
testing)

Bit 1 Equals

7-4 Reserved
3 VBllnt active
2 VBL interrupt on button
1 VBL interrupt on movement
0 Mouse active

Port 5 screen holes

Reserved

Mouse input 197

Memory expansion The screen hole addresses for the mouse In the Apple lie that
supports the memory expansion card all end with F, Instead of
C; this Is because the mouse has moved to slot 7 from slot 4. For
example, the low byte of the X coordinate Is stored at $047C in
the orlglnal and UnlDlsk 3.5 llc's, while It Is stored at $047F In the
memory expansion lie.

Using the mouse as a hand controller
You can use the mouse as if it were a set of hand controllers or an X
y pointing device in port 4: If you tum the mouse on, the Monitor
hand controller (game paddle). routines take input from the mouse.
1bis is possible because the mouse and the hand controllers all use
the same back panel connector.

You can run a BASIC program that uses the Pdl function to read
from the mouse by doing the following, either from the keyboard or
from a program:

1. Start up the system with the BASIC program that uses paddles.

2. Type PRf4 and press Return to tum on the mouse.

3. Press Control-A Return to initialize the mouse.

4. Type PRfO and press Return to restore output to the screen.

5. Run the program.

Play the game using the mouse instead of the paddles.

Important Many copy-protected games do not work with a mouse. In
addition, many games don't use built-In firmware for the
paddles.

Game input
The Apple lie supports game paddles, joysticks, and other hand
controllers connected to the DB-9 connector on its back panel.
Table 9-6 is a summary of game input characteristics.

198 Chapter 9: Mous13 and Game Input

Complete electrical
specifications of these Inputs
are given In Chapter ·11;
Table 11-22 shOws the
connector pin numbers.

Table 9-6
Game Input characteristics

Port number
Commands

None.
None.

lnltlal characteristics Game inputs cannot be disabled.

Hardware page locations

$C061 Switch input 0 and Open Apple.
$C062 Switch input 1 and Solid Apple.
$C063 Mouse button (sense is opposite that of $Co61 to

distinguish it from paddle button).
$C064
$C065
$C070

Analog input (paddle) 0.
Analog input (paddle) 1.
Trigger paddle timer.

Monitor firmware routines

Description Location

$FB1E

Name

PRead Reads a paddle position.

1/0 firmware entry points
None.

Use of screen holes
Nope.

The hand controller connector signals
Several inputs are available to programs or devices from the 9-pin
D-type miniature connector on the back of the ~pple Ile: two 1-bit
inputs, or switches, and two analog inputs.

When you connect a pair of hand controllers to the 9-pin
connector, the rotary controllers use two analog inputs, and the
pushbuttons use two 1-bit inputs. However, you can also u5e these
inputs for many other jobs. For example, two analog inputs can be
used with a two-axis joystick.

Game Input 199

Switch inputs (SwO and Swl)

The two 1-bit inputs can be connected to the output of another
electronic device that meets the electrical requirements described
in Chapter il, or to a pushbutton. When you read a byte from one
of these locations, only the high-order bit-bit 7-is valid
information; the rest of the byte is undefined. From machine
language, you can do a Branch Plus or Branch Minus on the state of
bit 7. From BASIC, you can read the sWitch with a PEEK and
compare the value with 128. If the value is 128 or greater, the switch
is on.

The memory locations for these switches are $C061, $C062, and
$Co63 (decimal locations 49249 through 49251), as shown in
Table 9-6. Switch 0 and switch 1 are permanently connected to
Open Apple and Solid Apple on the keyboard; these are the ones
connected to the buttons on the hand controllers. Location $C063
is a second address for the mouse button, so that a program can
distinguish it from an Open Apple keypress. When the mouse
button is pressed, $Co63 (bit 7) goes from 1 to 0, and $C061 (bit 7)
goes from 0 to 1. ·

Analog inputs (PdlO and Pdl 1)

The two analog inputs are designed for use with 150-Kn variable
resistors or potentiometers. The variable resistance is connected
between the +5V supply and each input, so that it makes up part of a
timing circuit. The circuit changes state when its time constant has
elap5ed, and the time constant varies as the resistance varies. Your
program can measure this time by counting in a loop until the
circuit changes state, or times out.

A program must first reset the timing circuits before it can read the
analog inputs. Accessing memory location $C070 does this. As

soon as you reset the timing circuits, the high bits of the bytes at
locations $Co64 through $co67 are set to 1. If you PEEK at them
from BASIC (locations 49252 through 49255), the values will be 128
or greater. Within about three milliseconds, these bits will change
bade to 0-byte values less than 128-and remain there until you
reset the timing circuits again. The exact amount of time each of the
bits remains high is directly proportional to the resistance
connected to the corresponding input. If these inputs are open-no
resistances are connected-the corresponding bits may remain
hjgh indefinitely.

200 Chapter 9: Mouse and Game Input

Monitor support for game input
To read the analog inputs from machine language, you can use a
program loop that resets the timers and then increments a counter
until the bit at the appropriate memory location changes to 0, or
you can use the built-in routine PRead. BASIC and other high-level
languages also include convenient means of reading the analog
inputs-refer to your language manuals. You can read and reread
the same paddle at arbitrarily short intervals. However, you must
wait at least three milliseconds between reading one paddle and
reading a different paddle.

The Monitor routine PRead (at address $FB1E) places in the
Y register a number between $00 and $FF that represents the
position of a hand controller. You pass the number of the hand
controller in the X register.

Warning If the hand controller number you furnish In the X register does
not equal 0 or 1. strange things may happen.

The paddle and vertical blanking both use $C070. Disable
Interrupts before calling PRead If you are reading the paddles
and using VBL Interrupts.

Game Input 201

Chapter 10

Using the
Monitor

203

The positive and negative
decimal equivalents of Monitor
locations are listed In
Appendix C. In addition.
Appendix H contains conversion
tables from one numbering
system to another. Appendix E
gives further details on how to
use Apple lie firmware from
BASIC programs.

Important

The System Monitor is a set of subroutines in the Apple Ile firmware
that provides a standard interface to the built-in I/0 devices
described in Chapter 1. Many of the I/0 subroutines described in
Chapters 3 through 9 are part of the System Monitor.

DOS (but not ProDOS) and the BASIC interpreters (Appendix 'E)
use these subroutines by direct calls to their starting locations. You
can call the standard subroutines from your programs in the same
fashion. The starting addresses for all of the standard subroutines
are listed in Appendix C.

You can perform most of the Monitor functions directly from the
keyboard. This chapter tells you how to use the Monitor

o to look at one or more memory locations

o to change the contents of any location

o to write small programs in machine language to be executed
directly by the Apple Ile

o to move and compare blocks of memory

o to invoke other programs from the Monitor

Invoking the Monitor
The System Monitor starts at memory location $FF69 (-151). To
invoke the Monitor, you make a CAU. -151 statement to this
location from the keyboard or from a BASIC program. When the
Monitor is running, its prompting character, an asterisk(*),
appears on the left side of the display screen, followed by a cursor.

To use the Monitor, you type commands at the keyboard. When you
have finished using the Monitor, you return to the BASIC language
you were previously using by pressing Control-Reset, by pressing
Control-C and then Return, or by typing 3DOG, which executes the
resident program-usually Applesoft-whose address is stored in a
jump instruction at location $03DO.

If ProDOS (or DOS) Is connected via the standard 1/0 llnks
(Chapter 3), then you can Issue commands to It from the
Monitor. Under this arrangement. errors will return control to
BASIC rather than to the Monitor.

If you want to have Control-Reset return you to the Monitor, load
the values $69, $FF, and $5A (decimal 105, 255, and 90) into the
three locations starting at address $03F2 (decimal 1010, the reset
vector address and the power-up byte).

204 Chapter 10: Using the Monitor

Syntax of Monitor commands
To give a command to the Monitor, you type a line on the
keyboard, theh press Return. The Monitor accepts the line using the
standard 1/0 subroutine GetLn described in Chapter 3. A Monitor
command can be up to 255 characters in length, ending with a
carriage return. It can include three kinds of information:
addresses, data values, and command characters. You type
addresses and data values in hexadecimal notation.

When the command you type calls for an address, the Monitor
accepts any group of hexadecimal digits. If there are fewer than four
digits in the group, it adds leading O's; if there are more than four
hexadecimal digits, the Monitor uses only the last four digits. It
follows a similar procedure when the command syntax calls for two
digit data values.

Each command you type consists of one command character,
usually the first letter of the command name. The Monitor
recognizes 22 different command characters. Some of them are
punctuation marks, some are letters (uppercase or lowercase), and
some are control characters.

•:• Note: Although the Monitor recognizes and interprets them,
control characters typed on an input line do not appear on the
screen.

This chapter contains examples of Monitor command use. Some of
the data values displayed by your Apple Ile may differ from the
values printed in these examples, because they are variables stored
in RAM.

Monitor memorv commands
When you use the Monitor to examine and change the contents of
memory, it keeps track of the address of the last location whose
value you inquired about and the address of the location that is next
to have its value changed. These are called the last opened location
and the next changeable location.

Warning Because locations $COOO through SCOFF contain special
hardware circuits, Issuing any command that reads or writes on
this page can have unpredictable, and perhaps disastrous,
results.

Monitor memory commands 205

Examining memory contents
When you type the address of a memory location and press Return,
the Monitor responds with the address .you typed, a dash, a space,
and the value stored at that location, like this:

*EOOO
EOOO- 4C
*33
0033- AA
*

Each time the Monitor displays the value stored at a location, it
saves that address as the last opened location and as the next
changeable location.

Memory dump
When you type a period (.) followed by an address, and then press
Return, the Monitor displays a memory dump: the data values
stored at all the memory locations from the one following the last
opened location to the location whose address you typed following
the period. The Monitor saves the last location displayed as both
the last opened location and the next changeable location. In these
examples, the amount of data displayed by the Monitor depends on
how much larger the address after the period is than the last opened
location. ·

*20
0020- 00
*.2B
0021- 28 00 18 OF oc 00 00
0028- AB 06 DO 07
*300
0300- 99
*.315
0301- B9 00 08 OA OA OA 99
0308- 00 08 ca DO F4 AG 2B A9
0310:- 09 85 27 AD CC 03
* .. 32A
0316- 85 41
0318- 84 40 BA 4A 4A 4A 4A 09
0320- co 85 3F A9 SD 85 3E 20
0328- 43 03 20
*

206 Chapter 10: Using the Monitor

When the Monitor performs a memory duinp, it starts at the
address immediately foliowing the last opened location and
displays that address and the data value stored there. it then
displays the values of successive locations up to and including the
location whose address you fyped, but only up to eight values on a
line. When it reaches a location whose address is a multiple of
8-that is, one that ends with an 8 or a 0-it displays that address as
the beginning of a new lirie, then continues displaying more values.

After the Monitor has displayed the value at the location whose
address you specified in the command, it stops the memory dump
and sets that location a5 both the la5t opened location and the next
changeable location. If the address specified on the input line is less
than the address of the last opened location, the Monitor displays
only the address and value of the location following the last opened
location.

You ean combine the two commands, opening a location and
dumping memory, by concatenating them: type the first address, a
period, a:nd the second address. This combination of two addresses
separated by a period is called a memory range.

*300.32F
0300- 99 B9 00 OB OA OA OA 99

030B- 00 OB CB DO F4 A6 2B A9
0310- 09 BS 27 AD cc 03 BS 41

031B- B4 40 BA 4A 4A 4A 4A 09

0320- co BS 3F A9 SD BS 3E 20

032B- 43 03 20 46 03 AS 3D 4D

*30.40

0030- AA 00 FF AA OS C2 OS C2
003B- lB FD DO 03 3C 00 40 00

0040- 30

*E01S.E02S

EOlS- 4C ED FD

EOlB- A9 20 cs 24 BO OC A9 BD

E020- AO 07 20 ED FD A9
*

Monitor memory commands 207

Pressing Return by itself makes the Monitor display one line of a
memory dump; that is, a memory dump from the location
following the last opened location to the next multiple-of-eight
boundary. The Monitor saves the address of the last location
displayed as both the last opened location and the next changeable
location.

*5

0005- 00
*Return
00 00
*Return
0008- 00 00 00 00 00 00 00 00

*32
0032- FF
*Return
AA 00 C2 05 C2

*Return
0038- lB FD DO 03 3C 00 3F 00

*

Changing memory contents
The section on memory dumping showed you how to display values
stored in the Apple Ilc's memory; this section shows you how to
change these values. You can change any location in RAM; you can
change the characteristics and treatment of an output device by
changing the contents of locations assigned to it; and you can
change a soft switch setting by referencing its set and reset
addresses.

Warning Use these commands carefully. If you change the zero-page
locations used by the Interpreter or operating system
(Appendix 8), you may lo5e programs or data stored In memory.

Changing one byte

The previous commands keep track of the next changeable
location; these commands make use of it In the next example, you
open location 0, then type a colon followed by a value.

*O

0000- 4C
*:SF

208 Chapter 10: Using the Monitor

The contents of the next changeable location have just been
changed to the value you typed, as you can see by examining that
location:

*O
0000- SF

*

You can also combine opening and changing into one operation by
typing an address followed by a colon and a value. In the next
example, you type the address again to verify the change.

*302:42

*302

0302- 42

*
When you change the contents of a location, the value that was
contained in that location is replaced by the new value, which will
remain until you or some program replaces it with another value.

+ ASCII tnput mode: The Monitor has a tool to make entering
values a little easier: ASCII input mode. ASCII input mode lets
you enter ASCII characters as well as their hexadecimal ASCII
equivalents. This means that 'A is the same as Cl and 'Bis the
same as C2 to the Monitor. The ASCII value for any character
following an apostrophe is used by the Monitor. For example,
to enter the string "Good morning!" at $0300 in memory, type

*300:'G 'o 1 0 'd ' •m •o •r 'n 'i •n •g • !

Note that each character to be placed in memory is delimited
by a leading and a trailing space. The only exception to this rule
is that the last character in the line is followed by a return
character instead of a space.

Changing consecutive locations

You don't have to type a separate command with an address, a
colon, a value, and press Return for each location you want to
change. You can change the values of up to 85 consecutive locations
at a time-or even more, if you omit leading O's from the
values-by typing only the initial address and colon followed by all
the values separated by spaces; end with Return. The Monitor stores
the consecutive values in consecutive locations, starting at the
location whose address you typed. After it has processed the string
of values, it takes'\the location following the last changed location as
the next changeable location. Thus, you can continue changing
consecutive locations, without typing an address on the next input
line, by typing another colon and more values.

Monitor memory commands 209

In these examples, you first change some locations, then examine
them to verify the changes.

*300:69 01 20 ED FD 4C 03

*300

0300- 69
•Return
01 20 ED FD 4C 00 03
*10:0 1 2 3
*:4 5 6 7
*10.17
0010- 00 01 02 03 04 05 06 07

*

Moving data In memory
You can copy a contiguous block of data from one area in the
Apple Ilc's memory to another in RAM by using the Monitor's
MOVE command. To move a range of memory, you must tell the
Monitor both where the data is now situated in memory-the source
locations-and where you want the copy to go-the destination
locations.

The format of the complete MOVE command looks like this:

{destination} < {start} . {en4 M

The destination is the address where you want the first of the moved
data to go. The less-than symbol (<) separates the destination
address from the starting and ending addresses of the block of data
to be moved. The period between two addresses is the Monitor's
standard notation for specifying address ranges. If the second
address in the source range specification is less than the first, then
only one value (that of the first location in the range) will be moved.

When you type the actual command, replace the words in braces
with hexadecimal addresses, and omit the braces and spaces.

21 O Chapter 10: Using the Monitor

See ·Advanced Operations· for
an Interesting application of this
feature.

Here are some examples of memory moves. First, you examine the
values stored in one range of memory, then store several values in
another range of memory. The actual MOVE commands end
with M.

*O.F
0000- SF 00 05 07 00 00 00 00

ooos- 00 00 00 00 00 00 00 00
*300:A9 SD 20 ED FD A9 45 20 DA FD 4C 00 03

*300.30C
0300- A9 SD 20 ED FD A9 45 20

030S- DA FD 4C 00 03

*0<300. 30C M

*O.C
0000- A9 SD 20 ED FD A9 45 20
OOOS- DA FD 4C 00 03

*310<S.A M
*310.312
0310- DA FD 4C
*2<7.9 M
*0.C
0000- A9 SD 20 DA FD A9 45 20

ooos- DA FD 4C 00 03

*

The Monitor moves a copy of the data stored in the source range of
locations to the destination locations. The values in the source
range are left undisturbed. The Monitor remembers the last
location in the source range as the last opened location, and the
first location in the source range as the next changeable location.

If the destination address of the MOVE command is inside the
source range of addresses, then strange things happen: the
locations between the beginning of the source range and the
destination address are treated as a subrange and the values in this
subrange are replicated throughout the source range. Try it.

Comparing data In memory
You can use the VERIFY command to compare two ranges of
memory using the same format you use to move a range of memory
from one place to another. In fact, the VERIFY command can be
used immediately after a MOVE to make sure that the move was
successful.

The VERIFY command, like the MOVE command, · needs a range
and a destination. The syntax of the VERIFY command is

{destination} < {start} . {enaj V

Monitor memory commands 211

The Monitor compares the values in the source locations with the
values in the locations beginning at the destination address. If any
values don't matCh, the Monitor displays the address at which the
discrepancy was found and the two values that differ. In the
example, you store data values in the range of locations from
0 to $OD, copy them to locations starting at $0300 with the MOVE
command, and then compare them using the VERIFY command.
When you use the VERIFY command after you change the value at
location 6 to $E4, it detects the change.

*0:07 F2 E9 F4 F4 ES EE AO E2 F9 AO C3 C4 CS

*300<0.D M
*300<0.D V
*6:E4
*300<0.D V
0006-E4 (EE)

*
If the VERIFY command finds a discrepancy, it displays the address
of the location in the source range whose value differs from its
counterpart in the destination range. If there is no discrepancy,
VERIFY displays nothing. The VERIFY command leaves the values
in both ranges unchanged. The last opened location is the last
location in the source range, and the next changeable location is
the first location in the source range, just as in the MOVE
command. If the ending address of the range is less than the starting
address, the values of only the first locations in the ranges are
compared. Like the MOVE command, the VERIFY command does
unusual things if the destination address is within the source range;
see "Advanced Operationsn later in this chapter.

Monitor register commands
Even though the actual contents of the 65C02's internal registers are
changing as you use the Monitor, you can examine the values that
the registers contained at the time the Monitor gained control,
either because you called it or because the program you are
debugging stopped at a break (BRK). You can also store new
register values that will be used when you execute a program from
the Monitor using the GO command, described below.

212 Chapter 10: Using the Monitor

Changing registers
When you call the Monitor, it stores the contents of the 65C02
registers in memory. The registers are stored in the order A, X, Y,
P (processor stattis register), and S (stack pointer), starting at
location $45. When you give the Monitor a GO command, the
Monitor loads the registers from these five locations before it
executes the first instruction in your program.

Examining registers
Pressing Control-E and then Return invokes the Monitor's
EXAMINE command, which displays the stored register values and
sets the location containing the contents of the A register as the next
changeable location. After using the EXAMINE command, you can
change the values in these locations by typing a colon and then
typing the new values separated by spaces. In the following
example, you display the registers, change the first two, and then
display them again to verify the change.

*Control-E
M=OO A=OA X=FF Y=D8 P=BO S=F8
*:BO 02
*Control-E
M=OO A=BO X=02 Y=D8 P=BO S=F8

*
In the EXAMINE command's display, M shows the current memory
state register contents. The memory state register is location $44,
and its interpretation is given in Appendix E.

Miscellaneous Monitor commands
Monitor commands discussed in this section let you do the
following:

D change the video display format from normal to inverse and
back

o assign input and output to various devices

o leave the Monitor and return to the currently loaded operating
system (DOS 3.3 or ProDOS) or BASIC

Miscellaneous Monitor commands 213

The COut subroutine Is
described In Chapter 3.

Display inverse and normal
You can control the setting of the inverse-normal .mask location
used by the COut Subroutine from the Monitor so that all the
Monitor's output will be in inverse format. The INVERSE
coinmand (I) sets the mask so that all subsequent inputs and outputs
are displayed in inverse format To switch the Monitor's output back
to normal format, use the NORMAL command (N).

*O.F
0000- OA OB OC OD OE OF DO 04
0008- C6 01 FO 08 CA DO F6 A6
*I
*O.F
0000- OA OB OC OD OE OF DO 04
0008- C6 01 FO 08 CA DO F6 A6
*N
*O.F
0000- OA OB OC OD OE OF rio 04
0008- C6 01 FO 08 CA DO F6 A6
*

Back to BASIC
See Appendix D. If you are using one of the Apple disk operating systems (ProDOS or

DOS), press Control-Reset or type 3DOG to return to the language
you were using, with your program and variables iritact.

Important If you type 3DOG. make sure that the third character you type
Is a zero. not a lefter 0. The letter G Is the Monitor's GO
command.

If there is no operating system in RAM, use the BASIC command
Control-B to leave the Monitor and enter the BASIC interpreter that
was active when you entered the Monitor. (Normally this is
Applesdft BASIC.) Any program or variables that you previously
had in .BASIC will be lost If you want to reenter BASIC with yol.ir
previous program and variables intact, use the CONTINUE BASIC
command (Control-C).

214 Chapter 10: Using the Monitor

Chapter 3 lists the Apple lie port
numbers available.

For more Information on the
way those commands work.
refer to "The Standard 1/0
Links" In Chapter 3.

Redirecting input and output
The Control-P command diverts all output normally destined for
the screen (port O) to a device attached to one of the other ports,
from 1to7. The format of the command is

{port numberi Control-P

A Control-P command to port number 0 switches the stream of
output characters back to the Apple Ilc's video display. However,
use Escape Control-Q if the enhanced video firmware is active
(solid-block cursor).

Control-K controls the input stream in much the same way that
Control-P controls the output stream. The format for the command
is

(pOrt numbetj Control-K

Pressing 0 Control-K directs the Monitor to accept input from the
Apple He's built-in keyboard.

The Control-P and Control-K corrirnands are the exact equivalents
of the BASIC (but not DOS and ProOOS) commands PR# and IN#.

Hexadecimal arithmetic

You can use the Monitor as a one-b'Yte hexadecimal addition and
subtraction. calculator. Just type a line in one of these formats
followed by Return:

{value} + {value} Return {value} - {value} Return

The Apple Ile performs the arithmetic and displays the result, as
shown in these examples.

*20+13

=33

*4A-C
=3E

*

Mlscelldneous Monitor commands 215

Advanced operations
This section describes some ways of using the Monitor commands
to speed up your work.

Multiple-command lines
You can put as many Monitor commands on a single line as you
like, as long as you separate them with spaces, and the total number
of characters in the line is less than 254. Adjacent single-letter
commands such as L, S, I, and N need not be separated by spaces.

You can freely intermix all of the commands except the STORE (:)
command. Because the Monitor takes all values following a colon
and places them in consecutive memory locations, the last value in
a STORE must be followed by a letter command before another
address is encountered. You can use the NORMAL command as the
required letter command in such cases; it usually has no effect and
can be used anywhere.

In the following example, you display a range of memory, change
it, and display it again, all .with one line of commands.

*300.307 300:18 69 1 N 300.302

0300- 00 00 00 00 00 00 00 00

0300- 18 69 01

*
If the Monitor encounters a character in the input line that it does
not recognize as either a hexadecimal digit or a valid command
character, it executes all the commands on the input line up to that
character, then stops with a beep and ignores the remainder of the
input line.

Filling memory
The MOVE command can be used to replicate a pattern of values
throughout a range of memory. To do this, first store the pattern in
the first locations in the range

*300: 11 22 33

*

216 Chapter 10: Using the Monitor

Remember the number of values in the pattern: in this case, it
is three. Use the number to compute addresses for the MOVE
command, like this:

{start+numberi < {start} . {end-numberi M

This MOVE command first replicates the pattern at the locations
immediately following the original pattern, then replicates that
pattern following itself, and so on until it fills the entire range.

*303<300. 32D M

*3od.32F

0300- 11 22 33 11 22 33 11 22
0308- 33 11 22 33 11 22 33 11

0310- 22 33 11 22 33 11 22 33

0318- 11 22 33 11 22 33 11 22

0320- 33 11 22 33 11 22 33 11

0328- 22 33 11 22 33 11 22 33

*

You can use the VERIFY command to check whether a pattern
repeats itself through memory. This is especially useful to verify that
a given range of memory locations all contain the same value. In

. this example, to see the VERIFY command detect the discrepancy,
you first fill the memory range from $0300 to $0320 with O's and
verify it, then change one location and verify again:

*300:0
*301<300. 31F M
*301<300.31F V

*304:02
*301<3.00. 31F V
0303-00 (02)

0304-02 (00)

*

Repeating commands
You can create a command line that repeats one or more
commands over and over. You do this by beginning the part of the
command line that you want to repeat with a letter command, such
as N, and ending it with the sequence 34:n, where n is a
hexadecimal number that specifies the position in the line of the
command where you want to start repeating; for the first character
in the line, n=O. The value for n must be followed with a space in
order for the loop to work properly.

Advanced operations 217

This trick takes advantage of the fact that the Monitor uses an index
register to step through the input buffer, starting at location $0200.
Each time the Monitor executes a command, it stores the value of
the index at location $34; when that command is finished, the
Monitor reloads the index register with the value at location $34. By
making the last command change the value at location $34, you
change this index so that the Monitor picks up the next command
character from an earlier point in the buffer.

The only way to stop a loop like this is to press Control-Reset; that is
how this example ends. -

*N 300 302 34 :0 N
0300- 11
0302- 33
0300- 11

0302- 33
0300- 11

0302- 33
0300- 11

0302- 33
0300- 11
0302- 33
0300- 11

0302- 33
030
*

Creating your own commands
The USER command (Control-Y) forces the Monitor to jump to
memory location $03F8. You can put a JMP instruction there that
jumps to your own machine-language program. Your program can
then examine the Monitor's registers and pointers or the input
buffer itself to obtain its data. For example, here is a program that
displays everything on the input line after the Control-Y. The
program starts at location $0300; the command line that starts with
$03F8 stores a jump to $0300 at location $03F8.

*300:A4 34 B9 00 02 20 ED FD ca C9 BD DO FS 4C 69 FF
*3F8:4C 00 03
*Control-Y THIS IS A TEST
THIS IS A TEST

*

218 Chapter 10: Using the Monitor

Machine-language programs
The main reason to program in machine language is to get more
speed and sometimes to also save memory space. A program in
machine language can run much faster than the same program
written in high-level languages such as BASIC or Pascal, but the
machine-language version usually takes a lot longer to write. There
are other reasons to use machine language: you might want your
program to do something that isn't included in your high-level
language, or you might just enjoy the challenge of using machine
language to work directly on the bits and bytes.

+ Note: If you have never used machine language before, you'll
need to learn the 65C02 instructions listed in Appendix A. To
become proficient at programming in machine language,
you'll have to spend some time at it, and study one of the books
on 65C02 programming listed in the bibliography.

You can get a hexadecimal dump of your program or move it
around in memory using the commands described in the previous
sections. The Monitor commands in this section are intended
specifically for you to use in creating, writing, and debugging
machine-language programs.

Running a program

The Monitor command to start execution of your machine
language program is the GO command. When you type an address
and press G, the Apple Ile starts executing machine-language
instructions starting at the specified location. If you just press G,
execution starts at the last opened location. The Monitor treats this
program as a subroutine: it should end with an RTS (return from
subroutine) instruction to transfer control back to the Monitor.

The Monitor has some special features that make it easier for you to
write and debug machine-language programs, but before you get
into that, here is a small machine-language program that you can
run using only the simple Monitor commands already described.
The program in the example merely displays the letters A
through Z: you store it starting at location $0300, examine it to be
sure you typed it correctly, then type 3DOG to start it running.

*300:A9 Cl 20 ED FD 18 69 1 C9 DB DO F6 60

*300.30C
0300- A9 Cl 20 ED FD 18 69 01

0308- C9 DB DO F6 60

*300 G
ABCDEFGHIJKLMNOPQRSTUVWXYZ

*
Machine-language programs 219

Disassembled programs
Machine-language code in hexadecimal isn't the easiest thing in the
world to read and understand. To make this job a little easier,
machine-language programs are usually written in assembly
language and converted into machine-language code by programs
called assemblers.

Programs like the Monitor's LIST command are called
disassemblers. This command displays machine-language code
in assembly-language form. Instead of unformatted hexadecimal
gibberish, the LIST command displays each instruction on a
separate line, with a three-letter instruction name, or mnemonic,
and a formatted hexadecimal operand. The LIST command also
converts the relative addresses used in branch instructions to
absolute addresses.

The Monitor LIST command has the format

{location} L

The LIST command starts at the specified location and displays as
much memory as it takes to make up a screenful (20 lines) of
instructions, as shown in the following example:

*300 L
0300- A9 Cl LOA t$Cl
0302- 20 ED FD JSR $FDED
0305- 18 CLC
0306- 69 01 ADC #$01
0308- C9 DB CMP #$DB
030A- DO F6 BNE $0302
030C- 60 RTS
0300- 00 BRK
030E- 00 BRK
030F- 00 BRK
0310- 00 BRK
0311- 00 BRK
0312- 00 BRK
0313- 00 BRK
0314- 00 BRK
0315- 00 BRK
0316- 00 BRK
0317- 00 BRK
0318- 00 BRK
0319- 00 BRK
*

220 Chapter 10: Using the Monitor

The first seven lines of this example are the assembly-language form
of the program you typed in the previous example. The rest of the
lines are BRK instructions only if this part of memory has O's in it:
other values will be disassembled as other instructions.

The Monitor saves the address that you specify in the LIST
command, but not as the last opened location used by the other
commands. Instead, the Monitor saves this address as the program
counter, yvhich it uses only to point to locations within programs.
Whenever the Monitor performs a LIST command, it sets the
program counter to point to the location immediately following the
last location displayed on the screen, so that if you type another
LIST command it displays another screenful of instructions, starting
where the previous display left off.

The STEP and TRACE commands

Important This section applies only to the UnlDlsk 3.5 and memory
expansion versions of the Apple lie.

STEP and TRACE are Monitor facilities for debugging assembly
language programs. The STEP command decodes, displays, and
executes one instruction at a time, and the TRACE command steps
continuously through a program, stopping when a BRK instruction
is executed or Solid Apple is pressed. You can press Open Apple to
slow down the trace to one step per second.

Each STEP command causes the Monitor to execute the instruction
in memory pointed to by the program counter. The instruction is
displayed in its disassembled form, then executed. The contents of
the 65C02's internal registers are displayed after the instruction is
executed. After execution, the program counter is incremented to
point to the next instruction in the program.

Here is an example gf the STEP command, using the following
program:

$0300: LDX #02

$0302: LDA $00,X
$0304: STA $10,X
$0306: DEX
$0307: STA $C030
$030A: BPL $0302

$030C: BRK

The STEP and TRACE commands 221

To step through this program, first cali the . Monitor by typing
CALL -151 and pressing Return, and then from the Monitor type
3005 (to start the STEP routine at address $0300). Type s to
advance each additional step through .the program. The Monitor
keeps the program counter and the last opened address separate
from one another, so you can exainine or change the contents of
memory while you are·stepping through your program. Here's what
happens when you step through the program above, examining the
contents of location $0012 after the third step. Note that in this
example, what you type appears just after the * prompt, and the
information on the next two lines--that begin without the *
prompt-is what the computer displays on the screen in response.

*300S
0300- A2 02 LDX f 02
M=CA A=OA X=02 Y=DB P=30 S=FB
*S
0302- BS 00 LDA $00,X
M=CA A=OC X=02 Y=DB P=30 S=FB
*S
0304- 9S 10 STA $10,X
M=CA A=OC x=o2 Y=DB P=30 S=FB
*12
0012- oc
*S
0306- CA DEX
M=CA A=OC X=Ol Y=DB P=30 S=FB
*S
0307- BD 30 CO STA $C030
M=CA A=OC X=Ol Y=DB P=30 S=FB
*S
030A- 10 F6 BPL $0302
M=CA A=OC X=Ol Y=DB P=30 S=FB
*S
0302- BS 00 LDA $00,X
M=CA A=OB X=Ol Y=DB P=30 S=FB
*S
0304- 9S 10 STA $10,X
M=CA A=OB X=Ol Y=DB P=30 S=FB

*
The TRACE command is a continuous version of the STEP
command; it stops stepping through the program only when you
press Solid Apple, or when it encounters a BRK instruction in the
program. Press Open Apple to slow the trace to one step per
second.

222 Chapter l 0: Using the Monitor

Important Keep the following .cautions In mind when using the STEP and
TRACE Monitor commands:

o If the program ends with an RTS Instruction, the TRACE
routine will continue to run Indefinitely until stopped with
Solld Apple.

o You can't step or trace through routines that use the same
zero page locatlons as the Monitor.

The Mini-Assembler

Important This section applles only to the UnlDlsk 3.5 and memory
expanslqn versions of the Apple lie.

Without an assembler, you have to write your machine-language
program, take the hexadecimal values for the opcodes and
operands, and store them in memory using the Monitor commands
described earlier in this chapter.

The Mini-Assembler lets you enter machine-language programs
directly from the keyboard of your Apple. ASCII characters can be
entered in Mini-Assembler programs, exactly as you enter them in
the Monitor.

Note that the Mini-Assembler doesn't accept labels; you must use
actual values and addresses.

Starting the Mini-Assembler
To start the Mini-Assembler, first invoke the Monitor by typing
CALL -151 and pressing Return, and then from the Monitor,
type ! followed by Return. The Monitor prompt character then
changes from * to ! .

When you finish using the Mini-Assembler, press Return from a
blank line to return to the Monitor.

To enter code into memory, type the address, a colon, and the
instruction. For example, after entering the Mini-Assembler, you
could type

!300:STA C030

The Mini-Assembler 223

You can enter a series of instructions by typing a space, followed by
the instruction, followed by Return:

!300:STA C030
! LDA iAO
! INX

Each succeeding instruction is placed in the next available memory
location. As you type in instructions, each is replaced by the
starting address of the instruction, the hexadecimal value(s) of the
instruction, followed by mnemonics describing the instruction. For
example, the sequence of instructions given above would produce
the following on your screen:

0300- BD 30 CO
0303- A9 AO
0305- EB

STA $C030
LDA i$AO
INX

When you're ready to execute your program, press Return to leave
the Mini-Assembler and return to the Monitor. Monitor commands
can't be executed directly from the Mini-Assembler.

Using the Mini-Assembler
The Mini-Assembler saves one address, that of the program
counter. Before you start to type a program, you must set the
program counter to point to the location where you want the Mini
Assembler to store your program. Do this by typing the address
followed by a colon.

After the colon, type the mnemonic for the first instruction in your
program, followed by a space and the operand of the instruction.
Now press Return. The Mini-Assembler converts the line you typed
into hexadecimal, stores it in memory beginning at the location of
the program counter, and then disassembles it again and displays
the disassembled line. It then displays a prompt on the next line.

Now the Mini-Assembler is ready to accept the second instruction
in your program. To tell it that you want the next instruction to
follow the first, don't type an address or a colon: just type a space
and the next instruction's mnemonic and operand, the·n press
Return. The Mini-Assembler assembles that line and waits for
another.

224 Chapter l 0: Using the Monitor

If the line you type has an error in it, the Mini-ASsembler beeps
loudly and displays a caret (") under or near the offending
character in the input line. Most common errors are the result of
typographical mistakes: misspelled mnemonics, missing
parentheses, and so forth. The Mini-Assembler also rejects the
input line if you forget the space before or after a mnemonic or
include an extraneous character in a hexadecimal value or address.
If the destination address of a branch instruction is out of the range
of the branch (more than 127 locations distant from the address of
the instruction), the Mini-Assembler flags this as an error.

<• Dollar stgns: In this manual, dollar signs ($) in addresses
signify that the addresses are in hexadecimal notation. The
dollar signs are ignored by the Mini-Assembler and can be
omitted in programs.

!300:LDX it02
0300- A2 02 LOX t$02
! LOA $00,X
0302- BS 00 LOA $00,X
! STA $10,X
0304 9S 10 STA $10,X
! DEX
0306- CA DEX
! STA $C030
0307- SD 30 co STA $C030
! BPL $0302
030A- 10 F6 BPL $0302
! BRK
030C- 00 BRK

To leave the Mini-Assembler and reenter the Monitor, press Return
at a blank line.

Your assembly-language program is now stored in memory. You
can display it with the LIST command:

*300L
0300- A2 02 LOX i$02
0302- BS 00 LOA $00,X
0304- 9S 10 STA $10,X
0306- CA DEX
0307- SD 30 co STA $C030
030A- 10 F6 BPL $0302
030C- 00 BRK
0300- 00 BRK
030E- 00 BRK
030F- 00 BRK
0310- 00 BRK

The Mini-Assembler 225

Table 10-1
Mini-Assembler address formats

Addressing Format
mode

Accumulator

Implied •
Immediate #${value}

Absolute ${address}

Zero page ${address}

Indexed zero ${address},X
page ${address},Y

Indexed ${address},X
absolute ${address},Y

Relative ${address}

Indexed (${address} ,X)
indirect

Indirect (${address}, Y)
indexed

Absolute ($ {address})
indirect

· • These instructions have no
operands.

0311- 00 BRK
0312- 00 BRK
0313- 00 BRK
0314- 00 BRK
0316- 00 BRK
0316- 00 BRK
0317- 00 BRK
0318- 00 BRK
0319- 00 BRK

*

Mini-Assembler instruction formats
The Apple Ile Mini-Assembler recognizes 66 mnemonics and 15
addressing formats. The mnemonics are standard, as used in the
Synertek Programming Manual (Apple part number A2L0003),
but the addressing formats are somewhat different, as shown in
Table 10-1.

An address consists of one or more hexadecimal digits. The Mini
Assembler interprets addresses the same way the Monitor does: if
an address has fewer than four digits, the Mini-Assembler adds
leading O's; if the address has more than four digits, then it uses
only the last four.

There is no syntactical distinction between the absolute and zero
page addressing modes. If you give an instruction to the Mini
Assembler that can be used in both absolute and zero-page mode,
the Mini-Assembler assembles that instruction in absolute mode if
the operand for that instruction is greater than $FF, and it
assembles it in zero-page mode if the operand is less than $0100.

Instructions in accumulator mode and implied addressing mode
need no operands.

Branch instructions, which use the relative addressing mode,
require the target address of the branch. The Mini-Assembler
calculates the relative distance to use in the instruction
automatically. If the target address is more than 127 locations
distant from the instruction, the Mini-Assembler sounds a bell
(beep), displays a caret (") under the target address, and does not
assemble the line.

If you give the Mini-Assembler the mnemonic for an instruction
and an operand, and the addressing mode of the operand cannot
be used with the instruction you entered, then the Mini-Assembler
will not accept the line.

226 Chapter 10: Using the Monitor

Summary of Monitor commands
Here is a summary of the Monitor commands, showing the syntax
diagram for each one.

Examining memory
{adrs}Return Displays the value contained in one

location.

{adrsl}.{adrs2}Return Displays the values contained in all
locations between {adrsl} and {adrs2}

Return

{adrs}L

Displays the values in up to eight locations
following the last opened location.

Lists disassembled code starting at {ad1:5}
and continuing until the screen is full.

Changing the contents of memory

{adrs} :{van<val} ...

:{val}{val} ...

STORE command. Stores the values in
consecutive memory locations starting at
{ad rs}.

Stores values in memory starting at the
next changeable location.

Moving and comparing

{dest}<{start}.{end}M MOVE command. Copies the values in
the range {start}.{en~ into the range
beginning at {dest}.

{dest}<{start}.{end}V VERIFY command. Compares the values
in the range {start} .{en~ to those in the
range beginning at {dest}.

summary of Monitor commands 227

The Register command

Control-E EXAMINE command. Displays the
locations where the contents of the
65C02's registers are stored and opens
them for changing.

Miscellaneous Monitor commands

I

N

Control-B

Control-C

{val}+{val}

{val}-{ val}

{port}Control-P

Escape Control-Q

{port}Control-K

Control-Y

228 Chapter 10: Using the Monitor

INVERSE command. Sets inverse display
mode.

NORMAL command. Sets normal display
mode.

BASIC command. Enters the language
currently active (normally Applesoft).

CONTINUE BASIC command. Returns to
the language currently active (normally
Applesoft).

Adds the two values and prints the
hexadecimal result.

Subtracts the second value from the first
and prints the result.

Redirects output to the device connected
to port number {porn . If {porn=O, sends
output to the video display. Use only
when the enhanced video firmware is not
active (checkerboard cursor).

Redirects output to video display when
enhanced video firmware is active (solid
block cursor).

Takes input from the device connected to
port number {porn. If {porn=O, accepts
input from the keyboard.

USER command. Jumps to the
machine-language subroutine at
location $03F8.

Running and listing programs
{adrs}G

{adrs}L

Transfers control to the machine
language program beginning at {adr.5}.

Disassembles and displays 20 instructions
starting at (ad~. Subsequent Vs displ~y
20 more instructions each.

Summary of Monitor commands 229

Chapter 11

Hardware
Implementation

231

Table 11-1
Environmental specifications

Operating
temperature

Relative
humidity

10° to 40° C
(50° to 104° F)

200/0 to 95%

Most of this manual describes functions-what the Apple Ile does.
This chapter, on the other hand, describes objects-the pieces of
hardware the Apple Ile uses to carry out its functions. If you are
designing a device to connect to the Apple Ile back panel, or if you
just want to know more about how the Apple Ile is built, you should
study this chapter.

Environmental specifications
The Apple Ile is quite sturdy when used in the way it was intended: as
a transportable computer, made for use in an indoor environment.
You can carry it by its handle from room to room, but for longer
trips you should use its carrying case or some other protective
container (such as an attache case). Table 11-1 defines the
conditions under which the Apple Ile is designed to function
properly.

You should treat the Apple Ile with the same kind of care as any
other electrical appliance; protect it from physical abuse, and be
careful not to bump it against furniture when you move it around.
Put it in an attache case or other protective covering if you carry it
outside. You should also protect the mechanical keyboard and the
electrical connectors inside the case from spilled liquids, · ·
particularly those with dissolved contaminants, such as soups, fruit
juices, and carbonated soft drinks.

In normal operation (with the handle locked in its down position),
enough air flows through the openings in the case to keep the insides
from getting too hot If you do overheat your Apple Ile-for
example, by blocking the upper or lower ventilation openings-the
first symptom will be erratic operation, such as unexpectedly
changed data. (The memory devices in the Apple Ile are especially
sensitive to heat) Letting the machine cool down by turning it off
for a while and unblocking the vents before using it again will bring it
back to normal operation. The only exception to this is if you have
gotten your Apple Ile too hot and physically damaged some
internal component.

Disks are another heat-sensitive element of the system. If the built
in drive becomes too hot, a disk within can warp or even melt. A
melted or warped disk can't be used again.

232 Chapter 11 : Hardware Implementation

Power requirements
The electrical power used by the Apple Ile-and everything that
draws power from it-is limited by the capacities of the computer's
power supply and internal voltage converter. This section describes
these limits for the USA external power supply. Appendix G
describes them for models built for other countries. The internal
voltage converter is the same on all models.

The external power supply
If you purchased your Apple Ile outside the USA, consult
Appendix G for external power supply characteristics.

The external power supply operates on normal household AC
power and provides DC power to the Apple Ile internal converter.
The basic specifications of the external power supply are listed in
Table 11-2. The Apple Ile external power supply's cord must be
plugged into a three-wire 115-volt (nominal) outlet. A two-wire
outlet is not properly grounded-using it will damage the external
power supply and perhaps the Apple Ile as well. The line voltage
must be in the range given in Table 11-2.

Warning Important safety Instructions: This product ts equipped with a
three-wire grounding-type plug-a plug having a third
(grounding) pin. This plug will only flt Into a grounding-type
AC outlet. This Is a safety feature.

If you are unable to Insert the plug Into the outlet, contact a
ttcensed electrician to replace the outlet and, If necessary,
Install a grounding conductor.

Do not defeat the purpose of the grounding-type plug.

Table 11·2
Power supply specifications

line voltage

Maximum power
consumption

Supply voltage

Supply current

105 to 129 VAC, 60 Hz

25W

+ 15 VDC (nominal)

1.2 A (nominal)

Power requirements 233

6•

Pin Signal

1 Not connected
2,3 Signal ground
4 Shield ground
5,6 +15 voe
7 Not connected

Figure 11-1
External power connector

The external power connector

The external power supply is attached to the internal converter by
means of a 7-pin DIN connector. The connector pins are identified
in Figure 11-1 and Table 11-3.

Table 11-3
External power connector signals

Pin Signal Description

1, 7 Not connected
2, 3 Ground Common electrical ground
4 Chassis Chassis ground
5, 6 +15V +15-volt DC input to converter

The Internal converter
The internal converter in the Apple Ile operates with a supply
voltage from 9 to 20 volts DC as provided by the external power
supply or its equivalent The internal converter provides enough
low-voltage electrical power for the built-in electronics plus an
external disk drive attached via the 19-pin connector. The basic
specifications of the internal converter are listed in Table 11-4.
Minus 5 volts is derived from the -12 volts (nominal) provided by
the voltage converter.

Table 11-4
Internal converter specifications

Input voltage

Maximum power
consumption

Supply voltages

Maximum supply
currents

Maximum case
temperature

+9 to 20 VDC

25W

+5V±5%
+12V±10%
-12V±l0%

+5V: 1.5 A
+ 12V: 0.6 A continuous

0.9 A intermittent
1.5 A surge (for< 100 ms)

-12V: 100 mA
(-5V: 50 mA)

6ooc (1400 F)

234 Chapter 11 : Hardware Implementation

The Apple Ile uses a switching-type internal voltage converter as a
power supply. It is small and lightweight, and it generates less heat
than other types of voltage converters.

The voltage converter works by using the DC voltage input to power
a variable-frequency oscillator. The oscillator drives a small
transformer with several separate windings to produce the different
voltages required. A circuit compares the voltage of the +5-volt
supply with a reference voltage and feeds an error signal back to the
oscillator circuit The oscillator circuit uses the error signal to
control the duty cycle of its oscillation and keep the output voltages
in their normal ranges.

The converter includes circuitry to protect itself and the other
electronic parts of the Apple Ile by limiting all three output voltages
whenever it detects one of the following malfunctions:

o any supply voltage short-circuited to ground

o any output voltage outside the normal range

Whenever one of these malfunctions occurs, the protection circuit
varies the duty cycle of the oscillator, and all the output voltages
drop to 0 if they cannot be brought back into their normal range.

Apple lie overall block diagram
Figure 11-2 is an overall block diagram of the Apple Ile. The
following sections contain more detailed diagrams of the major
parts of the machine. A full set of schematic diagrams of the
Apple Ile appears later in this chapter.

Apple lie overall block diagram 235

Port 1 Video Bus (VIDD0-5)

3 8
VIDD6,7

3 8 8 8

80
DIR

Main
RAM

:::;:

"' 0
0 a: ()

"' z CD
0 8 TMG
:::;:

RAM Address Bus (RA0-7)

16 14
GLU

A0,1,4
A0,3-7 6 16

Address Bus(A0-15)

Data Bus (D0-7)

D7

MUX

Mouse

Hand Controls

Figure 11-2
Apple lie block diagram

236 Chapter 11 : Hardware Implementation

8

D7

8

Auxiliary
RAM

IOU

A6

Keyboard

{ 5 = 5 lines to/from bus
(low-order unless
otherwise noted)

Port 2

8 3

,.
~ "' c ,.

i ..
8. ~ CfJ

4

A0,1,5

CMOS (complementary metal
oxide semiconductor) Is a way
of making Integrated circuits
that require less power to
operate than other technologies
such ds NMOS (negative-doped
metal-oxide semiconductor).
used by the 6502.

These Instructions are described
In Appendix A.

The 65C02 microprocessor
The Apple Ile uses a CMOS 6502 (designated as 65C02)
microprocessor as its central processing unit (CPU). The 65C02 in
the Apple Ile runs at a clock rate of 1.023 MHz and performs up to
500,000 8-bit operations per second.

+ Note: The clock rate is not a very good criterion for comparing
different types of microprocessors. The 65C02 has a simpler
instruction cycle than most other microprocessors and it uses
instruction pipelining for faster processing. The speed of the
65C02 with a 1-MHz clock is equivalent to many other types of
microprocessors with clock rates up to 5 MHz.

In addition to requiring less power than earlier NMOS 6502
processors, the 65C02 in the Apple Ile has 27 new instructions.
However, programs that use these additional instructions are not
backward compatible with other Apple II series computers that are
not equipped with a CMOS 6502.

65C02 block diagram
Figure 11-3 is a block diagram of the 65C02 microprocessor.
Table 11-5 contains the general specifications of this chip. The
65C02 has a 16-bit address bus, giving it an address space of
64K bytes. The Apple Ile uses special techniques to address a total
of more than 64K (see Chapter 2).

The 65C02 microprocessor 237

-- Reglater llectlon Control Section ---

RES IRQ NMI

Index

AO Register
(Y)

A1
Index

A2 Register ROY
(X)

A3
Stack Pointer SYNC

A4 Reg!ster
ML (S)

AS
Instruction

A6 Decode Timing
Control

A7

Address
Bus

AS

A9 PCL Clock <l>,(ln)

A10
Generator

PCH Qsclllator

A11 <1> 1(0ut)

A12
Input Data

<I>,(Out) Latch(OL)

A13
so
R/W

A14

A15 Data Bus

D •8-Bltllne

Data Bus

• 1-Blt Line

Figure 11-3
65C02 block diagram (copyright© 1982 by NCR Corporation; used by permission)

238 Chapter 11 : Hardware Implementation

Table 11-5
65C02 microprocessor specifications

Type

Register
complement

Data bus

Address bus

Address range

Interrupts

Operating voltage

Power dissipation

65C02 timing

65C02

8-bit accumulator (A)
8-bit index registers (X,Y)
8-bit staclc pointer (S)
8-bit pr6ce5sor status (P)
16-bit program counter (i>C)

8 bits wide

16 bii:s wide

65,536 (64K)

IRQ (rriaskable)
NMI (nonmaskable)
BRK (programmed)

+5V (±5%)

5 mW (at 1 MHz)

The Apple Ilc's operation is controlled by a set of synchronous
timing signals, some.times called clock stgnals. The Apple Ile uses a
14.318-MHz master timing signal, called 14M, to produce all the
other timing signals. These timing signals perform two major tasks:
controlling the computing functions, and generating the video
display. The tiriling signals directly invoived with the 65C02's
operation are described in this se.ction. Other timing signals are
described later in this chapter.

The relationships of the ffiain 6SC02 timing signals are diagrammed
in Figure 11-4, and the signals are listed in Table 11-6. The 65C02
clock signa1s are 01 and 00, complementary signals at a frequency
of 1.0227 MHz. The Apple Ile signal 00 is similar to the signal 02 in
Appendix A (it isn't identical-it's a tiny bit early).

The 65C02 microprocessor 239

14M

7M

I 280 ns I I
..-----.. 210 ns----

Q3---

~490ns--1 I
0 0 ----.I I CPU Phase I._ __

I f.--490ns----.J

01----'

-l 1--140 ns (max) 30 ns (min)-l 1-
ADDA
from 65C02 ---' "'-----------

! 30 ns (min)-, I
75 ns (max>-j f-- L.j f--

DATA from 65C02 (write) X >C:

50 ns (min)-J f-+--
DATA to 65C02 (read) ===>C)C

10ns(min)-J r--
Figure 11-4
65C02 timing signals

Table 11-6
65C02 timing signal descriptions

Signal

14M

VID7M
Q3

00
01

Description

Master oscillator, 14.318 MHz; also 80-column
dot clock
Intermediate timing signal and 40-column dot clock
Intermediate timing signal, 2.045 MHz with
asymmetrical duty cycle
Phase 0 of 65C02 clock, 1.0227 MHz; complement of 01
Phase 1 of 65C02 clock, 1.0227 MHz; complement of 00

240 Chapter 11 : Hardware Implementation

The 65C02's operations are related to the clock signals in a simple
way: internal during 01, external during 00. The 65C02 puts an
address on the address bus during 01. This address is valid not
later than 110 nanoseconds after 01 goes high and remains valid
through all of 00. The 65C02 reads or writes data during 00. If the
65C02 is writing, the read/write signal is low during 00 and the
65C02 puts data on the data bus. The data are valid not later than
75 nanoseconds after 00 goes high. If the 65C02 is reading, the
read/write signal remains high. Data on the data bus must be valid
no later than 50 nanoseconds before the end of 00.

More information about the 65C02 and its instruction set is in
Appendix A.

The custom integrated circuits
Most of the circuitry that controls memory and I/0 addressing in
the Apple Ile is in five custom integrated circuits:

o the memory management unit (MMU)

o the input-output unit (IOU)

o the timing generator (fMG)

o the general logic unit (GLU)

o the disk controller unit, also known as the Integrated Woz
Machine (IWM)

The soft switches that control the various I/0 and addressing modes
of the Apple Ile are addressable flags inside the MMU, IOU,
and GLU. The functions of the MMU and IOU are not as
independent as their names suggest; working together, they
generate all the addressing signals. For example, the MMU
generates the RAM address signals for the CPU, while the IOU
generates similar RAM address signals for the video display and
most I/0 hardware addresses.

The memory management unit (MMU)
The circuitry inside the MMU implements these soft switches:

o Page 2 display (Page2) (described in Chapter 5)

o high-resolution mode (HiRes) (Chapter 5)

o store to 80-column display (80Store) (Chapter 5)

o select bank 2 (Bank2) (Chapter 2)

The custom Integrated circuits 241

GND
AO
00
03

1 'C:7 40

PRAS*
RAO
RA1
RA2
RA3
RA4
RAS
RA6
RA7

R/W*
INH*

C06X*
ENSO*
KBD*

ROMEN2*
ROMEN1*

2
3
4
s
6
7
8
9

10
11
12
13
14
1S
16
17
18
19
20

Figure 11-5
MMU plnouts

39
38
37
36
3S
34
33
32
31
30
29
28
27
26
2S
24
23
22
21

o enable bank-switched RAM (EnlCRAM) (Chapter 2)

o read auxiliary memory (RAMRd) (Chapter 2)

o write auxiliary memory (RAMWrt) (Chapter 2)

o auxiliary stack and zero page (AltZP) (Chapter 2)

o reset mouse Y interrupt (RstYint) (Chapter 9)

o reset mouse X interrupt (RstXInt) (Chapter 9)

These switches are available on MMU pin 21, which is connected to
bit 7 on the data bus. Figure 11-5 shows the MMU pinouts;
Table 11-7 describes the signals.

Important A slgnal name followed by an asterisk Is active low-that Is, it is
true when the signal Is at a TIL high (+SV) level.

A1
A2
A3
A4
AS
A6
A7
AB
A9
A10
A11
A12
A13
A14
A1S
+ sv
SELIC*
CASEN*
C07X*
MD7

The 64K dynamic RAMs used in the Apple IIc use a multiplexed
address, as described later in this chapter. The MMU generates this
multiplexed address for memory reading and writing by the
65C02 CPU.

Table 11-7
MMU slgnal descriptions

Pin Signal Description

1 GND Power and signal common
2 AO 65C02 address input
3 0() Clock phase 0 input
4 Q3 Timing signal input
5 PRAS• Memory row-address strobe
6-13 RAO-RA7 Multiplexed address output
14 R/W• 65C02 read-write control signal
15 INH• Inhibits main memory (tied to +5V)
16 co6x• Causes $C06x outputs to go to 0 during 00
17 ENSO• Enables auxiliary RAM
18 KBD• Enables keyboard data bits 0-6
19 ROMEN2• Enables ROM (tied to ROMENl •)
20 ROMENl• Enables ROM (tied to ROMEN2•)
21 MD7 State of MMU flags on data bus bit 7
22 C07X Causes $C07x outputs to go to 0 during 0()

23 CASEN- Enables main RAM
24 SELIO• Goes to 0 during 0() for any access to

$CO page except $C08x, Bx, Cx, or Fx
25 +5V Power
26-40 A15-Al 65C02 address input

242 Chapter 11 : Hardware Implementation

GND
GR

SEGA
SEGB

1 \..../ 40

vc
80COL •
CASSO

SPKR
MD7

YMOVE
(N.C.)
(N.C.)

PDLO/ XMOVE
R/W•

RESET•
IRQ'
RAO
RA1
RA2
RA3

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Figure 11-6
IOU pinouts

39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

HO
SYNC •
wNow ·
CLRGAT*
RA10•
RA9 •
VIDD6
VIDD7
KSTRB
AKO
IOUSELio•
A6
+sv
03
00
PRAS •
RA7
RA6
RAS
RA4

The input/output unit (IOU)

Input/output unit (IOU) implements the following soft switches, all
described in Chapters 2 and 3:

o Page 2 display (Page2)

o high-resolution mode (HiRes)

o text mode (TEXT)

o mixed mode (MIXED)

o 80-column display (80Col)

o character-set select (AltChar)

o any-key-down (AKD)

o mouse movement (XO, YO)

o vertical blanking interrupt (VBllnt)

These switches are available on IOU pin 9, which is connected to
bit 7 on the data bus. Figure 11-6 shows the IOU pinouts; Table 11-8
describes the signals.

The 64K dynamic RAMs used in the Apple Ile require a multiplexed
address, as described later in this chapter. The IOU generates this
multiplexed address during clock phase 1 for the data transfers
required for display and memory refresh. The way this address is
generated is described under "The Video Counters" in this chapter.

Table 11-8
IOU signal descriptions

Pin

1

2

3

4

5

Signal

GND

GR

SEGA

SEGB

vc

Description

Power and signal common

Graphics mode enable
In text mode, works with VC (see pin 5)
and SEG B to determine character row
address

In text mode, works with VC (see pin 5)
and SEGA; in graphics mode, selects
high resolution when low, low resolution
when high

Displays vertical counter bit: in text
mode, SEGA, SEGB, and VC determine
which of the eight rows of a character's
dot pattern to display; in low resolution,
selects upper or lower block defined by a
byte

The custom Integrated circuits 243

Table 11-8 (continued)
IOU signal descriptions

Pin Signal Description

6 80COL• 80-column video enable

7 CASSO Reserved

8 SPKR Speaker output signal

9 MD7 Internal IOU flags for data bus (bit 7)

10 YMOVE Detects mouse movement along Y axis

11 N.C. Not used

12 N.C. Not used

13 PDLO/XMOVE Detects mouse movement along X axis

14 R/W• 65C02 read-write control signal

15 RESET• Power on and reset output

16 IRQ• Maskable interrupt line to 65C02

17-24 RAO-RA7 Video refresh multiplexed RAM address
(phase 1)

25 PRAS• Row-address strobe (phase O)

26 00 Master clock phase 0

27 Q3 Intermediate timing signal

28 +5V Power

29 A6 Address bit 6 from 65C02

30 IOUSELIO• Derived from the SELIQ• output for MMU
pin 24

31 AKO Any-key-down signal

32 KSTRB Keyboard strobe signal

33,34 VIDD7,VIDD6 Video display data bits

35,36 RA9• 1 RA10• Video display control bits

37 CLRGAT• Color-burst gate (enable)

38 WNDW• Displays blanking signal

39 SYNC• Displays synchronization signal

40 HO Displays horizontal timing signal Oow bit
of character counter)

244 Chapter 11: Hardware Implementation

14M
?M

CREF
HO

VIDD?
SEGB
TEXT

CASEN*
80COL*

GND

1 'CJ
2
3
4
5
6
7
8
9

10

Figure 11-7
TMG plnouts

20
19
18
17
16
15
14
13
12
11

+sv
PRAS*
(N.C.)
PCAS*
03
00
01
VID?M
LOPS*
TMGEN*

The timing generator (TMG)
A custom timing generator chip (TMG) generates several timing
and control signals in the Apple Ile. The TMG pinouts are shown in
Figure 11-7; the signals are listed in Table 11-9.

Table 11-9
TMG signal descriptions

Pin Signal Description

1 14M 14.318-MHz master timing signal input
2 7M 7.159-MHz timing signal
3 CREF 3.5795-MHz color reference timing signal
4 HO Horizontal video timing signal
5 VIDD7 Video data bit 7
6 SEGB Video timing signal
7 TEXT Video display text-modes enable
8 CASEN• RAM enable (CAS enable)
9 80COP Enables 80-column display mode
10 GND Power and signal common
11 TM GEN• Enables master timing
12 LDPS• Video shift-register load enable
13 VID7M Video dot clock enable, 7 MHz or continuous 0
14 01 Phase 1 system clock
15 00 Phase 0 system clock
16 Q3 Intermediate timing and strobe signal
17 PCAS• RAM column-address strobe
18 N.C. Reserved for testing
19 PRAS• RAM row-address strobe
20 +5V Power

The general logic unit (GLU)
The general logic unit is a single chip that contains the
miscellaneous logic required for the system. It provides

o all RAM read/write timing

o double high-resolution enable/disable

o soft-switch status registers

o write command registers

o IOU control for mouse interrupts

o double high-resolution soft switches

The custom Integrated circuits 245

14M
AO
A3
A4
AS
A6
A7
00

1 -.;;;:::;r 2 4

SELIO*
GR

RESET*
GND

2
3
4
5
6
7
8
9

10
11
12

Figure 11-8
GLU plnouts

23
22
21
20
19
18
17
16
15
14
13

+sv
SER*
IOUHOLE
DISK*
7M
CREF
(N .C.)
(N.C.)
TEXT
R/W*
MD7
GLUEN*

The GLU's pin assignments are shown in Figure 11-8 and its signals
are listed in Table 11-10.

Table 11-10
GLU signal descriptions

Pin Signal Description

1 14M Master clock (14.318 MHz)

2,3-7 AO,A3-A7 Address lines to select least significant byte
of addresses on CO page

8 00 Phase 0 of 1.0227-MHz processor sync
clock

9 SELIO• Device select for selecting most significant
byte of the address

10 GR Graphics mode select line

11 RESET• Master reset for system; resets GLU

12 GND Ground reference and negative supply

13 GLUEN• Enables GLU

14 MD7 Indicates status of MMU flags on data bus
bit 7

15 R/W• Read/write qualifier input from processor

16 TEXT Signal used . to generate video timing in
double high-resolution or not-graphics

17,18 N.C. Not used

19 CREF Color reference signal

20 7M 7-MHz clock output

21 DISK• Disk controller device select output

22 IOUHOLE Controls IOUSELIO

23 SER• Serial controller device select output

24 +5V +5 volt supply

246 Chapter 11 : Hardware lrnplernentcitlon

For further Information on GCR,
refer to "Disk 1/0."

SEEKPHO
SEEKPH2

AO
A1
A2
A3

DISK*
WADA TA
WRREQ*

DO
01
02
03

GND

1 'CJ
2
3
4
5
6
7
8
9

10
11
12
13
14

Figure 11-9
IWM plnouts

28
27
26
25
24
23
22
21
20
19
18
17
16
15

SEEKPH1
SEEKPH3
+ 5V
Q3
7M
RESET*
RDDATA
WRPROT
DR1*
DR2*
D7
06
05
04

The disk controller unit (IWM)
The IWM (for Integrated Woz Machine) is a disk controller that
includes, on a single chip, all the capabilities of the disk controller
card originally designed by Steve Wozniak in 1977.

Right after reset, the IWM is an integrated GCR (group code
recording) disk drive controller. It also has a status register, mode
register, and multiple operating modes. It provides both
synchronous and asynchronous modes, and a fast mode with a data
rate twice that of normal disk I/0 speeds. Figure 11-9 shows the
IWM pin assignments; Table 11-11 describes the IWM signals.

Table 11-11
IWM signal descriptions

Pin

1

2

3

7

8

9

10-13

14

15- 18

19

Signal

SEEKPHO

SEEKPH2

AO

Al-A3

WRDATA

WRREQ•

DO-D3

GND

D4-D7

DR2•

Descrlptton

Stepper motor control phase 0, one of four
programmable disk drive motor phase
outputs.

Stepper motor control phase 2.

The data input to the state bit selected
by Al to A3.

These three inputs select one of the eight
bits in the state register to be updated.

Device enable. The falling edge of
DISK• latches information on Al to A3.
The rising edge of either Q3 or DISK*
qualifies write register data.

The serial data output. Each 1-bit causes a
transition on this output.

This signal is a programmable buffered
output line.

DO to D7 make up the bidirectional data
bus.

Ground reference and negative supply.

The remaining bits of the bidirectional
data bus.

Drive 2 select.

The custom Integrated circuits 247

Table 11-11 (continued)
IWM signal descriptions

Pin Signal Description

20 DRl" Drive 1 select.

21 WRPROT Write-protect input; this can be polled via
bit 7 of the status register.

22 RD DATA Serial data input line. The IWM
synchronizes the falling transition of each
pulse.

23 RESET• IWM reset: places all IWM outputs in their
inactive state and sets all state and mode
register bits to 0.

24 7M 7-MHz clock input.

25 Q3 A 2.0-MHz clock input used to qualify the
timing of the serial data being written or
read.

26 +5V The +5 volt supply.

27 SEEKPH3 Stepper motor control phase 3.

28 SEEKPHl Stepper motor control phase 1.

Memory addressing
The 65C02 microprocessor can directly address 65,536 locations.
The Apple Ile uses this entire address space, and then some: some
areas in memory are used for more than one function. The
following sections describe the memory devices used in the
Apple Ile and the way they are addressed. Input and output also use
portions of the memory address space; refer to Chapter 2 for
information.

Figure 11-10 illustrates the Apple Ilc's overall memory bus
organization and memory selection signals.

•:• Note: Some Apple Ilc's have ROMs with 27.xx designations,
some have 23xx. They are functionally equivalent.

248 Chapter 11 : Hardware Implementation

+sv
A12

A7
A6
AS
A4
A3
A2
A1
AO
DO
01
02

GND

1~
2
3
4
5
6
7
8
9

10
11
12
13
14

Figure 11 - 11

28
27
26
25
24
23
22
21
20
19
18
17
16
15

+sv
(N .C.)
A13
A8
A9
A 11
OE *
A10
CE*
07
06
05
04
03

23128 ROM plnouts (in type
23256 ROM, pin #27 Is A 14)

UnlDlsk 3.5

Memory expansion

16 8
65C02

14 8
MON ROM

ROM EN
RAS ' 00 01

RR/ W' CAS ' I l .,
" Ql ., ., 8

VIDEO
~

"C LATCH
"C
<(

.,
" Ql ., .,
Q)

., :t " Ql

MMU -0
"C
<(

::E
<(
cc

0

°' Q)
"C u:
> Q)

Q)

!!:.

8
80 LATCH

R/ W'BO PRAS ' I l
0 3 00 01

Figure 11-1 0
Memory bus organization

ROM addressing
In the Apple Ile the following programs are permanently stored in a
type 23128 16K-by-8-bit ROM (Figure 11-11):

o Applesoft editor and interpreter

o Monitor

o enhanced video firmware

The version of the Apple lie that supports the UnlDlsk 3.5 uses a
23256 32K-by-8-blt ROM. It needs the extra space for the
Protocol Converter, Mini-Assembler, and other added functions
that It supports.

The Apple lie that supports the memory expansion card also
uses the 23256 ROM IC.

Memory addressing 249

1 \..J 24 KA7 +sv
2 23 KA6 KAB
3 22 KA5 CAPS
4 21 KA4 +sv
5 20 KA3 KBD*
6 19 KA2 LANGSW
7 18 KA1 GND
8 17 KAO (N.C.)
9 16 DO 06

10 15 01 05
11 14 02 04
12 13 GND 03

Figure 11-12
2316 ROM pinouts

Memory expansion

+sv
A12

A7
A6
AS
A4
A3
A2
A1
AO
00
01
02

GND

1 \....,/

2
3
4
5
6
7
8
9

10
11
12
13
14

Figure 11-13
2364 plnouts

28
27
26
25
24
23
22
21
20
19
18
17
16
15

+sv
+sv
+ sv
AB
A9
A11
GND
A10
WNDW*
07
06
05
04
03

The ROM is enabled by two signals called ROMENJ and ROMEN2.
(In the Apple Ile, ROMENl and ROMEN2 are electrically
connected.) The segment of the ROM enabled by ROMENl
occupies the memory address space from $C100 through $DFFF.
The address space from $C300 through $C3FF and much of $C800
through $CFFF contains the enhanced video firmware.

These ROM address allocations are approximately true (some space
sharing takes place):

o ROM addresses $COOO through $COFF are never available.

o ROM addresses $Cl00 and $C200 are entry points to firmware for
serial ports 1 and 2, respectively.

o ROM address $C400 is the entry point to mouse interface
support.

o ROM addresses $C500 through $C5FF are reserved.

o ROM address $C600 is the entry point to firmware for the built-in
and external disk drives. The built-in drive is considered slot 6
drive 1 or its equivalent. The external drive is considered slot 6
drive 2.

o ROM addresses starting at $C700 support (from the Monitor) the
external drive as if it were slot 7 drive 1, for external-drive startup
only.

o Addresses $DOOO through $F7FF contain the Applesoft BASIC
interpreter; addresses $F800 through $FFFF contain the Monitor
firmware.

The Apple lie that supports the memory expansion card has a
ROM map that Is different from that given for the original and
UnlDisk 3.5 lie. The memory expansion ROM map Is provided in
Appendix I.

The other ROMs in the Apple Ile are a type 2316 ROM (Figure 11-12)
used for the keyboard character decoder, and a type 2364 ROM
(Figure 11-13) used for character sets for the video display. This
2364 ROM is rather large because it includes a section of straight
through bit-mapping for the graphics modes. This way, graphics
display video can pass through the same circuits as text without
additional switching circuitry.

250 Chapter 11 : Hardware Implementation

+sv 1 'C7 16 GND
2 15 MDx GAS*
3 14 R/W* MDx
4 13 RAS* RA 1
5 12 RA7 RA4
6 11 RAS RA3
7 10 RA6 RA2
8 9 +sv RAO

Figure 11-14
64K RAM plnouts

RAM addressing

The RAM (programmable) memory in the Apple Ile is used both for
program and data storage and for the video display. The areas in
RAM that are used for the display are accessed both by the 65C02
microprocessor and by the video display circuits. In some
computers, this dual access results in addressing conflicts (cycle
stealing) that can cause temporary dropouts in the video display.
This problem does not occur in the Apple Ile, thanks to the way the
microprocessor and the video circuits share the memory.

The memory circuits in the Apple Uc take advantage of the two
phase system clock to interleave the microprocessor memory
accesses and the display memory accesses so that they never
interfere with each other. The microprocessor reads or writes to
RAM only during 00, and the display circuits read data only
during 01.

Dynamic RAM refreshment

The image on a video display is not permanent; it fades rapidly and
must be refreshed periodically. To refresh the video display, the
Apple Uc reads the data in the active display page and sends them
to the display. To prevent visible flicker in the display, and to
conform to standard practice for broadcast video, the Apple Ile
refreshes the display 60 times per second.

The dynamic RAM devices used in the Apple Ile also need a kind of
refreshment, because the data are stored in the form of electric
charges that diminish with time and must be replenished. The
Apple Ile is designed so that refreshing the display also refreshes
the dynamic RAMs. The next few paragraphs explain how this is
done.

The job of refreshing the dynamic RAM devices is minimized by the
structure of the devices themselves. The individual data cells in
each RAM device are arranged in a rectangular array of rows and
columns. When the device is addressed, the part of the address that
specifies a row is presented first, followed by the address of the
column. Splitting information into parts that follow each other in
time is called multiplexing. Because only half of the address is
needed at one time, multiplexing the address reduces the number
of pins needed for connecting the RAMs (Figure 11-14).

Memory addressing 251

Memory expansion In the Apple lie that supports the memory expansion card, the
16 64Kxl RAM ICs used for the original and UnlDlsk 3.5 llc's are
replaced by 4 64Kx4 ICs.

Table 11-12 Different manufacturers' 64K RAMs have cell arrays of either
128 rows by S12 columns or 256 rows by 256 columns. Only the row
portion of the address is used in refreshing the RAMs.

RAM address multiplexing

Mux'd Row Column
address address address

RAO AO A9
RAl Al A6
RA2 A2 AlO
RA3 A3 All
RA4 A4 A12
RAS AS A13
RA6 A7 A14
RA7 A8 AlS

Now consider how the display is refreshed. As described later in this
chapter, the display circuitry generates a sequence of
8,192 memory addresses in high-resolution mode; in text and low
resolution modes, this sequence is the 1,024 display-page
addresses repeated 8 times. The display address cycles through this
sequence 60 times a second, or once every 17 milliseconds. The
way the low-order address lines are assigned to the RAMs, the row
address cycles through all 2S6 possible values once every 2
milliseconds (see Table 11-12). This more than satisfies the refresh
requirements of the dynamic RAMs.

Dynamic RAM timing

The Apple He's microprocessor clock runs at a speed of 1.023 MHz,
but the interleaving of CPU and display cycles means that the RAM
is being accessed at a 2-MHz rate, or a cycle time of just under
SOO nanoseconds. Data for the CPU are strobed by the falling edge
of 00, and display data are strobed by the falling edge of 01, as
shown in Figure 11-lS.

The RAM timing looks complicated because the RAM address is
multiplexed, as described previously. The MMU takes care of
multiplexing the address for the CPU cycle, and the IOU performs
the same function for the display cycle. The multiplexed address is
sent to the RAM ICs over the lines RAO-RA7 (Table 11-13). Along
with the other timing signals, the TMG generates two signals that
control the RAM addressing: row-address strobe (RAS) and
column-address strobe (CAS).

252 Chapter 11 : Hardware Implementation

Table 11-13
RAM timing signals

Signal

0()

01
RAS
CAS
Q3
RAO-RA7
MDO-MD7

14M

7M

Description

Clock phase 0 (CPU phase)
Clock phase 1 (display phase)
Row-address strobe
Column-address strobe
Alternate RAM/column-address strobe
Multiplexed address bus
Internal data bus

03---'

00 __ _,

CPU Phase

01 Video Phase

RAS *

I I
c•s· I 1 I 11...........,__, I I I 11 ~

RAO-RA7 -ckS-~-~
MDO-MD7 -d d-
Figure 11-15
RAM timing signals

Memory addressing 253

(MMU)

To: 65C02
IOU
IWM
GLU
SER1
SER2

CAPL

OAPL

80COLSW

j ___ _
&;J

Figure 11-16

co5x·

12

11

10

The keyboard
The Apple He's keyboard is a matrix of key switches connected to an
AY-3600-type keyboard decoder via a ribbon cable and a 26-pin
connector (Figure 11-16). The AY-3600 scans the array of keys over
and over to detect any keys pressed. The scanning rate is set by the
external resistor-capacitor network made up of C46 and R6. The
debounce time is also set externally, by C45.

Address Bus

Data Bus
AO A1 A2

07

8to1 MUX
00-6

Keo·
(MMU)---L-A-N-GS-W-~

2716 MAP
CAPS

Keyboard Address Bus

..-----'--'--K_A_o-_a_, KSTRB------ (SER2)

AY-3600-PRO KEY 1-A-K_D ___ ___ (IOU)

~--~"t""'"-__ ___.'-'-"=------- (IOU)

~eyboard 18 X.Y Coord inates t 1Sk use t ower

t t FLASH
(12 Volt Circuits)

DISKACTV (Internal Disk

Connector)
control

sMr

caps lock

Keyboard circuit diagram

254 Chapter 11 : Hardware Implementation

The A Y-36oO's outputs include five bits of key code plus separate
lines for Control, Shift, any-key-down, and keyboard strobe. The
any-key-down and keyboard-strobe lines are connected to the IOU,
which addresses them as soft switches. The key-code line and
Control and Shift are inputs to a separate 2316 ROM. The ROM
translates them to the character codes that are enabled -onto the
data bus by signals named KBD• and ENKBD-. The KBD• signal is
enabled by the MMU whenever a program reads location $COOO, as
described in Chapter 2.

Figure 11-17 illustrates the events that occur when a key is pressed,
when the keypress is detected by a program, and when a key is
pressed and held for more than about a second.

Decode of $C01x in IOU If IOU sees AKO too long,
Key Key clears keyboard strobe Another key it generates own strobe

pressed released (bit 7 at $COOx) pressed for auto-repeat

~~-- ~~~-;~~-;~~-~-~~/~~
Latched KSTRB _J 1 I I
from IOU on $COOx
bit 7 > 0.8 to 1.07

~seconds~

AKDat$C01x
bit 7

Figure 11-17
Keyboard signals

The keyboard 255

AUD is an audio-amplifier hybrid
circuit.

The speaker
The Apple Ilc's built-in loudspeaker is controlled by a single bit of
output from the input/output unit CTOU), amplified by a hybrid
circuit (Figure 11-18).

SPKR
IOU AUD

Figure 11-18

+sv
500 fl

1----_,,.--< Volume

Control

______ 1_v_s_o_u_N..,.D~ To Video Expansion
Connector (See Fig. 11-25)

Binaural
Jack

/ GND

.....--iH._Jt+---_,q~ Speaker

'
Speaker circuit diagram

Volume control

There is a 500-ohm variable resistor feeding anywhere from 0 to
5 volts to pin 5 of AUD to control the speaker volume. This
potentiometer controls the volume of both the built-in speaker and
whatever is plugged into the output jack.

Output jack

Next to the volume control, along the lower-left side of the Apple Ile
case, there is a 3.5-mm audio output jack. Although speaker output
is monaural, the jack accommodates stereo headphone plugs (as
well as monaural), providing sound to both channels. Inserting a
headphone plug into the jack disconnects the built-in speaker.

256 Chapter 11: Hardware Implementation

The video display
The Apple Ile produces a video signal that creates a display on a
standard video monitor or, if you add an RF modulator, on a black
and-white or color television set. The video signal is a composite
made up of the data that are being displayed plus the horizontal and
vertical synchronization signals that the video monitor uses to
arrange the lines of display data on the screen.

•:• Note: Apple Ile computers manufactured for sale in the USA
generate a video signal that is compatible with the standards set
by the NTSC (National Television Standards Committee).
Apple Ilc's used in European countries require an external
adapter to provide video that is compatible with the standard
used there, which is called PAL (for phase alternating lines).
References to the PAL standard are found in the bibliography at
the end of this manual. This manual describes only the NTSC
version of the video circuits.

The display portion of the video signal is a time-varying voltage
generated from a stream of data bits, where a 1 corresponds to a
voltage that generates a bright dot, and a 0 to a dark dot. The
display bit stream is generated in bursts that correspond to the
horizontal lines of dots on the video screen. The signal named
W7VDW- is low during these bursts.

During the time intervals between bursts of data, nothing is
displayed on the screen. During these intervals, called the
blanking interoals, the display is blank and the WNDW° signal is
high. The synchronization signals, called sync for short, are
produced by making the signal named SYNC- low during portions
of the blanking intervals. The sync pulses are at a voltage equivalent
to blacker-than-black video and don't show on the screen.

The video counters

The address and timing signals that control the generation of the
video display are all derived from a chain of counters inside the
IOU. Only a few of these counter signals are accessible from outside
the IOU, but they are all important in understanding the operation
of the display generation process, particularly the display memory
addressing described in the next section.

The video display 257

The horizontal counter is made up of seven stages: HO, Hl,
H2, H3, H4, H5, and HPE•. The input to the horizontal counter is
the 1-MHz signal that controls the reading of data being displayed.
The complete cycle of the horizontal counter consists of 65 states.
The six bits HO through H5 count from 0 to 64, then start over at 0.
Whenever this happens, HPE• forces another count with HO
through H5 held at 0, extending the total count to 65.

The IOU uses the 40 horizontal count values from 25 through 64 in
generating the low-order part of the display data address. The IOU
uses the count values from 0 to 24 to generate the horizontal
blanking, the horizontal sync pulse, and the color-burst gate.

When the horizontal count gets to 65, it signals the end of a line by
triggering the vertical counter. The vertical counter has nine stages:
VA, VB, VC, VO, Vl, V2, V3, V4, and V5. When the vertical count
reaches 262, the IOU resets it and starts counting again from 0. Only
the first 192 scanning lines are actually displayed; the IOU uses the
vertical counts from 192 to 262 to generate the vertical blanking and
sync pulse. Nothing is displayed during the vertical blanking
interval. ('The vertical line count is 262 rather than the
standard 262.5 because, unlike normal television, the Apple He's
video display is not interlaced.)

Display memory addressing

As described in Chapter 5, data bytes are not stored in memory in
the same sequence in which they appear on the display. You can get
an idea of the way the display data are stored by using the Monitor
to set the display to graphics mode, then storing data starting at the
beginning of the display page at hexadecimal $0400 and watching
the effect on the display. If you do this, you should use the graphics
display instead of text to avoid confusion: the text display is also
used for Monitor input and output.

If you want your program to display data by storing them directly
into the display memory, you must first transform the display
coordinates into the appropriate memory addresses, as shown in
Chapter 2. The descriptions that follow will help you understand
how this address transformation is done and why it is necessary.

The address transformation that folds three rows of 40 display bytes
into 128 contiguous memory locations is the same for all display
modes, so it is described first. The differences among the different
display modes are described later in this chapter.

258 Chapter 11 : Hardware Implementation

The requirements for RAM
refreshing are discussed earlier
In this chapter under "RAM
addressing.·

Display address mapping
Consider the simplest display on the Apple Ile, the 40-column text
mode. To address 40 columns requires 6 bits, and to address 24
rows requires another 5 bits, for a total of 11 address bits.
Addressing the display this way would involve 2048 (2 to the 11th
power) bytes of memory to display a mere 960 characters. The 80-
column text mode would require 4096 bytes to display
1920 characters. The leftover chunks of memory that were not
displayed could be used for storing other data, but not easily,
because they would not be contiguous.

Instead of using the horizontal and vertical counts to address
memory directly, the circuitry inside the IOU transforms them into
the new address signals described below. The transformed display
address must meet the following criteria:

o map the 960 bytes of 40-column text into only 1024 bytes

o scan the low-order address to refresh the dynamic RAMs

o continue to refresh the RAMs during video blanking

The transformation involves only horizontal count.S H3, H4,
and H5, and vertical counts V3 and V4. Vertical count bits
VA, VB, and VC address the lines making up the characters, and
are not involved in the address transformation. The remaining low
order count bits, HO, Hl , H2, VO, Vl, and V2 are used directly,
and are not involved in the transformation.

The IOU performs an addition that reduces the five significant count
bits to four new signals SO, Sl, S2, and S3, where S stands for sum.
Figure 11-19 is a diagram showing the addition in binary form, with
V3 appearing as the carry in and H5 appearing as its
complement HS•. A constant value of 1 appears as the low-order
bit of the addend. The carry bit generated with the sum is not used.

If this transformation seems terribly obscure, try it with actual
values. For example, for the upper-left corner of the display, the
vertical count is 0 and the horizontal count is 24: HO, Hl, H2,
and H5 are O's, and H3 and H4 are l's. The value of the sum is 0, so
the memory location for the first character on the display is the first
location in the display page, as you might expect

The video display 259

Table 11-14
Display memory
addressing

Memory Display
address bit address bit

AO HO
Al Hl
A2 H2
A3 so
A4 Sl
AS S2
A6 S3
A7 VO
A8 Vl
A9 V2

AlO
All
A12
A13
A14 •
AlS GND

• For these address bits,
see Table 11-15.

HS*

V4

S3

V3

HS *

S2

H4

V4

S1

V3 Carry In

H3

so

Augend

Addend

Sum

Figure 11-19
Display address transformation

Horizontal bits HO, Hl, and H2 and sum bits SO, Sl, and S2 make
up the transformed horizontal address (AO through A6 in
Table 11-14). As the horizontal count increases from 24 to 63, the
value of the sum (S3 S2 S 1 SO) increases from 0 to 4 and the
transformed address goes from 0 to 39, relative to the beginning of
the display page.

The low-order three bits of the vertical row counter are VO, Vl,
and V2. These bits control address bits A7, A8, and A9, as shown
in Table 11-14, so that rows 0 through 7 start on 128-byte
boundaries. When the vertical row counter reaches 8, VO, Vl,
and V2 are 0 again, and V3 changes to 1. If you do the addition in
Figure 11-19 with H equal to 24 (the horizontal count for the first
column displayed) and V equal to 8, the sum is 5 and the horizontal
address is 40: the first character in row 8 is stored in the memory
location 40 bytes from the beginning of the display page.

Table 11-14 shows how the signals from the video counters are
assigned to the address lines. HO, Hl, and H2 are horizontal-count
bits, and VO, Vl, and V2 are vertical-count bits. SO, Sl, S2, and S3
are the folded address bits described above. Table 11-15 shows
memory address bits for the display modes.

Table 11-15
Memory address bits for display modes

Address Text and High resoluHon and
bit low resoluHon double high resolution

AlO 80STORE+PAGE2' VA
All 80STORE'.PAGE2 VB
A12 0 vc
A13 0 80STORE+PAGE2'
A14 0 80STORE'.PAGE2

Note: Period (.) means logical AND; prime (') means logical NOT.

260 Chapter 11 : Hardware Implementation

Figure 11-20 shows how groups of three 40-character rows are stored
in blocks of 120 contiguous bytes starting on 128-byte address
boundaries. This diagram is another way of describing the display
mapping shown in Figure 5-5. Notice that the three rows in each
block of 120 bytes are not adjacent on the display.

--... ~ 128Byte'
J_..._ 8 _,.

40 Bytes+40 Bytes+40 Bytes
Bytes

$400 RowO Rows Row 16 ..
$480 Row 1 Row9 Row 17 ..
$500 Row2 Row 10 Row 18 ..
$580 Row3 Row 11 Row 19 ..
$600 Row4 Row 12 Row20 ..
$680 Rows Row 13 Row 21 ..
$700 Row6 Row 14 Row22 ..
$780 Row? Row 15 Row23 ..
Figure 11-20
40-column text display memory (memory locations marked with
a double asterisk • • are screen holes, described In Chapter 2)

Video display modes
The different display modes all use the address-mapping scheme
described later in this chapter, but they use different-sized memory
areas in different locations. This section describes the addressing
schemes and the methods of generating the actual video signals for
the different display modes. Figure 11-21 illustrates the video.
display circuits discussed in this section.

The video display 261

HO (ToTMG)
BOCOL•

(ToTMG)
VIDD7 PRAS•

IOU
SYNC•

VIDD6 wNow·

GR

SEGB

~
Jl (/) (/) z

< Jl ~
mm G> 0 LANGSW G> Gl

(Keyboardd_
() ~ 0 l> m Jl ~

~ .
CHARGEN

00 00 ------- I' Il ij_ High-Resolution ~(Graphics
-v ":>'<)

~ VIDEO
/I GR

LATCH

l
0'C Low-Resolution

""'<)_N Graphics 0
c

Video Bus '. 1.1 o:rj
I\ oc

.!., -i

1 ~ ~
O'"
c t((primary) (primary) "'

~ 80 cl set set
-<.:

LATCH

~ ~(
GR"

_A
~ ~ I11T (alternate) (alternate)

,_cl · set set
00 01 i" I/

'----./~
LANGSW LANGSW

up down

VIDD6 LOPS•

VID7M
VIDD7

14M

HO
TMG

CREF (IOU)
TEXT

(IOU)
BOCOL•

Figure 11-21
Video display circuits

262 Chapter 11: Hardware Implementation

VIDD7

.r==::: To RAM

~

SE ROUT

NTSC

VID VIDOUT

~ T
G ND

SPI

~ f- I

I\ f- I

""~ ~
E!:
~

Parallel.11
"'1
~

Load

Shilt
Out

1VSOUND

AUD

< a:
~
m x
~
" "' c;·
" ()
0

" " "' 0 g

Text displays

The text and low-resolution graphics pages begin at memory
locations $0400 and $0800. Table 11-15 shows how the display
mode signals control the address bits to produce these addresses.
Address bits AlO and All are controlled by the settings of Page2
and 80Store, the display-page and 80-column-video soft switches.
Address bits A12, A13, and A14 are set to 0. Notice that 80Store
active inhibits Page2: there is only one display page in 80-column
mode.

The low-order six bits of each data byte reach the character
generator directly, via the video data bus VIOO-VID5. The two
high-order bits are modified by the IOU to select between the
primary and alternate character sets and are sent to the character
generator on line.s RA9 and RAlO.

The data for each row of characters are read eight times, once for
each of the eight lines of dots making up the row of characters. The
data bits are sent to the character generator along with VA, VB,
and VC, the low-order bits from the vertical counter. For each
character being displayed, the character generator puts out one of
eight stored bit patterns selected by the three-bit number made up
of VA, VB, and VC.

The bit patterns from the character generator are loaded into the
74166 parallel-to-serial shift register and output as a serial bit stream
that goes to the video output circuit (Figure 11-21). The shift register
is controlled by signals named LOPS• (for load parallel-to-serial
shifter) and VID7M (for video 7 MHz). In 40-column mode, LOPS"
strobes the output of the character generator into the shift register
once each microsecond, and VID7M shifts the bits out at 7 MHz
(Figure 11-22).

The addressing for the 80-column display is exactly the same as for
the 40-column display: the 40 columns of display memory in
auxiliary memory are addressed in parallel with the 40 columns in
main memory. The data from these two memories reach the video
data bus Oines VIDO-VI07) via separate 74LS374 three-state buffers.
These buffers are loaded simultaneously (at the rising edge of 00),
but their outputs are sent to the character generator alternately by
the falling edge of 00 and 01. In 80-column mode, LOPS• loads
data from the character generator into the shift register twice during
each microsecond, once during 00 and once during 01, and
VID7M remains low, enabling the clock continuously at 14M
(Figure 11-23).

The video display 263

14M

7M

0() I I
I <p CPU Phase ~
I I

01
_J Video Phase I I

+ j DATA BUS x==J<

+
VIDEO LATCH x ______ x

I
LOPS* AND ENSO*

!
VIDEO BUS into CHARGEN x ________ x
OUTPUT BUS into SPI (Shift Register)

SPI Serial Output (VID7M and 14M)

Figure 11-22
7-MHz video timing signals: 40-column, low-resolution, and high-resolution display

264 Chapter 11 : Hardware Implementation

DATA BUS

VIDEO LATCH

80 LATCH

LOPS*
(ENSO* always on)

VIDEO BUS into CHARGEN

OUTPUT BUS into SPI (Shift Register)

SPI Serial Output (14M Clock)

Figure 11-23
14-MHz video timing signals: 80-column and double high-resolution display

The video display 265

Low-resolution display

In the graphics modes, VA and VB are not used by the character
generator, so the IOU uses lines SEGA and SEGB to transmit HO and
HIRES•, as shown in Table 11-16.

Table 11-16
Character-generator control signals

Display mode

Text
Graphics

SEGA
VA
HO

SEGB SEGC
VB VC
HIRES• VC

The low-resolution graphics display uses VC to divide the eight
display lines corresponding to a row of characters into two groups
of four lines each. Each row of data bytes is addressed eight times,
the same as in text mode, but each byte is interpreted as two
nibbles. Each nibble selects 1 of 16 colors. During the upper four of
the eight display lines, VC is low and the low-order nibble
determines the color. During the lower four display lines, VC is
high and the high-order nibble determines the color.

The bit patterns that produce the low-resolution colors are read
from the character-generator ROM in the same way the bit patterns
for characters are produced in text mode. The 74166 parallel-to
serial shift register converts the bit patterns to a serial bit stream for
the video circuits (Figure 11-21).

The video signal generated by the Apple Ile includes a short burst of
3.58-MHz signal that is used by an NTSC color monitor or color
1V set to generate a reference 3.58-MHz color signal. The
Apple Ilc's video signal produces color by interacting with this
3.58-MHz signal inside the monitor or 1V set. Different bit patterns
produce different colors by changing the duty cycles and delays of
the bit stream relative to the 3.58-MHz color signal. To produce the
small delays required for so many different colors, the shift register
runs at 14 MHz and shifts out 14 bits during each cycle of the 1-MHz
data dock. To generate a stream of 14 bits from each 8-bit pattern
read from the ROM, the output of the shift register is connected
back to the register's serial input to repeat the same 8 bits; the last 2
bits are ignored the second time around.

266 Chapter 11: Hardware Implementation

Each bit pattern is output for the same amount of time as a
character: 1.02 microseconds. Because that is exactly enough time
for three and a half cycles of the 3.58-MHz color signal, the phase
relationship between the bit patterns and the signal changes by a
half cycle for each successive pattern. To compensate for this, the
character generator puts out one of two different bit patterns for
each nibble, depending on the state of HO, the low-order bit of the
horizontal counter.

High-resolution display

The high-resolution graphics pages begin at memory locations
$2000 and $4000 (decimal 8192 and 16384). These page addresses
are selected by address bits A13 and A14. In high-resolution mode,
these address bits are controlled by PAGE2 and 80STORE, the
signals controlled by the display-page (Page2) and 80-column
video (80Col) soft switches. As in text mode, 80STORE inhibits
addressing of the second page because there is only one page of 80-
column text available for mixed mode.

In high-resolution graphics mode, the display data are still stored
in blocks like the one shown in Figure 11-20, but there are eight of
these blocks. As Tables 11-14 and 11-15 show, vertical counts
VA, VB, and VC are used for address bits AlO, All, and A12,
which address eight blocks of 1024 bytes each. Remember that in
the display, VA, VB, and VC count adjacent horizontal lines in
groups of eight. This addressing scheme maps each of those lines
into a different 1024-byte block.

It might help to think of this scheme as a kind of eight-way
multiplexer: it's as if eight text displays were combined to produce a
single high-resolution display, with each text display providing one
line of dots in turn, instead of a row of characters.

The high-resolution bit patterns are produced by the character
generator ROM. In this mode, the bit patterns simply reproduce the
seven bits of display data. The low-order six bits of data reach the
ROM via the video data bus VlDO-viDS. The IOU sends the other
two data bits to the ROM via RA9 and RAlO.

The video display 267

The high-resolution colors described in Chapter 2 are produced by
the interaction between the video signal the bit patterns generate
and the 3.58-MHz color signal generated inside the monitor or
1V set. The high-resolution bit patterns are always shifted out at
7 MHz, so each dot corresponds to a half-cycle of the 3.58-MHz
color signal. Any part of the video signal that produces a single
white dot IJetween two black dots, or vice versa, is effectively a short
burst of 3.58 MHz and is therefore displayed as color. In other
words, a bit pattern consisting of alternating l's and O's gets
displayed as a line of color. The high-resolution graphics
subroutines produce the appropriate bit patterns by masking the
data bits with alternating l's and O's.

To produce different colors, the bit patterns must have different
phase relationships to the 3.58-MHz color signal. If alternating ls
and O's produce a certain color, say green, then reversing the
pattern to O's and l's will produce the complementary color,
purple. As in the low-resolution mode, each bit pattern
corresponds to three and a half cycles of the color signal, so the
phase relationship between the data bits and the color signal
changes by a half cycle for each successive byte of data. Here,
however, the bit patterns produced by the hardware are the same
for adjacent bytes; the color compensation is performed by the
high-resolution software, which uses different color masks for data
being displayed in even and odd columns.

To produce other colors, bit patterns must have other timing
relationships to the 3. 58-MHz color signal. In high-resolution
mode, the Apple Ile produces two more colors by delaying the
output of the shift register by half a dot (70 ns), depending on the
high-order bit of the data byte being displayed. (The high-order bit
doesn't actually get displayed as a dot, because at 7 MHz there is
only time to shift out seven of the eight bits.)

As each byte of data is sent from the character generator to the shift
register, high-order data bit 07 is also sent to the TMG. If 07 is off,
the TMG transmits shift-register timing signals LOPS• and VID7M
normally. If 07 is on, the TMG delays LOPS• and VI07M by
70 nanoseconds, the time corresponding to half a dot. The bit
pattern that formerly produced green now produces orange; the
pattern for purple now produces blue.

•> A note abo"1 ttmtng: For 80-column text, the shift register is
clocked at twice normal speed. When 80-column text is used
with graphics in mixed mode, the TMG controls shift-register
timing signals LOPS• and VI07M so that the graphics portion
of the display works correctly even when the text window is in
80-column mode.

268 Chapter 11 : Hardware Implementation

RGB stands for red. green. and
blue. and Identifies a type of
color monitor that uses
independent Inputs for the three
primary colors.

For further Information about
double high-resolution graphics
display. refer to the Bibliography.

Double high-resolution display

Double high-resolution graphics mode displays two bytes in the
time normally required for one, but it uses high-resolution graphics
Pages 1 and lX instead of text and low-resolution Pages 1 and lX.

•:• Note: There is a second pair of bytes, HRP2 and HRP2X, which
can be used to display a second double high-resolution page.

Double high-resolution graphics mode displays each pair of data
bytes as 14 adjacent dots, 7 from each byte. The high-order bit
(color-select bit) of each byte is ignored. The auxiliary-memory
byte is displayed first, so data from auxiliary memory appear in
columns 0-6, 14-20, and so on, up to columns 547-552. Data from
main memory appear in columns 7-13, 21-27, and so on, up
to 553-559.

As in 80-column text, there are twice as many dots across the
display screen, so the dots are only half as wide. On a 1V set or low
bandwidth Oess than 14 MHz) monitor, single dots are dimmer
than normal.

•:• Note: Except for some expensive RGB-type color monitors,
any video monitor with a bandwidth as high as 14 MHz will be a
monochrome monitor. Monochrome means one color: a
monochrome video monitor can have a screen color of white,
green, orange, or any other single color.

The main memory and auxiliary memory are connected to the
address bus in parallel, so both are activated during the display
cycle. The rising edge of 00 clocks a byte of main memory data into
the video latch, and a byte of auxiliary memory data into the
80 latch (Figure 11-21).

Phi 1 enables output from the (auxiliary) 80 latch, and 00 enables
output from the (main) video latch. Output from both latches goes
to CHARGEN, where GR and SEGB• select high-resolution
graphics. LDPS operates at 2 MHz in this mode, alternately gating
the auxiliary byte and main byte into the parallel-to-serial shift
register. VID7M is active (kept true) for double high-resolution
display mode, so when it is ANDed with 14M, the result is still 14M.
The 14M serial clock signal gates shift register output to VID, the
video display hybrid circuit, for output to the display device.

The video display 269

Video output signals

VID Is a video-amplifier hybrid
The stream of video data generated by the display circuits described
above goes to a hybrid circuit (VID) that adjusts the signals to the
proper amplitudes and conditions the color burst. circuit . ·

:\ ~·'

0 \ • • •••

Back Panel

Figure 11-24

The resulting video signal is an NTSC-compatible composite-video
signal that can be displayed on a standard video monitor. The
signal is similar to the EIA (Electronic Industries Association)
standard positive composite video. This signal is available in two
places in the Apple Ile (Figure 11-24):

o at the video output connector on the back of the Apple Ile

o at the video expansion connector (pin 12) on the back panel
(Table 11-17)

Monitor output

The sleeve of the video output connector at the center of the
Apple Ile back panel is connected to ground and the tip is
connected to the video output through a resistor network that
attenuates it to about 1 volt and matches its impedance to 75 ohms.
This arrangement is suitable for most video monitors.

ICIDI IOI n
rGND

•••••••• J ~ \ ·J • • • • • • • • • • • • • • • •
l l VIDOUT

I I
Video Video Output Connector

Expansion Connector (For a Monitor)
(For an RF Modulator
or Special Adaptor)

(See Fig. 11-25)

Video output back panel connectors

270 Chapter 11: Hardware Implementation

Video expansion output

The back panel of the Apple Ile has a DB-15 connector for
sophisticated video interfaces external to the computer.
Figure 11-25 shows the pin assignments for this connector;
Table 11-17 describes the signals. In Table 11-17, the column
labeled Deriv indicates what clock signals the video signals are
derived from. LDPS, CREF, and PRAS have a maximum delay of
30 ns from the appropriate 14-MHz rising edge. SEROUT is clocked
out of a 74LS166 by the rising edge of 14M and has a maximum delay
of 35 ns. VIDD7 is driven from a 74LS374 and has a maximum delay
of 28 ns from the rising and (if 80-column) falling edges of 01.

To align CREF so it is in the same phase at the beginning of every
line, certain clock signals must be stretched. This stretch is for one
7M cycle (140 ns), and occurs at the end of each video line. All
timing signals except 14M, 7M, and CREF are stretched.

Warning The maximum allowable current drain of+ 12V regulated power
at the video expansion connector Is 300 mllllamps. If the
external device draws more than this. It can damage the
computer or cause the power supply to shut down.

Warning The signals at the DB-15 on the Apple lie are not the same as
those at the DB-15 on the Apple Ill. Do not attempt to plug a
cable Intended for one Into the other.

Several of these signals, such as 14 MHz, must be buffered within
about 4 Inches (10 cm) of the back panel connector
preferably Inside a container directly connected to the back
panel. For technical Information, contact Apple Technical
Support.

The video display 271

15 14 13 12 11 10 9
• • • • • • •

Pin Signal Pin Signal

1 TEXT 9 PRAS*
2 14M 10 GR
3 SYNC* 11 SERO UT*
4 SEGB 12 NTSC
5 lVSOUND 13 GND
6 LOPS* 14 VIDD7
7 WNDW* 15 CREF
8 +12V

Figure 11-25
Video expansion connector plnouts

Table 11-17
Video expansion connector signals

Pin Derlv

1

2

3 Q3

4 PRAS

5

6 14M

7 PRAS

272 Chapter 11 : Hardware Implementation

Signal

TEXT

14M

SYNC"

SEGB

lVSOUND

Description

Video text signal from TMG; set to
inverse. of GR, except in double
high-resolution mode

14-MHz master timing signal from
the system oscillator

Displays horizontal and vertical
synchronization signal from IOU
pin 39

Displays vertical counter bit from
IOU pin 4; in text mode indicates
second low-order vertical
counter; in graphics mode
indicates low-resolution

One-volt sound signal from pin 5
of the audio hybrid circuit (AUD)

Video shift-register load enable
from pin 12 of TMG

Active area display blanking;
includes both horizontal and
vertical blanking

Table 11-17 (continued)
Video expansion connector signals

Pin Derlv Signal Description

8 +12V Regulated + 12 volts DC; can drive
300mA

9 14M PRAS• RAM row-address strobe from
TMG pin 19

10 PRAS GR Graphics mode enable from IOU
pin 2

11 14M SERO UT• Serialized character-generator
output from pin 1 of the 74LS166
shift register

12 NTSC Composite NTSC video signal
from VID hybrid chip

13 GND Ground reference and supply

14 00 VIDD7 From 74LS374 video latch; causes
half-dot shift if high

15 14M CREF Color reference signal from TMG
pin 3; 3. 58 MHz

Disk 1/0
Disk I/0-for both the built-in and the external drive-is supported
by the IWM disk controller unit. The external drive is attached via a
DB-19 connector. Figure 11-26 shows this connector. Table 11-18
describes the pin assignments. Supply voltages come from the
power supply; all other signals come from the IWM, described
earlier in this chapter.

Warning The power available at this connector Is for a Disk lie or similar
drive only. Do not use power from the external disk connector
for any other purpose-you may damage the Internal voltage
converter. To derive external power for an attached device,
use one of the other connectors and observe the current ilmlts
given In this manual.

Disk 1/0 273

10 9 8 7 6 5 4 3 2 1

••••••••••
19 18 17 16 15 14 13 12 11

•••••••••
Pin Signal Pin Signal

1,2,3,4 GND 13 SEEKPH2
5 -12V 14 SEEKPH3
6 +5V 15 WRREQ*
7,8 +12V 16 N.C.
9 EXTINT* 17 DR2*

10 WRPROT 18 RDDATA
11 SEEKPHO 19 WRDATA
12 SEEKPHl

Figure 11-26
Disk drive connector

Table 11-18
Disk drive connector signals

Connector
pin Signal Description

1,2,3,4 GND Ground reference and supply
6 +5V +5 volt supply
7,8 +12 +12 volt supply
9 EXTINT• External interrupt
10 WRPROT Write-protect input
11-14 00-4 Motor phase 0-4 output
15 WRREQ• Write request
17 DRP Drive 1 select
18 RDDATA Read data input
19 WRDATA Write data output

Serial 1/0
The Apple Ile has built into it two 6551 asynchronous
communication interface adapters (ACIA) and supporting input
and output buffers for full-duplex serial communication.
Figure 11-27 is a block diagram of the Apple Ile serial ports. ACIA
outputs are buffered by a 1448-quad line driver. Similarly, ACIA
inputs are buffered by a 1489-quad line receiver.

27 4 Chapter 11 : Hardware Implementation

EXTINT* (From External Disk Drive Connector)

AO DSR* µ
A1

A4 Pin
TxD TD1B

6551 RTS* DTR1B

D0-7 RxD
1488 RD1B ACIA -'J ocD· DSR1B

~ (Serial
SER1 SER* Output

00 !-+=- Buffer)

~LK
.._,_

IRQ*
~

.........,
crs·

~)~
4 :
5

RESE;fv

)>
a. 0 a. ... Q)
(1) Pi 14M..., "' 74LS161 ~ t-- GLU "' Ill
Ill c
c "' "'

IRQ*

'BcLK 00

R/W* SER* 1489

~"
t--

TxD
(Serial

TD2B
6551 RTS* DTR2B~

~ ACIA Input
RxD Buffer) RD2B
oco·

~

DSR2B SER2
AO

~

~)~ 4 ...
I\)

5

A1

AS
DSR*r--L
crs· KSTRB (From Keyboard)

RESE~V
Figure 11 -27
Serial port circuits

Serial 1/0 275

00 -
R/W* -

CS0 -

CS1* -
RS0 -

RS1 -
RES*_

DB0 ~
I
I
I

-1-

Figure 11-28

Select
and

Control
Logic

Data

~ Bus
Buffers

Figure 11-28 is a detailed block diagram of the 6551 ACIA. The
registers are described later in this chapter.

...... Transmit _;..

) Data
/ y Register y

Status
Register

...... Control

y Register

Receive .A.
Data v

Register I\..
'I

Jo. Command) Register

1

Transmit
Control

i
Transmit

Shift
Register

Interrupt
Logic

Baud Rate
Generator

Receive
Shift

Register

1
Receive
Control t-

CTS*

TxD

IRQ*

DCD*

DSR*

RxC

XTAL1

XTAL2

RxD

DTR*

RTS*

6551 ACIA block diagram (copyright© 1978 by Synertek Inc.; used by permission)

The 6551 pin assignments are shown in Figure 11-29 and described
in Table 11-19. Note that the two 6551's are not used in exactly the
same way-each one supports a different set of interrupts.

Port 1 reads external interrupts (EXTINr) on its Data Set Ready
(DSR) pin. This input is tied to +5V through a 3.3-Kn pullup
resistor.

276 Chapter 11: Hardware Implementation

GND
AS

SER*
'lESET*

(N.C.)
BCLK
(N.C.)
RTS *
CTS*

TxD
(N.C.)

RxD
AO
A1

1 \.._,!

2
3
4
5
6
7
8
9

10
11
12
13
14

Figure 11-29
6551 plnouts

28 R/W*
27 00
26 IRQ*
25 07
24 06
23 05
22 04
21 03
20 02
19 01
18 DO
17 DSR *
16 DCD*
15 +sv

Table 11-19
6551 signal descriptions

Pin Signal Description

1 GND Power and signal common ground

2 A4 Address line 4 to select serial port 1
A5 Address line 5 to select serial port 2

3 SER• Serial device select from GLU

4 RESET° Resets both serial ports

5 N.C. Not connected

6 BCLK Baud rate clock from GLU

7 N.C . Not connected

8 RTS 0 Request to Send output

9 CTS 0 Clear to Send input (not used on Ile; tied to
ground)

10 TXD Transmit Data output

11 N.C. Not connected

12 RXD Receive Data input

13,14 AO,Al Address lines 0 and 1

15 +5V +5 volt supply

16 DSR DCD• pin; used on Ile as Data Set Ready
input

17 DSR0pin; used on Ile as
EXTINT0 External interrupt (port 1 ACIA), or
KSTRB Keyboard strobe input (port 2 ACIA;

Appendix E)

18-25 DO-D7 8-bit data bus

26 IRQ• Interrupt Request input

27 00 Phase 0 clock pulse

28 R/W0 Read/write select input

Serial 1/0 277

Pin Port 1 Port2

I DTRIB DTR2B
2 TDIB TD2B
3 GND GND
4 RDIB RD2B
5 DSRIB DSR2B

Figure 11-30
Serial port connectors

The back panel connectors for both serial ports are 5-pin DIN jacks.
The pin assignments are shown in Figure 11-30 and described in
Table 11-20.

Table 11-20
Serial port connector signals

Pin Signal Description

1 DTRlB Data Terminal Ready output
DTR2B

2 TDlB Transmit Data output
TD2B

3 GND Power and signal common

4 RDlB Read Data input
RD2B

5 DSRlB Data Set Ready input
DSR2B

ACIA control register

Figure 11-31 shows the bit assignments for the ACIA control
register, which the hardware locates at address $C09B for serial
port 1, and $COAB for serial port 2. This register determines the
number of data and stop bits the ACIA will transmit and receive,
and the clock source and baud rate to use for data transfer.

The receiver clock source is derived from the Apple He's TMG chip;
the resulting baud rates are equal to or up to two percent lower than
the nominal rate. (The EIA standard allows plus or minus two
percent variation.) If an Apple Ile serial port is used with a modem
that is two percent above the nominal rate, framing errors can
occur, especially at 1200 baud and above, when using 8 data bits. It
may be necessary to select a lower baud rate for 8-bit binary data
transfers.

278 Chapter 11: Hardware Implementation

Stop Bits

p bit
p bits
p bit if word length

O = 1 sto
1 = 2 sto

1 sto
=8
1% s
=5

bits and parity*•
top bits if word length
bits and no parity

Word Leng th

Data Word
Length

8

0 7

0 6

5

Receiver C lock Source

rnal receiver clock]
d rate generator

O = Exte

1 = Bau

[1 I 6

J T

Port 1 = $C09B
Port 2 = $COAB
Control Register

5 I 4 3 2

T I I
0 0

0 0

0 0

0 0

0 1

0 1

0 1

0 1

1 0

1 0

1 0

1 0

1 1

1 1

1 1

1 1

1 0

I I
0 0

0 1

1 0

1 1

0 0

0 1

1 0

1 1

b 0

0 1

1 0

1 1

0 0

0 1

1 0

1 1

•*This allows for 9-bit transmission (8 data plus parity).

Figure 11-31

Hardware Reset

Program Reset

7 6 5 4 3 2 1 0

I

0

I

0

I

0

I

0

I

0

I

0

I

0

I ~ I

Baud Rate Generator

16x External Clock

50 baud

75

109.92

134.58

150

300

600

1200

1800

2400

3600

4800

7200

9600

19200

ACIA control register (copyright© 1978 by Synertek Inc.; used by permission)

Serial 1/0 279

Parity Check

Bit

7 6 5

0

0 0

0

0

Normal Echo
for Receiver

0 = Normal

ACIA command register

Figure 11-32 shows the bit assignments for the ACIA command
register, which the hardware locates at address $C09A for serial

port 1, and at $COAA for serial port 2. This register controls

specific transmit and receive functions: parity checking, echoing

input to output, allowing transmit and receive interrupts, and
setting levels for Data Terminal Ready and Request to Send.

Port 1 = $C09A
Port 2 = $COAA

Command Register

[1 jsj5j4]3 2] 1 0

,I I
Controls

Operation

Parity disabled~no parity bit
generated, no parity bit received

Odd parity received and transmitted

Even parity received and transmitted O =

MARK parity bit transmitted;

received parity check disabled 1 =

SPACE parity bit transmitted;
received parity check disabled

Bit Transmit

3 2 Interrupt

0 0 Disabled

Mode 0 1 Enabled

0 Disabled

Disabled

Data Terminal Ready

O= Disa ble receiver and all
upts (DTR • high) in terr

1 = Enab le receiver and all
upts (DTW low) interr

Rec eiver Interrupt Enable

pt enabled from bit 3
st er

IRQ• interru
of status regi

IRa· interru pt disabled

Transmitter Controls

RTs·
Level

Transmitter

High Off

Low On

Low On

Low Transmit BRK

1 = Echo (bits 2 and 3 must be zero)

Figure 11-32

Hardware Reset

Program Reset

76543 2 0

I

0

I

0

I

0

I ~ I ~ I ~ I ~ I ~ I

ACIA command register (copyright © 1978 by Synertek Inc.; used by permission)

280 Chapter 11 : Hardware Implementation

ACIA status register
Figure 11-33 shows the bit assignments for the ACIA status register,
which is hard-wired to address $C099 for serial port 1, and $COA9
for serial port 2. This register reports the condition of the
transmit/receive register, errors detected during data transfer, and
the level of the Data Carrier Detect, Data Set Ready, and Interrupt
Request lines.

Status

Parity errort

Framing errort

Overrunt

Receive Data,
Register full

Transmit Data,
Register empty

DCD*

DSR*

IRQ

Port 1 = $C099
Port 2 = $COA9

Set By

O =No error
1 = Error
o =No error
1 = Error
0 = No error
1 = Error

o = Not full
1 = Full

0 =Not empty
1 =Empty

0 = DCD* low
1 = DCD* high

0 = DSR* low
1 = DSR* high

o = No interrupt
1 = Interrupt

t No interrupt generated for these conditions.
• • Cleared automatically after a read of RDR

and the next error-free receipt of data.

7 6 54 3 2 1 0

Cleared By

Self-clearing••

Self-clearing**

Self-clearing* *

Reading receive
data register

Writing to transmit
data register

Not resettable;
reflects DCD •
state

Not resettable;
reflects DSR •
state

Reading status
register

;;;:::eR:::~t I 0 I 0 I 0 I 0 I 0 I 0 I 0 I ~ I
Figure 11-33
ACIA status register (copyright © 1978 by Synertek Inc.;
used by permission)

Serial 1/0 281

/

282

ACIA transmit/receive register
Each ACIA uses the same address-$C098 for serial port 1, $COA8
for serial port 2-as temporary storage for both transmission and
reception of data.

When the register is used for transmitting data, bit 0 is the leading
bit to be transmitted; unused data bits are the high-order bits,
which are ignored.

When the register is used for receiving data, bit 0 is the first bit
received; unused data bits are the high-order bits, which are set
to 0. Parity bits never appear in the receive data register; they are
stripped off after being used for external parity checking.

Mouse input
The mouse is a hand-held X-Y pointing device that can be rolled
along a flat surface. It has an attached pushbutton. This section
describes how mouse movement and direction can be detected and
interpreted.

A mouse has a ball inside its housing that protrudes a small distance
so that its turning corresponds to mouse movements across a table
top. Two wheels inside the housing, set at 90-degree angles to each
other, follow movements of the ball; this causes two disks to rotate.
The disks have rectangular holes arranged near their edges, making
them resemble circular slide mounts used with stereoscopic slide
viewers.

The light from a tiny infrared emitter reaches a photoreceptor
whenever one of the holes on the disk lies between them. An
internal circuit in the mouse causes the resulting voltage to swing
quickly to a 1 or a 0 value as soon as a certain threshold is crossed.
The result is something approximating a square wave (Figure 11-34)
that varies directly with the speed of mouse movement. One of
these indicates the X component (XO) of mouse movement; the
other, the Y component (YO).

Chapter 11 : Hardware Implementation

Movement
Waveform

Mouse
Speed

Figure 11-34
Sample mouse waveform

Under program control, either the rising edge or the falling edge of
each square wave can cause an interrupt, which the firmware
handles by updating a counter. However, the program needs to
know whether to add or to subtract 1 from a counter; that is, it needs
to know the direction of X or Y movement.

There is a second infrared emitter/photoreceptor pair almost
180 degrees opposite the first pair for each disk. These pairs are
positioned in such a way that the square waves they generate are
approximately a quarter-wave offset from their respective
movement waves (Figure 11-35). These waveforms are called
Xl (X direction) and Yl (Y direction).

XO
(XMOVE)

X1
(XDIR)

YO
(YMOVE)

Y1
(YDIR)

Figure 11-35
Mouse movement and direction waveforms

Mouse Input 283

5 4 3 2 1

• • • • •
9 8 7 6

••••
Pin Signal

1 MOUSEID*
2 +5V
3 GND
4 XDIR
5 XMOVE
6 (N.C.)
7 MSW*
8 YDIR
9 YMOVE

Figure 11-36
Mouse connector

When a rising edge of XO causes an interrupt, a mouse-driver
program can immediately check whether Xl is 0 (indicating a
movement to the right) or 1 (indicating a movement to the left).
Similarly, the mouse driver can read Yl immediately after a
YO interrupt to determine whether the mouse moved up or down
one count along the Y axis.

Figure 11-36 shows the pin assignments for the mouse DB-9
connector on the back panel. Table 11-21 gives the signal names
and descriptions.

Table 11-21
Mouse connector signals

Pin Signal Description

1 MOUSEJD• Mouse identifier: when active, disables
NE556 hand controller timer

2 +5V Total current drain from this pin must not
exceed 100 rnA

3 GND System ground

4 XDIR Mouse X-direction indicator

5 XMOVE Mouse X-movement interrupt

6 N.C. Not connected

7 Msw• Mouse button

8 YDIR Mouse Y-direction indicator

9 YMOVE Mouse Y-movement interrupt

Figure 11-37 shows the mouse and hand controller circuitry with the
mouse circuits emphasized. Figure 11-38 illustrates the values of the
mouse-button circuit when the button is pressed or not pressed.
Pressing the button disables the NE556 by pulling the reset
comparator threshold value up so that it cannot reset the flip flop.
As a result the mouse-button input value remains at a TI1. level.

284 Chapter 11: Hardware Implementation

t
7

GAMESWO/MSW•

2
_j '5V

3
--iGND

Figure 11-3 7
Mouse circuits

12

CAPL (f ti))
1 K ~!

10
470 !! :$- 80140 Column

V Switch

Mouse Input 285

Input Current 25
(mA)

20

15

10

5

0
0.5

-5

-10

- 15

-20

-25

- 30

15

10

5

Undefined 0 Undefined

2

Undefined 0 Undefined

1

(5V,21.4mA)

5

Input Voltage
(Volts)

(5V, 14.3mA)

o.,_~~-'-~~-+~~~~----~~~~
0.5 5

- 5

- 10

-15

- 20

Figure 11 -38
Mouse button signals

286 Chapter 11 : Hardware Implementation

Input Voltage
(Volts)

5 4 3 2 1

•••••
9 8 7 6
• • • •

Pin Signal

1 GAMESWl
2 +5V
3 GND
4 Not used for hand controllers
5 PDLO
6 (N.C.)
7 GAMES WO
8 PDLl
9 Not used for hand controllers

Figure 11-39
Hand controller connector

Hand controller input
Several input signals that are individually controlled via soft
switches are collectively referred to as the hand controller (game)
signals. These signals arrive in the Apple nc via the same DB-9
connector as the one used for the mouse, but the Apple Ile
interprets these signals differently.

The DB-9 connector pin assignments and signal descriptions, as
used for hand controller input, appear in Figure 11-39 and
Table 11-22.

Even though they are normally used for hand controllers, these
signals can be used for other simple 1/ 0 applications. There are two
1-bit switch inputs, labeled SwO and Swl, and two analog inputs,
called paddles and labeled PdlO and Pdll. Figure 11-40 shows how
to connect the 1-bit switch inputs for compatibility with all other
Apple II series computers.

The switch inputs are multiplexed by a 74LS251 8-to-1 multiplexer
enabled by the C06X• signal from the MMU. Depending on the
low-order address, the appropriate game input is connected to bit 7
of the data bus. Figure 11-41 shows the mouse and hand controller
circuitry with the hand controller circuits highlighted. Figure 11-42
illustrates the values of the hand controller switch inputs when the
switch is open or closed.

Table 11-22
Hand controller connector signals

Pin

1

2

3

4,9

5,8

6

7

Signal

GAMESWl

+5V

GND

PDLO and PDLl

N.C.

GAMESWO

Description

Switch input 1 (sometimes called
paddle button 1).

+5V power supply; total current drain
from this pin must not exceed 100 mA.

System ground.

Not used for hand controllers.

Hand controller inputs; each of these
must be connected to a 150-KQ
variable resistor connected to +5V.

Not connected.

Switch input 0 (sometimes called
paddle button (}).

Hand controller Input 287

? 30mA

Switch: OK Saturated: OK

+ 5

Schottky: NO Ground Level: NO Emitter Follower: NO

Figure 11-40
How to connect switch Inputs

Pin

4
XDIR

+ 5

f 5

! e GAMESWO/ Ms w·

t::-470!!

3
--iGND

Figure 11 -41
Hand controller circuits

288 Chapter 11: Hardware Implementation

Input Current 25
(mA)

20

15

10

5

-5

- 10

- 15

-20

-25

- 30

15

10

5

- 5

- 10

Figure 11-42
Hand controller signals

0 Undefined

(2.9V,OmA)

5

': Input Voltage
(Volts)

(5V, 14.3mA)

5
Input Voltage

(Volts)

Hand controller input 289

The hand controller inputs are connected to the timing inputs of an
NE556 dual analog timer. Addressing $C07X sends a signal from
MMU pin 22 that resets both timers and causes their outputs to go
to 1 (high). A variable resistance of up to 150 KO connected
between one of these inputs and the +5V supply controls the
charging time of one of the two 0.022 microfarad capacitors.

When the voltage on the capacitor passes a certain threshold, the
output of the NE556 changes back to 0 Oow). Programs can
determine the setting of a variable resistor by resetting the timers
and then counting time until the selected timer input changes from
high to low. The resulting count is proportional to the resistance.

Warning The only way to ensure correct paddle values is to make sure
the output of the paddle you Intend to read Is low before you
trigger the timer. Triggering the timer starts the charging cycle
for the capacitor In each paddle circuit; the cycle for one may
not be completed by the time you have read the other. If you
retrlgger or read the other paddle too soon (that is, In less than
3 ms), you will get a false value for It.

290 Chapter 11: Hardware Implementation

Memory expansion card
Memory expansion card 1/ 0 is supported by an internal connector
mounted on the main logic board. Figure 11-43 is a pinout diagram
for this connector.

For information on the Apple Ile Memory Expansion Card, refer to
the Apple Ile Memory Expansion Card Reference.

Pin Signal Pin Signal
2• • 1
4• • 3
6• • 5
8• • 7

10• • 9
12• • 11
14. • 13
16• • 15

1 DO 18 A9
2 01 19 AlO
3 02 20 All
4 03 21 A12
5 04 22 Al3
6 05 23 Al5
7 06 24 Al5
8 07 25 RESET

18• • 17 9 GND 26 RW
20 • • 19 10 GND 27 +5V
22 • • 21 11 AO 28 +5V
24• • 23 12 Al 29 PHO
26• • 25 13 A4 30 GND
28• • 27 14 A5 31 7M
30• • 29 15 A6 32 GND
32• • 31 16 A7 33 Q3
349 • 33 17 AS 34 +5V

Figure 11-43
Memory expansion card connector pinout diagram

Schematic diagrams
Figure 11-44, on the following pages, is a set of schematic diagrams
for the Apple Ile.

Schematic diagrams 291

N ;s

c

A

NOTE.: UNLESSOnlf.11.WlSESPEOfUD

I. ALL FIESISTN« VAU.ES
NE lN CJ-t1S. !5'::. l/4W,

2 . ALL CAPACJTNU YAU.ES
ARE lN t1.lOU"AR.-.OS.

I

141.._!!!2!.

"" t 21

011

R•S•

U018
Z1Z'ib

'°'
~

A(~'itl

I RACl-711 I I : I <•S• i R~
I I

9

('I) R w•

Figure 11-44a

'" " '
"'

Apple lie schematic diagram, part l

"" '"I 1 1 ~
.....

~~

~

<2l
(2)J 'i·OC'D
C2)(4l J'H') (i;)

(2)(4)

~l3 ___......,,
~ ... :
; RESH• 1311 4 1...8· 29151

11 PA.t.S it. (2JJ

~· ,
A/ \h - 14 1

IVI INITIAL RELEASE

""""'" .. _. _"'"
J_,"'",,,J- .. ;··, ~ ~~~::~~::::·

- Vs

D

c

i
I

I::(

A

D

c

A

JH_
PAAS•

» VJDDl
.. Vlllili

e.p

'"'

•SV

VIDDI

VlUUI

. ;uw

VJULlb

viW:V

~ tie "Nv ..

' RP'2 - 3 , 3(

1.,U.tUUI ~· ·~
SS •SV """"''

•SV

S<G<

~:tii 111..6- 4 t 5 1 .. -.,~""-----------1-------~·
" - RA9•

RAii• 04116 ~
" Rb2 1 19

bS ~"\.

UDI

UEG

L'
1 -~lctic;

rnnrr

n l'UlPF

"' 131..s-1scs1 .=<»GSW=~-------_,f--------=<
l11..6·7l51.,-=·- --=--- - --11--- - ---""0

CDC't> ENS0 •

17

~
~ -,.

O)J'i-b<'il~L"'DPS=•--------------~
CI) .. Vl07M

CllC'+lJ"i-2C "il""'°'"'"'----- ---------- - - -'..j>

~
VID ~

8

5

CBI Tl •..
"" " lbt-¢

-IZV

!.'.:3.J~~

""

11:,-;::.::".:.~---M

"' -0
(,.>

Figure 11 -44b
Apple lie schematic diagram. part 2

D

c

IB

~· b~

~-
'";K

A

N
-g_

c

A

"' ..S- 19151

..S-16151

lllli!I

(l)l't ll5t

Alll·ISI

Dt B- 71

"'"'" • iiiQi,..

~

• Q3

""

Jsv
~ ~ • \}\; I

s "' -if] 9 6] "' ' "'
s

111 14 1..S- 29151
' : DJ9<•

•=:;-:._..-•

..
121..e- 1s1s

11 ;

..e-2815;

..e- 31151

,J!H!i lSI

..S-22151

..e-e1s1
...9-14151

..S-6151

..S- 1115 1

l.»CSV e •SV•SV
KBIJ•

~ ... Joi •SV ~

~ .. U016~
ll 2716~

T9 17 12 B KAll ~

" 19 13 7KA1t'IA.P ~

"' 19 6 _§jKA.2 ~
: "' ~ 7 SK.t.3 ~

" 1 B 4 KA4

~ ~ 9 3KAS . ,. 23 UBl6 If :::iJiw;
.S- 1151

J9- 4 tSI

J9· 2tSI
.S-12151

..S-33151

•-'HBISI
,iH!llSI
..9-3151

.S·SISI

..S-7151

.,, .. 3611 I I IW
111 '5, ""'
111 ::.<]

~

Cf
"' .. 12 18

~ 39 me

"' "" 3' A6

" :Al 5'K

.§. ..Ai 3

• "" "' 16
..S-9151

..e-34151

..e-32151

"' 33 s
!><In :::J 31

i}c•s r .. 15

"' ~I - J2Y l
" ' : : - •-:;~ =:

Jl-lo (<;)

Jl-9151

('< J

. "" .,. "'1>t..

-~I ill!<
• Pa.llYJ;!IR

.J3- 'Tt51

Jl - •C'>>

~..,o:~
~~

.r<l-11(<;)

-+--~-----~-----··

01 l c.1-1 •. 1 .. .1e.ze-z-.,l7- ZQ • .L c1c;1c;1.,,zcle,

T
.e1 T . 1 nl-. 10-•!:: "eoe T.a1 ~ • 111,12

!:'< 89
l>IJ) .,._....__~ _ ____ ___. _ _ _ --,

Figure 11-44c
Apple lie schematic diagram, part 3

I

!c">a
7··

.. ,
~

C9£AD>

RIB
>2K

..
" 3 """-
~ ..
~ .
I':_ •1 UD<t ~

N~ • ..
N~ '"" " DS a a
~
~ .. ::n

' ..

.. ,
CBEAD)

" "
~
~ "" NHC1251 'Y
~ "" . OJT s

•
3

I

~

~

'" <&.o.0) (8E ~Ol

L....r-.e'"\J ~~~

.. ,
CBEAD) j'
~ L7' 1.........J

3

!ill !~~9 ~ "" 1£556
I

PD. ~ le J ... s

~J-7"' ~

' J/~ .• CBEAD>

~ "' "' ~
UF2 t1L

~ILD- 1

1:?
~

~"" b_
~ b_
~ .
t-Li

IS

J J
~-._',-: ::: !~:,~ ·

L.......j
KSTRB 11 11 4 1

~ ISi
\]

•SV ~J7-•<• > ,, ' '
"' SH YO..U£

VSQ.ND .. .JS-SIS !

~Ci3 lb

~i:4 ~~:! ~~~ 1 1
6\1 ~ 1 c--

1'Sb-1iileec; ~1

RllllAT~

""""'' WROA.T~
""'E0•

5<"""3
sro<P>e_.,
SED<PHI

SED<PH.-

£N1 •

£N2 •

O'I

CP!:

+<V

~
,.,

,.,.
H 2·13 15 I

s~
3~
~

.J:.±
•

rt7

Ja- 19 • ...S· J GISI

..e-ne-2~ 15 1

lKJ-Q(<;)

uo-c; c•n
uc1-.. cc;>
UCJ-H'i >
UCl - 2C 'i >
UCl - 7 C'i >
...6-14151

UCJ-b C'i)

•O>

-~cxxnputxu1nc.
-- --------- --/ £-~~-;;~-:-=:·

/ ~. ::... ; --sc~~MAT lC.

/-· ~~~~M ~;;
050-0ISO- ~ i-%

·c

!1
I

I~

A

D

c

"' -0 c.n

111131 ... , ., • • ,,,

' -- Sfl._10•

111 C2h.S·UISl ...,,m~-----O------------------------------------...... I
111121131••"-" •"',;,' _, ___ J_

I I Il l II EHINH Q..KEN;9»UCl·8C'i)
rr: 131

[I
•SV

om·~te

111 • FU'OI•

131~
131~

.. ·; I :1 I

~
,,,,,jg ~

'"i;;;;-- + - -.--Ml-ll-----<!!l
11 1121 ~=---+--.++-1--ll--~

111131..S-i!9151.,,""',+-Hl-++-l--l1----

•SV

J_,
"

RTS•~ I______§_

UD9 DTR te
ocn •• -11

""" k

•SV

UDL7
l'C149El..

""

~ _,..,

""" l'CHES..

3

6

'

"

1~~ ~ ~~

...
"""

"'" '·"'
B lOUSEt.IO•

" '-""'

I'' II I I ~ m• u 113 1
1 ·,, ii I I b8fl CJEF. 11 1121. . .5-1515 1

=..
RP'3· 1K

~
~..6-Z

'

DTRl B6· I

~Jb-"t
DSRIB .. J b·'i

~JIZ·Z
DTRZe . Jll· I

~JIZ- 't
OSRZ6 :-- J IZ-'i

rRJ-- 111131

• ' I I 1 ~ ,,_,,.,

..,..
111121 PHI @'.0_J~.~

•= .. -.

Figure 11-44d
Apple lie schematic diagram, part 4

D

~f
~ !

l:t.

rv
'° °'

0

c

A

f\'QTE: U:""ll.SS OTHER.,.~E."iPEClflH>

GHO

12 1

,.,
MEMORY

EXPANSION

Figure 11-44e

GNO

JZ- 12,JB- lt

JZ-n, JB-b

JZ-1"1,JB-B

J2- l'i, JB- 10

JZ-17

JZ- 11,JB-2

JZ- Q

J Z- IQ,JB-18

GND

..e
EXTERNAL DISK

..6

~IAL 1

J U

>NrrRNM. 5f'<A><ER

,.1 ~ l o m
1 41~141

J7
EARPHONE

...S·Z, UCI:-1" (1)

...e-•. uCJ- 1q J1e-z

..e-6, UCl- 18 Cl> J t0 -Z

...e-0, UCl-17 Cl>

.JB- 111,UCI-lb

ucr- 1<:; INT~ DISK ~~ {FF--""><2>
13>...S- 16,

J3-18, UCH2 ~ 1r=-=12. ~ SEEJ<A<I. .JiHi,UCI-llt < GND ~~•12FJN> I C
13)..13-2d <IJRPFIOT~ _J - - - ~~

...e-12,uc1-1q

J2· 13, UCI - IB

...2-H, UCl - 17

~ ~·-·- --- ..e-1s,u<I-lb

~
131

i.c 131.R-18
C8EA0) - -

131 .R- 19, UCI-12

!31 / ·---- 4 I_::..::..:...:_:_.... l31 ~-H 131.2-HI

111131 --- ~

J4

VUl;O

131~~13

~
131~~13J

12 1
131

131 X6 Y3 l 3 1

1 31~~131 0

131 I<':
~ .

VIOCO 121131~~131 (.r;) 141 9
(4) 14)

131~Blll.SW" ~· 0 "' f. !l HZl Gm 2 1 22 Y2 131 ~

1111211« -~· .,
20 ~· ::: f ~~,~~1 ... compubzr1

131 . " · :::-.• • :"!'!.'~- _ _'.:'~'!,c:._~~~~-·· I A

lil1 3H +I

131 (J)

131 131

OS0-0180· • ,-')/.;

Apple lie schematic diagram. part 5

Appendix A

The 65C02 Microprocessor

1bis appendix describes the differences between the 6502 and the
65C02 microprocessors. It also contains the data sheet for the NCR
65C02 microprocessor.

In the data sheet tables, execution times are specified in numbers of
cycles. One cycle for the Apple Ile equals 0.978 microseconds.

If you want to write programs that execute on all computers in the
Apple II series, make sure your code uses only the subset of 65C02
instructions present on the 6502.

Differences between 6502 and 65C02
The data sheet in this chapter lists the new 65C02 instructions and
addressing modes. This section supplements that information by
listing the instructions whose execution times or results have
changed from their 6502 counterparts.

Differing cycle times

In general, differences in execution times are significant only in
time-dependent code, such as precise wait loops. Fortunately,
instructions with changed execution times are few.

Table A-1 lists the 65C02 instructions whose number of instruction
execution cycles is different from their number on the 6502.

297

Table A-1
Cycle time differences

Instruction/mode Opcode 6502 65C02
cycles cycles

ASL Absolute, X 1E 7 6
DEC Absolute, X DE 7 6
INC Absolute, X FE 7 6
]MP (Absolute) 6C 5 6
LSR Absolute, X 5E 7 6
ROL Absolute, X 3E 7 6
ROR Absolute, X 7E 7 6

Differing instruction results
The instructions that have different results from their 6502
equivalents are

o BIT (in immediate mode)

o]MP (indirect, when crossing a page boundary).

The BIT instruction when used in immediate mode (code $89)
leaves processor status register bits 7 (N) and 6 (V) unchanged on
the 65C02. On the 6502, all modes of the BIT instruction have the
same effect on the status register: the value of memory bit 7 is
placed in status bit 7, and memory bit 6 is placed in status bit 6.
However, all BIT instructions on both versions of the processor set
status bit 1 (Z) if the memory location being tested contains a 0.

If the]MP indirect instruction (code $6C) references an indirect
address location that spans a page boundary, the 65C02 fetches the
high-order byte of the effective address from the first byte of the
next page, while the 6502 fetches it from the first byte of the current
page. For example,]MP ($02FF) gets ADL from location $02FF on
both processors. On the 65C02, ADH comes from $0300 while on
the 6502, ADH comes from $0200.

Data sheet
The rest of this appendix is copyright 1982, NCR Corporation,
Dayton, Ohio, and is reprinted with their permission.

298 Appendix A: The 65C02 Microprocessor

• GENERAL DESCRIPTION

The NCR CMOS 6502 is an 8-bit microprocessor which is soft
ware compatible with the NMOS 6502. The NCR65C02 hardware
interfaces with all 6500 peripherals . The enhancements include
ten additional instructions, expanded operational codes and
two new addressing modes . Th is microprocessor has all of the ad·
vantages of CMOS technology: low power consumption, increased
noise immunity and higher reliability . The CMOS 6502 is a low
power high performance microprocessor with applications in the
consumer , business. automot ive and communications market.

• FEATURES

• Enhanced software performance including 27 additional OP codes
encompassing ten new instructions and two additional
addressing modes.

• 66 microprocessor instructions.

• 15 addressing modes.

• 178 operational codes.

• lMHz, 2MHz operation.

NCR65C02

• PIN CONFIGURATION

VSS ITTS

ROY 0 2 (QU T I

0 , coun so
IRO 0 0 UNI

Mi NC

NMI NC

SYNC R1W

VOO DO

AO DI

Al 02

A2 03

A3 04

A4 05

AS 06

A6 07

A7 AIS

AB A14

A9 A13

AIO Al2

All vss

• Operates at frequencies as low
as 200 Hz for even lower power • NCR65C02 BLOCK DIAGRAM
consumption (pseudo-static : stop during 02 high).

• Compatible with NMOS 6500 series
microprocessors .

• 64 K-byte addressable memory .

• Interrupt capabil ity .

• Lower power consumption .
4mA@ lMHz.

• +5 volt power supply .

• 8-bit bidirectional data bus.

• Bus Compatible with M6800.

• Non-maskable interrupt.

• 40 pin dual -in·line packaging.

• 8·bit parallel processing

• Decimal and binary arithmetic.

• Pipeline architecture .

• Programmable stack pointer.

• Variable length stack.

• Optional internal.£!:!!!ups for
(ROY, IRO, Sli, NMI and RES)

• Specifications are subject to
change without notice.

ADDRESS
BUS

'"

~-REGISTERSECTIQN

I • 181TLlfll E

Copyright ©1982 by NCR Corporation , Dayton, Ohio, USA

RES 1Ao NM1

SYNC

"'

01 !OUTI

02!0UTI
r------<O

~-------4--j R1W

Data sheet 299

NCR65C02
• ABSOLUTE MAXIMUM RATINGS: (Voo = 5.0 V ± 5%, Vss = 0 V, TA = Cf' to+ 7Cf'C)

RATING SYMBOL VALUE UNIT

SUPPLY VOLTAGE Voo - 0.3 to +7 .0 v
INPUT VOLTAGE V1N - 0.3 to +7.0 v
OPERATING TEMP. TA 0 to+ 70 oc
STORAGE TEMP. TsTG - 55 to+ 150 oc

• PIN FUNCTION
PIN FUNCTION

AO · A15 Address Bus
DO · D7 Data Bus
iRQ. Interrupt Request
RDY • Ready
"1L Memory Lock
NMI• Non·Maskable Interrupt
SYNC Synchronize

m· Reset

w· Set Overflow
NC No Connection

R/W Read/Write
VDD Power Supply (+5V)

VSS Internal Logic Ground

00 Clock Input
0,, 02 Clock Output

•This pin has an optional in ternal pullup for a No Connect cond it ion .

• DC CHARACTERISTICS
SYMBOL MIN. TYP. MAX UNIT

Input High Voltage

0o (IN) V1H Vss + 2.4 - Voo v
Input High Voltage

RES, NMI , RDY, TAO, Data, S.O. Vss + 2.0 - - v
Input Low Voltage

0o (IN) V1L Vss -0.J - Vss + 0.4 v
RES, NMI, RD Y, I RO, Data, S.O. - - v55 + o.8 v

Input Leakage Current

(V1N = 0 to 5.25V, Voo = 5.25V) l1 N
With pullups -30 - +JO µA

Without pullups - - +1 .0 µA

Three State (Off State) Input Current

(V1 N = 0.4 to 2.4V, V cc = 5.25V)
Data Lines ITS1 - - 10 µA

Output High Voltage

(loH = -100 µAde, V00 =4.75V

SYNC, Data, AO·A 15, R/W) VoH Vss + 2.4 - - v
Out Low Voltage

(loL = 1.6mAdc, Voo = 4.75V

SYNC, Data, AO·A 15, R/W) VoL - - Vss + 0.4 v
Supply Current f = 1 MHz loo - - 4 mA
Supply Current f = 2MHz loo - - 8 mA

Capacitance c pF
(V1N = 0, TA = 25°C, f = 1 MHz)

Logic YN - - 5
Data - - 10
AO·A15, R/W, SYNC Cout - - 10
0o (IN) C0o (IN) - - 10

300 Appendix A : The 65C02 Microprocessor

NCR65C02
• AC CHARACTERISTICS VDD = 5.0V :!: 5%, TA= O"C to 70"C, Load= 1 TTL+ 130 pF

lMHZ 2MHZ 3MHZ

Parameter Symbol Min Max Min Max Min Max Un it

Delay Time, 0o (IN) to 02 (OUT) toLY - 60 - 60 20 60 nS

Delay Time, 01 (OUT) to 02 (OUT) toLY1 -20 20 -20 20 -20 20 nS

Cycle Time ~ 1.0 5000-.- 0.50 5000• 0.33 5000• µ.s
Clock Pulse Width Low tpl 460 - 220 - 160 - nS

Clock Pulse Width High tpH 460 - 220 - 160 - nS

Fall Time, Ri se Time tF, tR - 25 - 25 - 25 nS

Address Hold Time tAH 20 - 20 - 0 - nS

Address Setup T ime t ADS - 225 - 140 - 110 nS

Access T ime t AG.C_ 650 - 310 - 170 - nS

Read Data Hold Time toHR 10 - 10 - 10 - nS

Read Data Setup Time tQS..u 100 - 60 - 60 - nS

Write Data Delay Time tMDS - 30 - 30 - 30 nS

Write Data Hold Time toHW 20 - 20 - 15 - nS

SO Setup Time tso 100 - 100 - 100 - nS

Processor Control Setup Time** tpcs 200 - 150 - 150 - nS

SYNC Setup T ime tsvNc - 225 - 140 - 100 nS

ML Setup T ime t ML - 225 - 140 - 100 nS

Input Clock Ri se/ Fall T ime tFGo,tR(Jo - 25 - 25 - 25 nS

•NC R65C02 can be held static w ith 0 2 high.

**This parameter must only be met to guarantee that the signal will be recognized at the current clock cycle.

• MICROPROCESSOR OPERATIONAL ENHANCEMENTS

Function NMOS 6502 Microprocessor NCR65C02 Microprocessor
Indexed addressing across page boundary. Extra read of invalid address. Extra read of last instruct ion byte.

Execution of invalid op codes. Some terminate only by reset . Results All are NOPs (reserved for future use).
are undefined. Op Code Bytes Cycles

X2 2 2
X3, X7, XB, XF 1 1
44 2 3
54, D4, F4 2 4
5C 3 8
DC,FC 3 4

Jump indirect, operand = XXFF. Page address does not increment. Page address increments and adds one
additional cycle.

Read/ modify /write instruct ions at One read and two write cycles. Two read and one write cycle.
effect ive address.
Dec imal flag. Indeterminate after reset. Initialized to binary mode (D=O) after

reset and interrupts.
Flags after decimal operation. Inval id N, V and Z flags. Val id flag adds one additional cycle.
Interrupt after fetch of BR K instruc· Interrupt vector is loaded , BRK vector BAK is executed, then interrupt is
ti on. isil!_nored. executed.

• MICROPROCESSOR HARDWARE ENHANCEMENTS
Function NMOS 6502 NCR65C02

Assertion of Ready A DY during Ignored. Stops processor during 02.
write operations.

Unused input-only pins (iRO, NMI , Must be connected to low impedance Connected internally by a high·
ADY, RES, SO) . signal to avoid no ise problems. resistance to Voo (approx imately 250

Kohm.)

Data sheet 301

NCR65C02
• TIMING DIAGRAM

0o

ADDR , R/W

READ DATA

WRITE DATA

SYNC

RO Y, IRQ

NMI , RES

so

Note : All timing is referenced from a high voltage of 2.0 volts and a low voltage of 0.8 volts.

• NEW INSTRUCTION MNEMONICS
HEX
80
3A
l A
DA
5A
FA
7A
9C
9E
64
74
lC
14
oc
04

MNEMONIC
BRA
DEA
INA
PH X
PHY
PLX
PLY
STZ
STZ
STZ
STZ
TRB
TRB
TSB
TSB

DESCRIPTION
Branch relative always [Relative)
Decrement accumulator [Accum)
Increment accumulator [Accum)
Push X on stack [Impl ied)
Push Yon stack [I mpl ied)
Pul l X from stack [Implied)
Pu l l Y from stack [Impl ied)
Store zero [Absolute)
Store zero [ABS, X)
Store zero [Zero page I
Store zero [ZPG ,X)
Test and reset memory b its w ith accumulator [Absolute]
Test and reset memory b its with accumulator [Zero page)
Test and set memory bits with accumulator [Absolute I
Test and set memory bits with accu mulator [Zero page)

• ADDITIONAL INSTRUCTION ADDRESSING MODES
HEX
72
32
3C
34
02
52
7C
B2
12
F2
92

MNEMONIC

ADC
AND
BIT
BI T
CMP
EOR
JMP
LOA
ORA
SBC
STA

DESCRIPTION
Add memory to accumulator w ith carry [(ZPG) I
" AND" memory with accumulator [(ZPG))
Test memory bits with accumulator [ABS, X]
Test memory bits w ith accumulator [ZPG, X]
Compare memory and accumulator [(ZPG)]
" Exclusive Or' ' memory with accumulator [(ZPG) I
Jump (New addressing mode) [ABS(IND,X))
Load accumulator with memory [(ZPG) I
" OR" memory w ith accumulator [(ZPG)]
Subtract memory from accumulator w ith borrow [(ZPG))
Store accumulator in memory [(ZPG))

302 Appendix A : The 65C02 Microprocessor

NCR65C02
• MICROPROCESSOR PROGRAMMING MODEL

A ACCUMULATOR A
0

y INDEX REGISTER Y
0

CA RR Y 1 • TRUE

x INDEX REGISTER X
15 7
[PCH I PCL q PROGR AM COUNTER PC

ZERO 1 • RESULT ZERO
'---- ilfO DISABLE 1 • DISABLE

'---- -DECIMAL MODE 1 • TRUE
~-----SAK COMMAND 1 • BAK

'-- ------OVERFLOW 1 • TRUE
~--------NEGATIVE 1 • NEG.

8 7 q ST ACK POINTER S 111

• FUNCTIONAL DESCRIPTION

Timing Control
The timing control unit keeps track of the instruct ion
cycle being monitored . The unit is set to zero each time
an instruction fetch is executed and is advanced at the
beginning of each phase one clock pulse for as many
cycles as is required to complete the instruct ion. Each
data transfer which takes place between the registers de
pends upon decoding the contents of both the instruc
tion register and the timing control unit .

Program Counter
The 16-bit program counter provides the addresses which
step the microprocessor through sequential instructions
in a program .

Each time the microprocessor fetches an instruction
from program memory, the lower byte of the program
counter (PCL) is placed on the low-order bits of the
address bus and the higher byte of the program counter
(PCH) is placed on the high-order 8 bits. The counter is
incremen ted each time an instruction or data is fetched
from program memory .

Instruction Register and Decode
Instructions fetched from memory are gated onto the
internal data bus . These instructions are latched into the
instruction register, then decoded , along with t iming and
interrupt signals, to generate control signals for the var
ious registers.

Arithmetic and Logic Unit (ALU)
All arithmetic and log ic operations take place in the
ALU including incrementing and decrement ing internal
registers (except the program counter) . The ALU has no
internal memory and is used only to perform logical and
transient numer ical operat ions.

Accumulator
The accumulator is a general purpose 8-bit register that
stores the results of most arithmetic and logic operations,
and in addition , the accumulator usually contains one of
the two data words used in these operations.

Index Registers
There are two 8-bit index registers (X and Y), which
may be used to count program steps or to provide an
index value to be used in generating an effective address.

When executing an instruction which specifies indexed
addressing, the CPU fetches the op code and the base
address, and modifies the address by adding the index
register to it prior to performing the desired operation.
Pre- or post-indexing of indirect addresses is possible (see
addressing modes).

Stack Pointer
The stack pointer is an 8-bit register used to control the
addressing of the variable-length stack on page one . The
stack pointer is automatically incremented and decre
mented under control of the microprocessor to perform
stack manipulations under direction of either the program
or interrupts (NMI and IRO) . The stack allows simple
implementation of nested subroutines and multiple level
interrupts. The stack pointer should be initialized before
any interrupts or stack operations occur.

Processor Status Register
The 8-bit processor status register contains seven status
flags. Some of the flags are controlled by the program,
others may be controlled both by the program and the
CPU. The 6500 instruction set contains a number of
conditional branch instructions which are designed to
allow testing of these flags (see microprocessor program
ming model).

Data sheet 303

NCR65C02
• ADDRESSING MODES
Fifteen address ing modes are available to the user of the
NCR65C02 microprocessor . The addressing modes are
described in the following paragraphs:

Implied Addressing [Implied)
In the implied addressing mode , the address containing
the operand is implicitly stated in the operat ion code of
the instruction .

Accumulator Addressing [Accum)
This form of addressing is represented with a one byte
instruction and implies an operation on the accumu
lator.

Immediate Addressing [Immediate)
With immediate addressing, the operand is contained in
the second by te of the instruction; no further memory
addressing is required .

Absolute Addressing [Absolute)
For absolute addressing , the second byte of the instruc
t ion specifies the eight low-order bits of the effect ive
address, while the thi rd byte speci fies th e eight high-order
bits . Therefore, this addressing mode allows access to the
total 64K bytes of addressable memory .

Zero Page Addressing [Zero Page)
Zero page addressing allows shorter code and execution
times by only fetch ing the second byte of the instruction
and assum ing a zero high address byte . The careful use
of zero page addressing can result in significant increase
in code efficiency .

Absolute Indexed Addressing [ABS, X or ABS, YI
Absolute indexed addressing is used in conj unction with
X or Y index reg is ter and is referred to as " Absolute, X,"
and " Absolute, Y." The effective address is formed by
adding the contents of X or Y to the address contained
in the second and th ird bytes of the instruct ion. This
mode allows the index register to contain the index or
count value and the instruction to contain th e base
address . This type of index ing allows any location refer·
enc ing and the index to modify multiple fields , resulting
in reduced coding and execution t ime .

Zero Page Indexed Addressing [ZPG, X or ZPG, YI
Zero page absolute addressing is used in conjunction
with the index register and is referred to as " Zero Page,
X" or " Zero Page , Y." The effective address is calculated
by adding the second byte to the contents of the index
register . Since this is a form of " Zero Page" addressing,
the content of the second byte references a location in
page zero. Add itionally , due to the "Zero Page" address·
ing nature of this mode , no carry is added to the high ·
order eight bits of memory. and cross ing of page boun·
daries does not occur .

Relative Addressing [Relative)
Relative addressing is used only with branch instructions ;

it establishes a dest ination fo r the conditional branch .
The second byte of the instruction becomes the operand
which is an "Offset" added to the contents of the pro·
gram counter when the counter is set at the next in·
struction . The range of the offset is - 128 to +127
bytes from the next instructio n.
Zero Page Indexed Indirect Addressing [(IND, X))
With zero page indexed indirect addressing (usually re ·
!erred to as indirect X) the second byte of the instruction
is added to th e contents of th e X index register ; the
carry is discarded . The result of th is addition points to a
memory location on page zero whose contents is the low·
order eight bits of the effective address. The next mem·
ory location in page zero contains the high-order eight
bits of the effective address . Both memory locations
specifying t he high · and low-order bytes of the effective
address must be in page zero .

•Absolute Indexed Indirect Addressing [ABS(IND, X))
(Jump Instruction Only)
With absolu te indexed indirect addressing the contents of
the second and th ird instruct ion bytes are added to the
X register. The result of this add it ion, points to a memory
locat ion containing the lower-order eight bits of the
effective address. The next memory location contains
the higher-order eight bits of the effective address .

Indirect Indexed Addressing [(IND), YI
Th is form of addressing is usually referred to as Indirect,
Y. The second byte of the instruction points to a mem
o ry location in page zero . The contents of th is memory
locat ion are added to the contents of the Y index regis·
ter . the result bei ng the low-order eight bits of the effec·
t ive address . The carry from th is addition is added to the
contents of the next page zero memory location , the
result being the high-order eight bits of the effective
address .

•zero Page Indirect Addressing [(ZPG))
In the zero page indirect addressing mode, the second
byte of the instruction points to a memory location on
page zero containing the low-order byte of the effective
address . The next location on page zero contains the
high-order byte of the effective address.

Absolute Indirect Addressing [(ABS) I
(Jump Instruction Only)
The second byte of the instruction contains th e low-order
eight bits of a memory location. The high -order eight
bits of that memory location is contained in the third
byte of the instruction . The contents of the fully speci ·
fied memory location is the low-order byte of the effec·
tive address . The next memory location contains the
high -order byte of the effective address wh ich is loaded
into the 16 bit program counter.

NOTE : • = New Address Modes

304 Appendix A : The 65C02 Microprocessor

• SIGNAL DESCRIPTION
Add;ess Bus (AO-A 151
AO -A 15 forms a 16-bit address bus for memory and 1/0
exchanges on the data bus. The output of each address
line is TTL compatible , capable of driving one standard
TIL load and 130pF.

Clocks (Go. G1. and G2I
0o is a TTL level input that is used to generate the inter
nal clocks in the 6502 . Two full level output clocks are
generated by the 6502 . The 02 clock output is in phase
with 0Q. The 01 output pin is 180" out of phase with 0Q.
(See timing diagram.I

Data Bus (00-071
The data lines (00-07) constitute an 8 -b it bidirectional
data bus used for data exchanges to and from the device
and peripherals . The outputs are three-state buffers
capable of driving one TTL load and 130 pF .

Interrupt Request (IROI
This TTL compatible input requests that an interrupt
sequence begin with in the m icroprocessor . The I RO is
sampled dur ing 02 operation ; .if the interrupt flag in the
processor status register is zero, the current instructi on
is completed and the inte rrupt sequence begins during
0 1 · The program counter and processor status register
are stored in the stack. The microprocessor w ill then set
the interrupt mask flag high so that no further I ROs
may occur. At th e end of this cycle, the program counter
low will be loaded from address FFFE , and program
counter h igh from location FFFF, transferring program
control to the memory vector located at these addresses .
The ROY signal must be in the high state for any inter
rupt to be recognized . A JK ohm external res istor shou ld
be used for proper wire OR operation .

Memory Lock (MU
In a multiprocessor system, the ML output indicates the
need to defer the rearbitration of the next bus cycle to
ensure the integrity of read-modify-write instructions .
ML goes low during ASL, DEC, INC, LSR , ROL, ROR ,
TR 8 , TSB memory referencing instructions . This signal
is low for the modify and write cycles .

Non-Maskable Interrupt (NMll
A negative -going edge on this input requests that a non
maskable interrupt sequ ence be generated within the
microprocessor . The NMI is sampled during 02 ; the cur
re nt instruction is completed and the interrupt sequence
beg ins dur ing 01. The program counter is loaded with
the interrupt vector from locations FFFA (low byte)
and FFFB (high byte), thereby transferring program con
trol to the non -maskable interrupt routine.

Note: Since this interrupt is non -maskable , another NMI
can occur before the first is finished . Care should be taken
when using NMI to avoid this .

NCR65C02

Ready (ROY)
This input allows the user to single-cycle the micropro
cessor on all cycles including write cycles. A negative
transition to the low state, during or coincident with
phase one (011. will halt the microprocessor with the out
put address li nes reflect ing the current address being
fetched . Th is condit ion wi ll remain through a subsequent
phase two (02) in which the ready signal is low. This fea
ture allows microprocessor interfacing w ith low-speed
memory as well as di rec t memory access (OMA).

Reset (RES)
This in pu t is used to reset the microprocesso r. Reset
must be held low for at least two clock cycles after
Vo D reaches operating voltage from a power down . A
positive transistion on this pin will then cause an initiali
zation sequence to begin. Likewise, after the system has
been operating, a low on this line of at least two cycles
will cease microprocessing activi!Y,_followed by in itia l
ization after the positive edge on RES.

When a positive edge is detected , there is an init ialization
sequence lasting six clock cycles. Then the interrupt
mask flag is set, the decimal mode is cleared, and the pro
gram counter is loaded with the restart vector from loca
tions FFFC (low byte) and FFFD (high byte) . Th is is
the start location for program control. This input should
be high in normal operation .

Read/Write (R/W)
This signal is normally in the high state indicating that
the microprocessor is reading data from memory o r 1/0
bus . In the low state the data bus has val id data from the
microprocessor to be stored at the addressed memory
location .

Set Overflow (SOI
A negative transition on this line sets the overflow bit in
the status code register. The signal is sampled on the trail
ing edge of 01 .

Synchronize (SYNC)
This output line is provided to identify those cycles dur
ing which the microprocessor is doing an OP CODE
fetch. The SYNC line goes high during 01 of an OP CODE
fetch and stays high for the remainder of that cycle . If
the ROY line is pulled low during the 01 clock pulse in
which SYNC went high, the processor will stop in its
current state and w ill remain in the state until the ROY
line goes high . In this manner, the SYNC signal can be
used to control R DY to cause single instruction execu
t ion .

Data sheet 305

NCR65C02
• INSTRUCTION SET - ALPHABETICAL SEQUENCE

ADC
AND
ASL
BCC
BCS
BEO
BIT
BMI
BNE
BPL

•BRA
BAK
eve
BVS
CLC
CLO
CLI
CLV
CMP
CPX
CPY

•DEA
DEC
DEX
DEY
EDA

•1NA
INC
INX
INY
JMP
JSR
LOA

Add Me-mory to Accumulator with Carry
" AND" Memory w i th Accumulator
Shift One Bit Left
Branch on Carry Clear
Branch on Carry Set
Branch on Result Zero
Test Memory Bits wi th Accumulator
Branch on Result M inus
Branch on Result not Zero
Branch on Result Plus
Branch Always
Force Break
Branch on Overflow Clear
Branch on Overflow Set
Clear Carry Flag
Clear Decimal Mode
Clear Interrupt Disable Bit
Clear Overflow Flag
Compare Memory and Accumulator
Compare Memory and Index X
Compare Memory and Index Y
Decrement Accumulator
Decrement by One
Decrement Index X by One
Decrement Index Y by One
"Exclusive-or" Memory wi th Accumulator
Increment Accumulator
Increment by One
Increment Index X by One
Increment Index Y by One
Jump to New Location
Jump to New Location Saving Return Address
Load Accumulator with Memory

Note: • = New Instruction

• MICROPROCESSOR OP CODE TABLE

s
D 0 1 2

0 BAK ORA
ind, X

1 BPL ORA ORA•t
<el ind, Y lzpgl

2 JSR ANO
abs ind, X

3 BMI AND ANo · t
rel ind, Y lzpgl

4 RTI EDA
ind, x

5 eve EDA EOR•t
rel ind, y lzpgl

6 ATS A OC
ind, X

7 BVS ADC Aoc·t
<el ind, Y (zpgl

8 BRA• STA
rel ind, X

9 BCC STA STA•t
<e l ind, Y lzpgl

A LOY LOA LOX
omm ind, X •mm

B BCS LOA LOA•t

<el ind, Y l zpgl

c CPY CMP
imm ind , x

D BNE CMP CMP•t
<el ind, y lzpgl

E CPX SBC
imm ind, X

F BEO SBC sec·t
<el ind, Y (zpgl

0 1 2

Note: • = New OP Codes
Note : t = New Address Modes

3

3

4 5 6 7 8

Tse· ORA ASL PHP
zpg zpg zpg

TAB• ORA ASL CLC
zpg zpg, X zpg, X

BIT ANO AOL PLP
zpg zpg zpg

BIT' ANO AOL SEC
zpg, X zpg, X zpg, X

EOR LSR PHA
zpg zpg

EOR LSR CLI
zpg, X zpg, X

STz• ADC RDA PLA
zpg zpg zpg

sTz· ADC RDA SE I
zpg, X zpg, X zpg, X

STY STA STX DEY
zpg zpg zpg

STY STA STX TVA
zpg, X ZPQ, X zpg, y

LOY LDA LOX TA Y
zpg zpg zpg

LOY LOA LOX CLV
zpg, X zpg, X zpg, y

CPY CMP DEC INY
zpg zpg zpg

CMP DEC CLO
zpg, X zpg, X

CPX SBC INC INX
zpg zpg zpg

SBC INC SEO
zpg, X zpg, X

4 5 6 7 B

LOX
LOY
LSR
NOP
ORA
PHA
PHP

• PHX
•PHY

PLA
PLP

• PLX
•PLY

AOL
RO A
RTI
ATS
SBC
SEC
SE O
SEI
ST A
STX
STY

· sTz
TAX
TAY

• TA B
· Ts e

TSX
T XA
TXS
TVA

9

ORA
imm

ORA
abs, Y

ANO
omm

AND
abs, Y

EOR
•mm

EOR
abs, Y

ADC
•mm

ADC
abs, Y

BIT•
omm

STA
abs, Y

LDA
omm

LOA
abs, Y

CMP
imm

CMP
abs, Y

SBC
imm

SBC
abs, Y

9

306 Appendix A : The 65C02 Microprocessor

Load Index X wi th Memory
Load Index Y w ith Memory
Sh ift One Bi t Right
No Operation
"OR" Memory with Accumulator
Push Accumulator on Stack
Push Processor Status on Stack
Push I ndex X on Stack
Push Index Y on Stack
Pull Accumulator from Stack
Pull Processor Status from Stack
Pull Index X from Stack
Pull Index Y from Stack
Rotate One B it Left
Rotate One B it R ight
Return from Interrupt
Return from Subroutine
Subtract Memory from Accumulator w ith Borrow
Set Carry Flag
Set Decimal Mode
Set Interrupt Disable Bit
Store Accumulator in Memory
Store Index X in Memory
Store Index Yin Memory
Store Zero in Memory
Transfer Accumulator to Index X
Transfer Accumulator to Index Y
Test and Reset Memory Bits with Accumulator
Test and Set Memory B its with Accumulator
Transfer Stack Pointer to Index X
Transfer Index X to Accumulator
Transfer Index X to Stack Pointer
Transfer Index Y to Accumulator

A B c 0 E

ASL Tse· ORA ASL
A abs abs abs

INA• TAB• ORA ASL
A abs abs, X abs, X

AOL BIT AND AOL
A abs abs abs

DEA ' BIT't AND AOL
A abs, X abs, X abs, X

LSR JMP EOR LSR
A abs abs abs

PHY• EOR LSR
abs, X abs, X

ROA JMP ADC ROA
A labsl abs abs

PLY• JMP·t AOC ROA
abs (md,Xl abs, X abs, X

TXA STY STA STX
abs abs abs

TXS sTz· STA STZ •
abs abs, X abs, X

TAX LOY LDA LOX
abs abs abs

TSX LOY LOA LOX
abs, X abs, X abs, Y

DEX CPY CMP DEC
abs abs abs

PHX • CMP DEC
abs, X abs, X

NOP CPX SBC INC
abs abs abs

PLx• SBC INC
abs , X abs, X

A B c 0 E

F

F

0

1

2

3

4

5

6

7

8

9

A

B

c

0

E

F

NCR65C02
• OPERATIONAL CODES, EXECUTION TIME, AND MEMORY

REQUIREMENTS

IMME· ABSO- ZERO IM· llNO, flNO) , RELA- ABS PROCESSOR

OIATE LUTE PAGE ACC~ PLIED XI Y ZPG, X ZPG, Y ABS,)(ABS, Y TlVE tABSJ ONO, X IZPGI STATUS CODES

MNE OPERATION
76543210

OP n~ OP n I OP n I OP n I OP n fl OP n I OP n I OP n I OP n I OP n I OP n I OP nj l OP n I OP n I OP n I N V B 0 I_! C MNE

ADC A+M+C•A
ANO A/\ M•A

11,l)
Ill
Ill
121
121

69 2 2 60 4 3 65 3 2 61 6 2 71 5 2 75 4 2 70 4 3 79 4 3 72 5 2 N V . Z C AOC

:~~ ~,::;,, ,, c!;•
29 2 2 20 4 3 25 3 2 21 6 2 31 5 2 35 4 2 30 -4 3 J9 4 3 32 S 2 N Z ANO

OE6306520A21 16 62 1E63 N ZCASL

BCS Br•nch 11 C• 1

121 SEQ Br•nch 1f Z• 1
BIT A I\ M
BMI B r•nch 11 N • l
BNE Brench 1f Z• O
BPL Br1nch if N• O

14.51 89 2 2 2C 4 3 24 3 2
121

BRA Br•nch A lw1v1
BAK Bre.k
eve Drench 11 V • O
BVS Br1nch of V • 1
CLC 0 •C

CLO 0 • 0
CLI O• I
CLV 0 • V
CMP A M
CPX X . M

CPY Y . M
DEA A · I •A
DEC M · 1 •M
DEX X · 1 • X
DE Y Y 1 • Y

EOA AVM •A
INA A• 1 • A
INC M• l•M
I"" x. 1. x
INY y. 1. y

J MP Jump 10 new loc

JSR Jump Sub1out1ne

121
121

121

121
121

Ill

Il l

Ill

LOA M•A (1)
LOX M • x (11
LOY M •V (11

NOP PC• 1 •PC
ORA AVM•A
PHA A • Ms s 1 • s
PHPP •M5 S · 1•S

PHXX•M1 S1 •S
PHYY•M1 Sl•S
PLA S + 1 • S M1 •A
PLP s + , • s Ms .. p

PLX S • 1 • S M1 • X

~6: ~·s~~.;
ROA '-ro-[r'
ATI Return from ln1er.
ATS A•1urn f rom Subr.

I ll

SBC A M · C" •A ti . J I E922E0 4 J E5 32
SEC 1 • C
SEO 1 • D
SEI
ST A A • M BO 4 3 BS 3 2

STX X • M
STV V • M
STZ OO • M
TAX A• X
TAY A• V

TAB Af\M•M
TSB AV M •M
TSX S • X
TXA X •A

TXS X • S

141
141

BE 4 J B6 J 2
8C 4 J84J2
9C4J64J2

lC 6 J 14 5 2
OC6J0452

Add 1 to " n" if page boundary is crossed .

00 7 I

38 2 1
FB 2 1
78 2 1

fA 2 1
AB 2 1

BA 2 1
BA 2 1
9A 2 I

98 2 1

Notes:
1.
2. Add 1 to " n" if branch occurs to same page.

Add 2 to " n" if branch occurs to d ifferent page.
3 . Add 1 to "n" if d ecimal mode.
4 . V b it equals memory bit 6 pr ior to execution.

N bit equals memory b i t 7 prior to execution.

34 4 2 JC 4 J

Cl 6 2 01 s 2 0 5 • 2 DD 4 3 09 • 3

06 6 2 OE 6 J

4 1 6 '51 5 2 55 • 2 50 . 3 59 • 3

F6 6 2 FE 6 3

Al 6 2 Bl 5 2 BS 4 2 BO 4 J B9 4 J
B6 4 2 BE 4 J

B4 42 BC4J

56 6 2

01 6 2 11 5 2 15 4 2

36 6 2
76 6 2

El 62 Fl 52 FS 4 2

Bl 6 2 91 6 2 95 4 2

94 4 2
96 4 2

SE 6 3

10 4 J 19 4 J

JE 6 J
7E 6 J

F0 4 JF9 4 J

90 5399 5J

74 4 2 9E 5 J

X Index X
Y I ndex Y
A Accumulator
M Memory per effect ive address

Ms Memory per stack pointer

•s. The immediate addressing mode of the BIT instruction leaves bits 6 & 7
(V & NI i n the Processor Status Code Register unchanged.

9022 . ace
eo22 . ecs
FQ 2 2

JO 2 2
DO 2 2
10 2 2

80 2 2

so 2 2
70 2 2

i C 6 3 7C 6 3

+ Add
- Subtract
I\ And
V Or
¥ Exclusive o r

. 0
D2 5 2 N

N

N
N
N
N
N .

52 5 2 N .
N

B2 5 2 N

12 5 2 N

. BEO

. BIT

. BMI
BNE

. BPL

BAA
. BAK
. eve
o evs
0 CLC

0 . CLO
0 . cu

. CLV
Z C CMP
Z C CPX

. Z C CPY

. Z DEA

. Z DEC

. Z . DEX
Z . DE Y

Z . EOA
. Z INA
. Z . INC

Z INX
INY

. JMP
JSA
LOA
LOX
LOY

Z C LSA
NOP

Z . ORA
PHA
PHP

. PHX

. PHV
Z . PLA

NV 1 0 I Z C PLP
N Z PLX

NV

F2 5 2 N V

92 5 2

N

Z PLY

. ~ ~ :g~
, 0 1 z c =~~

z ~ ~~~
SEO
SEI
STA

STX
. STY
. STZ

Z . TAX
Z . TAY

Z . TAB
TSB
TSX
TXA
TXS

Z TVA

n No. Cycles
No. Bytes
M5 Memory b i t 6
M1 Memory b i t 7

Data sheet 307

308

Memory Map

This appendix lists all important RAM and hardware locations in
address order and briefly describes them. Appendix C contains a
similar list for important firmware addresses.

The tables in this appendix list addresses in either two or three
forms: the hexadecimal form (preceded by a dollar sign) for use in
assembly language; the decimal form for use in Applesoft BASIC;
and (for numbers greater than 32,767) the complementary decimal
value for use in Apple Integer BASIC.

Page $00
Table B-1 lists the zero page addresses in hexadecimal and decimal
form, followed by symbols denoting the firmware or system
software that uses them.

o M denotes the monitor.

o A denotes A,pplesoft BASIC.

o I denotes Integer BASIC.

o D denotes DOS 3.3.

o P denotes ProDOS. Locations whose contents ProDOS saves and
restores afterward have a P in parentheses, indicating that
ProDOS has no net effect on them.

Table B-1
Page $00 use

Hex Dec Used by Hex Dec Used by

$00 0 A $30 48 M
$01 1 A $31 49 M
$02 2 A $32 50 M
$03 3 A $33 51 M
$04 4 A $34 52 M
$05 5 A $35 53 M D
$06 6 $36 54 M D
$07 7 $37 55 M D
$08 8 $38 56 M D
$09 9 $39 57 M D
$0A 10 A $3A 58 M p

$OB 11 A $3B 59 M p

$0C 12 A $3C 60 M p

$OD 13 A $3D 61 M p

$OE 14 A $3E 62 M DP
$OF 15 A $3F 63 M DP
$10 16 A $40 64 M D (P)
$11 17 A $41 65 M D (P)
$12 18 A $42 66 M D (P)
$13 19 A $43 67 M D (P)
$14 20 A $44 68 M D (P)
$15 21 A $45 69 M D (P)
$16 22 A $46 70 M D (P)
$17 23 A $47 71 M D (P)
$18 24 A $48 72 M D (P)
$19 25 $49 73 M (P)
$1A 26 $4A 74 I D (P)
$1B 27 $4B 75 D (P)
$IC 28 $4C 76 D (P)
$1D 29 $4D 77 I D (P)
$1F 31 $4F 79 M
$25 37 M $55 85 MA I
$26 38 M D $56 86 A I
$27 39 M D $57 87 A I
$28 40 M D $58 88 A I
$29 41 M D $59 89 A I
$2A 42 M D $5A 90 A I
$2B 43 M D $5B 91 A I
$2C 44 M D $5C 92 A I
$2D 45 M D $5D 93 A I
$2E 46 M D $5E 94 A I
$2F 47 M D $5F 95 A I

Page $00 309

Table B-1 (continued)
Page $00 use

Hex Dec Used by Hex Dec Used by

$60 96 A I $90 144 A I
$61 97 A I $91 145 A I
$62 98 A I $92 146 A I
$63 99 A I $93 147 A I
$64 100 A I $94 148 A i
$65 101 A I $95 149 A I
$66 102 A I $96 150 A I
$67 103 AID $97 151 A I
$68 104 AID $98 152 A I
$69 105 AID $99 153 A I
$6A 106 AID $9A 154 A I
$6B 107 A I $9B 155 A I
$6C 108 A I $9C 156 A I
$6D 109 A I $9D 157 A I
$6E 110 A I $9E 158 A I
$6F 111 AID $9F 159 A I
$70 112 AID $AO 160 A I
$71 113 A I $Al 161 A I
$72 114 A I $A2 162 A I
$73 115 A I $A3 163 A I
$74 116 A I $A4 164 A I
$75 117 A I $A5 165 A I
$76 118 A I $A6 166 A i
$77 119 A I $A7 167 A I
$78 120 A I $A8 168 A I
$79 121 A I $A9 169 A I
$7A 122 A I $AA 170 A I
$7B 123 A I $AB 171 A I
$7C 124 A I $AC 172 A I
$7D 125 A I $AD 173 A I
$7E 126 A I $AE 174 A I
$7F 127 A I $AF 175 AID
$80 128 A I $BO 176 AID
$81 129 A I $Bl 177 A I
$82 130 A I $B2 178 A I
$83 131 A I $B3 179 A I
$84 132 A I $B4 180 A I
$85 133 A I $B5 181 A I
$86 134 A I $B6 182 A I
$87 135 A I $B7 183 A I
$88 136 A I $B8 184 A I
$89 137 A I $B9 185 A I

310 Appendix B: Memory Map

Table B-1 (continued)
Page $00 use

Hex Dec Used by Hex Dec Used by

$8A 138 A I $BA 186 A I
$8B 139 A I $BB 187 A I
$8C 140 A I $BC 188 A I
$8D 141 A I $BD 189 A I
$8E 142 A I $BE 190 A I
$8F 143 A I $BF 191 A I
$CO 192 A I $EO 224 A
$Cl 193 A I $El 225 A
$C2 194 A I $E2 226 A
$C3 195 A I $E3 227
$C4 196 A I $E4 228 A
$C5 197 A I $E5 229 A
$C6 198 A I $E6 230 A
$C7 199 A I $E7 231 A
$C8 200 A I $E8 232 A
$C9 201 A I $E9 233 A
$CA 202 AID $EA 234 A
$CB 203 AtD $EB 235
$CC 204 AID $EC 236
$CD 205 AID $ED 237
$CE 206 I $EE 238
$CF 207 I $EF 239
$DO 208 A I $FO 240 A
$Dl 209 A I $Fl 241 A
$D2 210 A I $F2 242 A
$D3 211 A I $F3 243 A
$D4 212 A I $F4 244 A
$D5 213 A I $F5 245 A
$D6 214 $F6 246 A
$D7 215 I $F7 247 A
$D8 216 AID $F8 248 A
$D9 217 A I $F9 249
$DA 218 A I $FA 250
$DB 219 A I $FB 251
$DC 220 A I $FC 252
$DD 221 A I $FD 253
$DE 222 A I $FE 254
$DF 223 A I $FF 255

Page $00 311

Page $03
Most of page $03 is available for small machine-language
programs. The built-in Monitor uses the top 16 addresses of
page $03, as shown in Figure B-2; the XFer routine uses locations
$03ED and $03EE. If you are using DOS or ProDOS, it also uses the
32 locations $0300 through $03EF.

Table B-2
Page $03 use

Hex Dec Use

$03FO 1008 Address of BRK request handler (normally $59,
$03Fl 1009 $FA)

$03F2 1010 Reset vector
$03F3 1011
$03F4 1012 Power-up byte (see text)

$03F5 1013 Jump instruction to Applesoft &-command
$03F6 1014 handler (initially $4C, $58, $FF)
$03F7 1015

$03F8 1016 Jump instruction to user Control-Y command
$03F9 1017 handler
$03FA 1018

$03FB 1019 Jump instruction to NMI interrupt handler
$03FC 1020 (not used by Apple Ile)
$03FD 1021

$03FE 1022 Address of user IRQ interrupt handler
$03FF 1023

Screen holes
One result of the way the Apple Ile hardware maps display memory
on the screen is that groups of 8 memory addresses are left over in
16 areas of the text and low-resolution display pages-8 areas in
main RAM and 8 in auxiliary RAM. The firmware uses for these
128 bytes are shown in Tables B-3 and B-4.

312 Appendix B: Memory Map

Memory expansion The version of the Apple lie that supports the memory
expansion card uses some of the screen holes differently than
earlier versions. Where they differ, the memory expansion ROM
assignments are given in parentheses in Tables B-3 and B-4
following the original and UniDisk 3.5 assignments.

Table B-3
Main memory screen hole allocations

Hex Dec Description

$0478 1144 Mouse port: low byte of clamping minimum
$0479 1145 Reserved for serial port 1
$047A 1146 Reserved for serial port 2
$047B 1147 Reserved
$047C 1148 Low byte of X coordinate (Reserved)
$047D 1149 Reserved for mouse port
$047E 1150 Reserved
$047F 1151 Reserved (Low byte of X coordinate)

$04F8 1272 Mouse port: low byte of clamping maximum
$04F9 1273 Reserved for serial port 1
$04FA 1274 Reserved for serial port 2
$04FB 1275 Reserved
$04FC 1276 Low byte of Y coordinate (Reserved)
$04FD 1277 Reserved for mouse port
$04FE 1278 Reserved
$04FF 1279 Reserved (Low byte of Y coordinate)

$0578 1400 Mouse port: high byte of clamping minimum
$0579 1401 Port 1 printer width (1-255; 0 = unlimited)
$057A 1402 Port 2 line length (1-255; 0 = unlimited)
$057B 1403 Cursor horizontal position (80-column display)
$057C 1404 High byte of X coordinate (Reserved)
$057D 1405 Reserved for mouse port
$057E 1406 Reserved
$057F 1407 Reserved (High byte of X coordinate)

$05F8 1528 Mouse port: high byte of clamping maximum
$05F9 1529 Port 1 temporary storage location
$05FA 1530 Port 2 temporary storage location
$Q5FB 1531 Reserved
$05FC 1532 High byte of Y coordinate (Reserved)
$05FD 1533 Reserved for mouse port
$05FE 1534 Reserved
$05FF 1535 Reserved (High byte of Y coordinate)

Screen holes 313

Table B-3 (continued)
Main memory screen hole allocations

Hex Dec Description

$0678 1656 Reserved
$0679 1657 Indicates when port 1 firmware is parsing a

command
$067A 1658 Indicates when port 2 firmware is parsing a

command
$067B 1659 Reserved
$067C 1660 Mouse port: reserved (Reserved)
$0670 1661 Reserved for mouse port
$067E 1662 Reserved
$067F 1663 Reserved (Mouse port: reserved)

$06F8 1784 Reserved
$06F9 1785 Current port 1 command character
$06FA 1786 Current port 2 command character
$06FB 1787 Reserved
$06FC 1788 Mouse port: reserved (Reserved)
$06FO 1789 Reserved for mouse port
$06FF. 1790 Reserved
$06FF 1791 Reserved (Mouse port: reserved)

$0778 1912 OEVNO: $n0 = current active port number x 16
$0779 1913 Port 1 flags for echo and auto line feed
$077A 1914 Port 2 flags for each and auto line feed
$077B 1915 Reserved
$077C 1916 Mouse port status byte (Reserved)
$0770 1917 Reserved for mouse port
$077E 1918 Reserved
$077F 1919 Reserved (Mouse port status byte)

$07F8 2040 MSLOT: owner of $C800-$CFFF ($C3, video)
$07F9 2041 Port 1 current printer column
$07FA 2042 Port 2 current line position
$07FB 2043 Reserved
$07FC 2044 Mouse port mode byte (Reserved)
$07FO 2045 Reserved for mouse port
$07FE 2046 Reserved
$07FF 2047 Reserved (Mouse port mode byte)

314 Appendix B: Memory Map

Table B-4
Auxiliary memory screen hole allocations

Hex Dec Description

$0478 1144 Initial port 1 ACIA control register values ($9E)
$0479 1145 Initial port 1 ACIA command register values ($OB)
$047A 1146 Initial port 1 characteristics flags ($40)
$047B 1147 Initial port 1 printer width ($50)
$047C 1148 Initial port 2 ACIA control register values ($16)
$047D 1149 Initial port 2 ACIA command register values ($OB)
$047E 1150 Initial port 2 characteristics flags ($01)
$047F 1151 Initial port 2 line length ($00)

$04F8 1272
through Reserved
$04FF 1279

$0578 1400
through Reserved
$057F 1407

$05F8 1528
through Reserved
$05FF 1535

$0678 1656
through Reserved
$067F 1663

$06F8 1784
through Reserved
$06FF 1791

$0778 1912
through Reserved
$077F 1919

$07F8 2040
through Reserved
$07FF 2047

Screen holes 315

Table B-5
Addresses $COOO-$C03F

RW Hex Dec

R $COOx
w $COOO 49152
w $C001 49153
w $C002 49154
w $C004 49156
w $C005 49157
w $C006 49158
w $C007 49159
w $C008 49160
w $C009 49161
w $COOA 49162
w $COOB 49163
w $COOC 49164

The hardware page
Tables B-5 through B-9 list all the hardware locations available for
use in the Apple Ile. These tables have a column at the left that is not
present in other tables. This column, labeled RW, indicates the
action to take at a particular location.

o R means read.

o RR means read twice in succession.

o R7 means read the byte and then check bit 7; in the use column,
"See if ... " refers to the condition represented by bit 7 = 1, unless
otherwise specified. Bit 7 has a value of $80, so if the contents of
the location are greater than or equal to $80, the bit is on.

Another way to test bit 7 (the sign bit) is with a BIT instruction,
followed by BPL (bit 7 was O) or BMI (bit 7 was 1).

o RIW means to either read or write. For writing, the value is
unimportant.

o W means to write only. The value is unimportant.

o N means not to read or write, because the location is reserved.

An address of the form $C00x refers to the 16 locations from $COOO
through $COOF. Labels, when they are shown, are simply memory
aids. Some of them correspond to the labels at those addresses in
the firmware, others do not. Your program will have to assign a
label for it anyway.

Neg dee Label Use

KStrb Read keyboard data (bits 0-6) and strobe (bit 7)
-16384 80Store Off: Page2 switches Page 1 and 2
-16383 80Store On: Page2 switches Page 1 and lX
-16382 RAMRd Off: Read main 48K RAM
-16380 RAMWrt Off: Write in main 48K RAM
-16379 RAMWrt On: Write in auxiliary 48K RAM
-16378 Reserved
-16377 Reserved
-16376 AltZP Off: Use main PO, Pl, bank-switched RAM
-16375 AltZP On: Use auxiliary PO, Pl, bank-switched RAM
-16374 Reserved
-16373 Reserved
-16372 80Col Off: 40-column display

316 Appendix B: Memory Map

Table B-5 (continued)
Addresses $COOO-$C03F

RW Hex Dec Neg dee Label Use

w $COOD 49165 -16371 80Col On: 80-column display
w $COOE 49166 -16270 AltChar Off: Display primary character set
w $COOF 49167 -16369 AltChar On: Display alternate character set

w $C01x Clear keyboard strobe ($C00x bit 7)
R7 $C010 49168 -16368 AKD See if any key now down; clear strobe
R7 $C011 49169 -16367 RdBnk2 See if using $DOOO bank 2 (or 1)
R7 $C012 49170 -16366 Rd LC RAM See if reading RAM (or ROM).
R7 $C013 49171 -16365 RdRAMRd See if reading auxiliary 48K RAM (or main)
R7 $C014 49172 -16364 RdRAMWrt See if writing auxiliary 48K RAM (or main)
R $C015 49173 -16363 RstXInt Reset mouse XO interrupt
R7 $C016 49174 -16362 RdAltZP See if auxiliary PO, Pl and bank-switched RAM
R $C017 49175 -16361 RstYint Reset mouse Y interrupt
R7 $C018 49176 -16360 Rd80Store See if 80Store on (or off)
R7 $C019 49177 -16359 RstVBl See if VB!Int off (1); reset it
R7 $C01A 49178 -16358 RdTEXT See if text (or graphics)
R7 $C01B 49179 -16357 RdMIXED See if mixed mode switch on
R7 $C01C 49180 -16356 RdPage2 See if Page 2/lX selected (or 1)
R7 $C01D 49181 -16355 RdHiRes See if high-resolution switch on
R7 $C01E 49182 -16354 RdAltChar See if alternate character set (or primary)
R7 $COIF 49183 -16353 Rd80Col See if 80-column hardware on

N $C020 49184 -16352
through Reserved (read and write)

N $C02F 49199 -16337

w $C030 49200 -16336 Reserved
R $C030 49200 -16336 Toggle speaker

N $C031 49201 -16335
through Reserved (read and write)

N $C03F 49215 -16321

The hardware page 317

Table B-6
Addresses $C040-$C05F

RW Hex Dec Neg dee Label Use

R7 $C040 49216 -16320 RdXYMsk See if XO/YO mask set
R7 $C041 49217 -16319 RdVBlMsk See if VBL mask set
R7 $C042 49218 -16318 RdXOEdge See if interrupt on falling XO edge
R7 $C043 49219 -16317 Rd YO Edge See if interrupt on falling YO edge
N $C044 49220 -16316 Reserved
N $C045 49221 -16315) Reserved
N $C046 49222 -16314 Reserved
N $C047 49223 -16313 Reserved
R $C048 49224 -16312 RstXY Reset XO/YO interrupt flags
N $C049 49225 -16311 Reserved
N $C04A 49226 -16310 Reserved
N $C04B 49227 -16309 Reserved
N $C04C 49228 -16308 Reserved
N $C04D 49229 -16307 Reserved
N $C04E 49230 -16306 Reserved
N $C04F 49231 -16305 Reserved
R/ W $C050 49232 -16304 TEXT Off: Graphics display
R/W $C051 49233 -16303 TEXT On: Text display
R/W $C052 49234 -16302 MIXED Off: Text or graphics only
R/ W $C053 49235 -16301 MIXED On: Combination text and graphics
R/ W $C054 49236 -16300 Page2 Off: Use Page 1
R/W $C055 49237 -16299 Page2 On: Display Page 2 (80Store off); store to Page

IX (80Store on)
R/ W $C056 49238 -16298 HiRes Off: Low resolution
R/ W $C057 49239 -16297 Hi Res On: High resolution; double if 80Col and

DHiRes on
N $C058 49240 -16296 Reserved if IOUDis on ($C07E bit 7=1)
R/ W DisX Disable (mask) mouse XO/YO interrupts
N $C059 49241 -16295 Reserved if IOUDis on
R/ W EnbXY Enable (allow) mouse XO/YO interrupts
N $C05A 49242 -16294 Reserved if IOUDis on
R/W Dis VB! Disable (mask) VBL interrupts
N $C05B 49243 -16293 Reserved if IOUDis on
R/ W EnVBl Enable (allow) VBL interrupts
N $C05C 49244 -16292 Reserved if IOUDis on
R/ W XO Edge Interrupt on rising edge of XO
N $C05D 49245 -1629 Reserved if IOUDis on
R/ W XO Edge Interrupt on falling edge of XO
R/ W $C05E 49246 -16290 DHiRes If IOUDis on: Set double high-resolution
R/ W YO Edge If IOUDis off: Interrupt on rising YO
R/W $C05F 49247 -16289 DHiRes If IOUDis on: Clear double high-resolution
R/ W YO Edge If IOUDis off: Interrupt on falling YO

318 Appendix B: Memory Map

Table 8-7
Addresses $C060-$C07F

RW Hex Dec Neg dee Label Use

w $C06x Reserved (write)
R7 $C060 4924 -16288 Rd80Sw See if 80/40 switch down(= 40)
R7 $C061 49249 -16287 RdBtnO See if mouse button/Open-Apple pressed
R7 $C062 49250 -16286 RdBtnl See if switch I/Solid Apple pressed
R7 $C063 49251 -16285 Rd63 See if mouse button not pressed
R7 $C064 49252 -16284 Pd!O See if hand control button 0 pressed
R7 $C065 49253 -16283 Pdll See if hand control button 1 pressed
R7 $C066 49254 -16282 MouXl See if mouse Xl (direction) is high
R7 $C067 49255 -16281 Mou YI See if mouse Yl (direction) is high
N $co68 49256 -16280

through Reserved (write and read)
N $C06F 49263 -16273

R/ W $C07x Trigger paddle timer; reset VBllnt;
however, some $C07x are reserved

R/ W $C070 49264 -16272 PT rig Designated trigger or reset location
N $C071 49265 -16271

through Reserved
N $C07D 49277 -16259

R7 $C07E 49278 -16258 RdIOUDis See if IOUDis on; trigger paddle timer;
reset VBllnt

w IOUDis On: Enable access to DHiRes switch;
disable $C058-$C05F IOU access

R7 $C07F 49279 -16257 RdDHiRes See if DHiRes on
w IOUDis Off: Disable access to DHiRes switch;

enable $C058-$C05F IOU access

The hardware page 319

Table B-8
Addresses $C080-$COAF

RW Hex Dec Neg dee Label Use

R $C080 49280 -16256 Read RAM; no write; use $DOOO bank 2
RR $C081 49281 -16255 Read ROM; write RAM; use $DOOO bank 2
R $C082 49282 -16254 Read ROM; no write; use $DOOO bank 2
RR $C083 49283 -16253 Read and write RAM; use $DOOO bank 2
N $C084 49284 -16252 Reserved
N $C085 49285 -16251 Reserved
N $C086 49286 -16250 Reserved
N $C087 49287 -16249 Reserved
R $C088 49288 -16248 Read RAM; no write; use $DOOO bank 1
RR $C089 49289 -16247 Read ROM; write RAM; use $DOOO bank 1
R $C08A 49290 -16246 Read ROM; no write; use $DOOO bank 1
RR $C08B 49291 -16245 Read and write RAM; use $DOOO bank 1
N $C08C 49292 -16244 Reserved
N $C08D 49293 -16243 Reserved
N $COSE 49294 -16242 Reserved
N $C08F 49295 -16241 Reserved

N $C090 49296 -16240
through Reserved

N $C097 49303 -16233

R/ W $C098 49304 -16232 Port 1 ACIA transmit/receive register
R/ W $C099 49305 -16231 Port 1 ACIA status register
R/W $C09A 49306 -16230 Port 1 ACIA command register
R/ W $C09B 49307 -16229 Port 1 ACIA control register

N $C09C 49308 -16228
through Reserved

N $C09F 49311 -16225

N $COAO 49312 -16224
through Reserved

N $COA7 49319 -16217

R/W $COA8 49320 -16216 Port 2 ACIA transmit/receive register
R/W $COA9 49321 -16215 Port 2 ACIA status register
R/ W $COAA 49322 -16214 Port 2 ACIA command register
R/ W $COAB 49323 -16213 Port 2 ACIA control register

N $COAC 49324 -16212
through Reserved

N $COAF 49327 -16209

320 Appendix B: Memory Map

Table B-9
Addresses $COBO-SCOFF

RW Hex Dec Neg Dec Label Use

N $COBO 49328 -16208
through Reserved

N $COBF 49343 -16193

N $COCO 49344 -16192
through Reserved

N $COCF 49359 -16177

N $CODO 49360 -16176
through Reserved

N $CODF 49375 -16161

N $COEO 49376 -16160
through Reserved

N $COEF 49391 -16145

N $COFO 49392 - 16144
through Reserved

N $COFF 49407 -16129

The hardware page 321

322

Appendix C

Important Firmware Locations

This appendix lists all significant firmware addresses: entry points,
locations containing the addresses of entry points, and locations
where machine and device identification bytes reside.

Warning The Monitor firmware entry points are the only published entry
points in the sense that they are the only ones that will remain
in the same locations in future Apple II series computers.

The firmware protocol Identification bytes and offsets will work
with other Apple II-series computers only if used as directed.

The tables
This appendix supplements the chapter text by specifying three
forms of each address: hexadecimal, decimal, and complementary
(negative) decimal.

In these tables, some of the addresses are followed by a label. These
labels are listed only to help you find the named location in the
firmware listings, or to remember the function found at the address.
The Apple Ile contains no global label table: your program must
assign its own labels to the addresses as required.

Table C-1
Serial port l addresses

Hex Dec Negdec

$C100 49408 -16128
$C105 49413 -16123
$C107 49415 -16121
$C10B 49419 -16117
$ClOC 49420 -16116
$C10D 49421 -16115
$C10E 49422 -16114
$C10F 49423 -16113
$C110 49424 -16112
$Clll 49425 -16111

There are several types of information at these firmware addresses:
actual entry points (labeled entry), the low-order byte of an entry
point (labeled offset), a device or machine identification byte
(labeled ident), and indicators (labeled indic) specifying whether
there are optional routines, vector addresses (labeled vector), or
an RTS instruction location.

Each input/output port has an associated protocol table, as shown
in Tables C-1 through C-4. Many of the bytes (labeled offset) in the
protocol tables are the low-order bytes of addresses of I/0 routines
for the ports; the high-order byte of these addresses must be $Cn
(where n is the port number). This structure is explained in
Chapter 3. Although your program must perform some extra
processing to use these tables, the benefit is simplified compatible
port and slot I/0 for all Apple II-series machines.

Port addresses
Addresses for serial ports 1 and 2, output port 3, and mouse input
port 4 are shown in the following four tables.

Label Type Description

entry Main port 1 entry point
ident ID byte ($38)
ident ID byte ($18)
ident Firmware card signature ($0))
ident Super Serial Card ID ($31)
offset Low-order Plnit address
offset Low-order PRead address
offset Low-order PWrite address
offset Low-order PStatus address
in die Non-zero: no optional routines

Port addresses 323

Table C-2
Serial port 2 addresses

Hex Dec Negdec Label Type Description

$C200 49664 - 15872 entry Main port 2 entry point
$C205 49669 -15867 iden ID byte ($38)
$C207 49671 -15865 ident ID byte ($18)
$C20B 49675 -15861 ident Firmware card ID ($01)
$C20D 49676 -15860 ident Super Serial Card ID ($31)
$C20D 49677 -15859 offset Low-order Plnit address
$C20E 49678 -15858 offset Low-order PRead address
$C20F 49679 -15857 offset Low-order PWrite address
$C210 49680 -15856 offset Low-order PStatus address
$C211 49681 -15855 in die Non-zero: no optional routines

Table C-3
Video firmware addresses

Hex Dec Neg Dec Label Type Description

$C300 49920 -15616 entry Main video entry point (output only)

$C305 49925 -15611 C3Keyln ident ID byte ($38)
$C307 49927 -15609 C3C0utl ident ID byte ($18)
$C30B 49931 -15605 ident Firmware card signature ($01)
$C30C 49932 -15604 ident 80-column card ID ($88)
$C30D 49933 -15603 offset Low-order Plnit address
$C30E 49934 -15602 offset Low-order PRead address
$C30F 49935 -15601 offset Low-order PWrite address
$C310 49936 -15600 offset Low-order PStatus address
$C311 49937 -15599 MoveAux entry Routine for main/ auxiliary control

swapping (also called AuxMove)

324 Appendix C: Important Firmware Locations

Table C-4
Mouse port addresses

Hex Dec Negdec Label Type Description

$C400 50176 -15360 entry Main mouse entry point
$C405 50181 -15355 ident ID byte ($38)
$C407 50183 -15353 ident ID byte ($18)
$C40B 50187 -15349 ident Firmware card signature ($01)
$C40C 50188 -15348 type X-Y pointing device ID ($20)
$C40D 50189 -15347 offset Low-order Pinit address
$C40E 50190 -15346 offset Low-order PRead address
$C40F 50191 -15345 offset Low-order PWrite address
$C410 50192 -15344 offset Low-order PStatus address
$C411 50193 -15343 in die Optional routines follow ($00)
$C412 50194 -15342 SetMouse offset Low-order SetMouse address
$C413 50195 -15341 ServeMouse offset Low-order ServeMouse address
$C414 50196 -15340 ReadMouse offset Low-order ReadMouse address
$C415 50197 -15339 ClearMouse offset Low-order ClearMouse address
$C416 50198 -15338 PosMouse offset Low-order PosMouse address
$C417 50199 -15337 ClampMouse offset Low-order ClampMouse address
$C418 50200 -15336 HomeMouse offset Low-order HomeMouse address
$C419 50201 -15335 InitMouse offset Low-order InitMouse address

Memory expansion The memory expansion version of the Apple lie supports the
mouse in port 7. This means that the firmware entry points are
$C7XX addresses, Instead of $C4XX address; change the 4's to
l's In Table C-4.

Port addresses 325

Other video and 1/0 firmware addresses
Miscellaneous firmware addresses are listed in Table C-5.

Table C-5
Apple lie enhanced video and miscellaneous firmware

Hex

$C600
$C700
$C803

Table C-6

Dec

50688
50944
51203

Negdec

-14848
-14592
-14333

Label

NewIRQ

Type

entry
entry
entry

Description

Disk drive firmware entry point
External disk startup routine
IRQ handling routine

Memory expansion SC700 supports the mouse In the memory expansion version.

Applesoft BASIC interpreter addresses
The addresses of Applesoft BASIC entry points are listed in the
Applesoft BASIC Programmer's Reference Manual. The Applesoft
interpreter occupies ROM addresses from $DOOO through $F7FF.

Monitor addresses
Table C-6 lists the Monitor entry points, machine identifier bytes,
interrupt vectors, and the address of a known RTS instruction.

Apple lie monitor entry. points and vectors

Hex Dec Negdec Label Type Description

$F800 63488 -2048 PLOT entry Plots a low-resolution block

$F819 63513 -2023 HLine entry Draws low-resolution horizontal line

$F828 63528 -2008 VLine entry Draws low-resolution vertical line
$F832 63538 -1998 ClrScr entry Clears low-resolution screen
$F836 63542 -1994 ClrTop entry Clears iop 40 low-resolution lines
$F864 63588 -1948 SetCol entry Sets low-resolution color (Table 5-4)

$F871 63601 -1935 SCRN entry Reads color of low-resolution block

$F941 63809 -1727 PrntAX entry Dis.plays A and X in hex
$F94A 63818 -1718 PrB12 entry Sends X blanks to output

326 Appendix C: Important Firmware Locations

Table C-6 (continued)
Apple lie monitor entry points and vectors

Hex Dec Neg dee Label Type Description

$FA47 63845 -1691 NewBRK entry Apple Ile break handler
$FA62 64098 -1438 Reset entry Hardware reset routine

$FB1E 64386 -1150 PRead entry Reads hand controller position
$FB6F 64467 -1169 SetPwrC entry Routine to create power-up byte
$FBB3 64535 -1101 ident Machine identification byte
$FBCO 64548 -1088 ident Machine identification byte
$FBDD 64477 -1059 Belll entry Sends 1-kHz beep to speaker

$FC42 64578 -958 ClrEOP entry Clears from cursor to bottom
$FC58 64600 -936 HOME entry Clears from cursor to upper left
$FC9C 64668 --868 ClrEOL entry Clears from cursor to end of line
$FC9E 64670 --866 CIEOLZ entry Clears from BASL to end of line
$FCA8 64680 --856 WAIT entry Delays for time specified by A

$FDOC 64780 -756 RdKey entry Displays cursor, jumps to KSW
$FD1B 64795 -741 Key In entry Waits for keypress, reads key
$FD35 64821 -715 RdChar entry Gets input, interprets ESC codes
$FD67 64871 -665 GetLnZ entry Sends CR to output, goes to GetLn
$FD6A 64874 -662 GetLn entry Displays prompt, gets input line
$FD6F 64879 -657 GetLnl entry No prompt; gets input line
$FD8B 64907 -629 CROutl entry Clears to end of line, calls CROut
$FD8E 64910 -626 CR Out entry Sends CR to output
$FDDA 64986 -550 Pr Byte entry Sends A to output
$FDE3 64995 -541 Pr Hex entry Displays low nibble of A in hex
$FDED 65005 -531 COut entry Jumps to CSW
$FDFO 65008 -528 COutl entry Displays A, advances cursor

$FE2C 65068 -468 MOVE entry Copies memory elsewhere
$FE36 65078 -458 VERIFY entry Compares two blocks of memory

$FF2D 65325 -211 Pr Err entry Sends ERR to output; be~ps
$FF3A 65338 -198 Bell entry Sends CONTROL-G to output
$FF3F 65343 -193 IO Rest entry Loads $45-$49 into registers
$FF4A 65354 -182 IOSave entry Stores A, X, Y, P, S at $45-$49
$FF58 65368 -168 I ORTS RTS Location of known RTS instruction
$FF69 65385 -151 Monitor entry Standard Monitor entry point

$FFFA 65530 -6 vector Low-order NMI vector (unused)
$FFFB 65531 -5 vector High-order NMI vector (unused)
$FFFC 65532 -4 vector Low-order reset vector ($62)
$FFFD 65533 -3 vector High-order reset vector ($FA)
$FFFE 65534 -2 IRQVect vector Low-order IRQ vector ($03)
$FFFF 65535 -1 vector High-order IRQ vector ($CB)

Monitor addresses 327

328

Appendix D

Operating Systems
and Languages

This appendix is an overview of the characteristics of operating
systems and languages when run on the Apple Ile. It is not intended
to be a complete description. For more information, refer to the
manuals that are provided with each product.

Operating systems
This section discusses the operating systems that the Apple Ile works
with CP /M, and any other operating system that requires an
interface card, does not work on the Apple Ile.

Pro DOS
ProDOS is the preferred disk operating system for the Apple Ile. It
supports startup from the external disk drive (on original Apple Ilc's
with the command PR#7), interrupts, and all other hardware and
firmware features of the Apple Ile.

DOS
The Apple Ile works with DOS 3.3. Its built-in disk drive hardware
and firmware can also access DOS 3.2 disks by using the BASICS

disk. DOS support is provided for the sake of Apple II series
compatibility; neither version of DOS takes full advantage of all the
features of the Apple Ile.

Pascal Operating System
Versions 1.2 and later of the Pascal Operating System use the
80/40 switch and the interrupt features of the Apple Ile, while
remaining compatible with the other Apple II series computers.

While the Apple Ile works with Pascal 1.1, this version of the Pascal
Operating System does not use the 80/ 40 switch or handle
interrupts.

The Apple Ile does not work with Pascal 1.0, because the 1/ 0
firmware entry points of that version of the operating system are
rigidly defined (rather than being accessed via a table), and the
Apple Ilc's built-in firmware does not correspond to these entry
points.

Languages
This section discusses using Apple programming languages with the
Apple Ile. It is also a guide to using this reference manual with these ·
languages.

Applesoft BASIC

The programming examples in this manual are almost entirely in
assembly language, and so most addresses and values are given in
hexadecimal notation.

Use a PEEK in BASIC (instead of LDA in assembly language) to read
a location, and a POKE (instead of STA) to write to a location. The
values used by Applesoft must be in decimal, so you will have to
convert hexadecimal values given in this manual to decimal.
(Several tables in this manual include decimal equivalents to make
the job easier for you.)

If you read a hardware address from a BASIC program, you get a
value between 0 and 255. Bit 7 has a value of 128, so if a soft switch is
on, its value will be equal to or greater than 128; if the switch is off,
the value will be less than 128.

Languages 329

Integer BASIC

You will have to run a version of OOS in your Apple Ile to use
Integer BASIC. ProDOS does not support Integer BASIC.

Pascal

The Pascal language runs on the Apple Ile under versions 1.1 or
later of the Pascal Operating System. However, for best
performance, use Pascal versions 1.2 or later.

Fortran

Fortran runs under version 1.1 of the Pascal Operating System,
which does not detect or use certain Apple Ile features, such as the
80/40 switch or auxiliary memory. Therefore, Fortran does not take
advantage of these features either.

Logo II

Apple Logo II works under ProOOS on Apple II series machines with
at least 128K of memory. Logo II is a version of the Logo language
originally developed from the LISP (LISt Processing) language at
MIT as a language to be used for learning. Logo II takes advantage of
the Apple Il's graphics and retains much of the power and flavor of
LISP without LISP's somewhat cryptic syntax.

330 Appendix D: Operating Systems and Languages

Appendix E

Interrupts

This appendix describes the sources of interrupts on the Apple Ile,
how the firmware handles the interrupts, and how to use interrupt
driven features directly in those rare cases when the firmware
cannot meet your needs.

Warning If you use Interrupt hardware directly, Instead of using the built
in interrupt-handling firmware, you can't be sure that your
programs will be compatible with possible future Apple II series
computers or revisions.

Introduction
This section describes interrupts and their effects on the Apple Ile
hardware.

What is an interrupt?
An interrupt is a signal that a computer uses to know when to stop
what it's doing so it can quickly handle a time-dependent task. For
example, the Apple Ile mouse sends an interrupt to the computer
every time it moves. This lets the system keep track of the mouse's
position and maintain smooth movement of the pointer on the
screen.

331

332 Appendix E: Interrupts

When an interrupt occurs, control passes to an interrupt handler,
which must record the exact state of the computer at the moment of
the interrupt, determine the source of the interrupt, and take
appropriate action. It is important that the computer preserve a
"snapshot" of its state when interrupted, so that when it continues
later with what it was doing, those conditions can be restored.

Interrupts on Apple II computers
Interrupts have not always been fully supported on the Apple II. All
versions of Apple's DOS, as well as the Monitor program, rely on
the integrity of location $45, which the built-in interrupt handler
has always destroyed by saving the accumulator in it. Most versions
of Pascal simply do not work with interrupts enabled.

The Apple Ile built-in interrupt handler now saves the accumulator
on the stack instead of in location $45. DOS 3.3, ProDOS,
Pascal 1.2 (or later versions), and the Monitor all work with
interrupts on the Apple Ile.

You should use either ProDOS or Pascal 1.2 (or later versions) if
you want interrupt-using software to work on the Apple Ile and the
Apple II Plus. Both operating systems have full interrupt support
built in.

Interrupts are effective only if they are enabled most of the time
since interrupts that occur while interrupts are disabled cannot be
detected. Because of the critical timing of disk read and write
operations, Pascal, DOS 3.3, and ProDOS turn off interrupts while
accessing the disk. Thus it is important to remember that while a
disk drive is being accessed, all the interrupt sources discussed
below are turned off.

On the Apple Ile only, interrupts are periodically turned off while
80-column screen operations are being performed. This is most
noticeable while the screen is scrolling. Also, most peripheral
cards used in the Apple Ile disable interrupts while reading and
writing.

Interrupt handling on the 65C02
From the point of view of the 65C02, there are three possible causes
of interrupts.

1. The IRQ line on the microprocessor can be pulled low if 65C02
interrupts are not masked (that is, the CLI instruction has been
used). This is the standard technique that devices use when they
need immediate attention.

2. The processor executes a break (BRK, opcode $00) instruction.

3. A nonmaskable interrupt (NMI) occurs. Because the NMI line in
the Apple He's 65C02 is not used, this never happens on the
Apple Ile.

The first two possibilities cause the 65C02 to save the current
program counter and status byte on the stack and then jump to the
routine whose address is stored in $FFFE and $FFFF. The sequence
performed by the 65C02 is:

1. If an IRQ occurs, finish executing the current instruction. (If a
BRK occurs, the current instruction is already finished.)

2. Push the high byte of the program counter onto the stack.

3. Push the low byte of the program counter onto the stack.

4. Push the program status byte onto the stack.

5. Jump to the address stored in $FFFE, $FFFF-that is,
]MP ($FFFE).

The different sources of interrupt signals are discussed below.

The interrupt vector at $FFFE
In the Apple Ile there are three separate regions of memory that
contain address $FFFE: the built-in ROM, the bank-switched
memory in main RAM, and the bank-switched memory in auxiliary
RAM. The vector at $FFFE in the ROM points to Apple He's built-in
interrupt handling routine. You should generally use the built-in
interrupt handler, rather than writing your own, because of the
complexity of interrupts on the Apple Ile.

Introduction 333

334 Appendix E: Interrupts

When you initialize the mouse or serial communication firmware,
copies of the ROM's interrupt vector are placed in the interrupt
vector addresses in both main and auxiliary bank-switched
memory. If you plan to use interrupts and the bank-switched
memory without the mouse or communication firmware, you must
copy the ROM's interrupt vector yourself.

The built-in interrupt handler
The built-in -interrupt handler is responsible for determining
whether a BRK or an IRQ interrupt occurred. If it was an IRQ
interrupt, it decides whether the interrupt should be handled
internally, handled by the user, or simply ignored.

The built-in interrupt-handling routine records the current memory
configuration, then sets up its own standard memory configuration
so that a user's interrupt handler knows the precise memory
configuration when it is called.

Next the handler checks to see if the interrupt was caused by a break
instruction, and if it was, handles it as described later in this
appendix.

If the interrupt was not caused by a BRK, the handler checks for
interrupts that it knows how to handle (for example, a properly
initialized mouse) and handles them.

Depending on the state of the system, it either ignores other
interrupts or passes them to a user's interrupt handling routine
whose address is stored at $03FE and $03FF of main r11emory.

After handling an interrupt itself, or after the user's handler returns
(with an RTI), the built-in interrupt handler restores the memory
configuration, and then does an RTI to restore processing to where
it was when the interrupt occurred. Table E-1 illustrates this whole
process. Each of the steps is explained in detail in the sections that
follow.

Table E-1
Interrupt-handling sequence

Interrupted
program Processor

Program - Push address
Push status

Built-In handler User's handler

]MP ($FFFE)- Save old and set
new memory
configuration

If BRK, then go
to break handler
($FA47)---------

Our interrupt?

NO: Push address
Push status
JMP ($03FE)- Handle

interrupt

YES: Handle it

Restore memory--RTI
configuration

Pull status - RTI
Program - Pull address

Saving the memory configuration

The built-in interrupt handler saves the state of the system, and sets
it to a known state according to these rules:

o If 80Store and Page2 are on, then it switches in text Page 1 (Page2
off) so that main screen holes are accessible.

o It switches in main memory for reading (RAMRd off).

o It switches in main memory for writing (RAMWrt off).

o It switches in ROM addresses $DOOO-$FFFF for reading
(RdLCRAM off).

o It switches in main stack and zero page (AltZP off).

o It preserves the auxiliary stack pointer, and restores the main
stack pointer.

The built-in Interrupt handler 335

336 Appendix E: Interrupts

o It preserves the current ROM state and switches in the ROM
bank 1.

•:• Note: Because main memory is switched in, all memory
addresses used later in this appendix are in main memory
unless otherwise specified.

Managing main and auxiliary stacks
Because the Apple Ile has two stack pages, the firmware has
established a convention that allows the system to be run with two
separate stack pointers. Two bytes in the auxiliary stack page are to
be used as storage for inactive stack pointers: $0100 for the main
stack pointer when the auxiliary stack is active, and $0101 for the
auxiliary stack pointer when the main stack is active.

When a program that uses interrupts switches in the auxiliary stack
for the first time, it should place the value of the main stack pointer
at auxiliary stack address $0100, and initialize the auxiliary stack
pointer to $FF (the top of the stack). When it subsequently switches
from one stack to the other, it should save the current stack pointer
before loading the pointer for the other stack.

When an interrupt occurs while the auxiliary stack is switched in, the
current stack pointer is stored at $0101, and the main stack pointer
is retrieved from $0100. Then the main stack is switched in for use.
After the interrupt has been handled, the stack pointer is restored to
its original value.

User's interrupt handler at $03FE
You can set up screen hole locations to indicate that the user's
interrupt handler should be called when certain interrupts occur.
To do this, place your interrupt handler's address at $03FE and
$03FF in main memory, low byte first.

The user's interrupt handler should do the following:

o Verify that the interrupt came from the expected source. The
following sections describe how this should be done for each
interrupt source.

o Handle the interrupt as desired.

o Clear the interrupt, if necessary. The following sections describe
how to clear the interrupts.

o Return with an RTL

If your interrupt handler needs to know the memory configuration at
the time of the interrupt, it can check the encoded byte stored four
bytes down on the stack. 1bis byte is explained later in this
appendix.

In general there is no guaranteed maximum response time for
interrupts. 1bis is because the system may be doing a disk
operation, which could last for several seconds.

Once the built-in interrupt handler has been called, it takes
about 250 to 300 microseconds for it to call your interrupt-handling
routine. After your routine returns, it takes 40 to 140 microseconds
to restore memory and return to the interrupted program.

If memory is in the standard state when the interrupt occurs, the
total overhead for interrupt processing is about 150 microseconds
less than if memory is in the worst possible state (80Store and Page2
on, auxiliary memory switched in for reading and writing, auxiliary
bank-switched memory page $02 switched in for reading and
writing).

Handling break instructions
After the interrupt handler has set the memory configuration, it
checks to see if the interrupt was caused by a BRK (opcode $00)
instruction. (If it was, bit 4 of the processor status byte is a 1.) If so,
it jumps to a break-handling routine, which saves the state of the
computer at the time of the break as follows:

Information Location

Program counter Oow byte) $3A
Program counter (high byte) $3B
Encoded memory state $44
Accumulator $45
X register $46
Y register $47
Status register $48

Finally, the break routine jumps to the routine whose address is
stored at $03FO and $03Fl.

Handling break instructions 337

338 Appendix E: Interrupts

The encoded memory state in location $44 can be interpreted as
follows:

Bit 7 = 0
Bit 6 = 1 if 80Store and Page2 both on
Bit 5 = 1 if auxiliary RAM switched in for reading
Bit 4 = 1 if auxiliary RAM switched in for writing
Bit 3 = 1 if bank-switched RAM being read
Bit 2 = 1 if bank-switched $0000 page $01 switched in
Bit 1 = 1 if bank-switched $0000 page $02 switched in
Bit 0 = 0

Sources of interrupts
The Apple Ile can receive interrupts from many different sources.
Each source is enabled and used slightly differently from the others.
There are two basic sources of interrupts: use of the mouse, and
actions affecting the two 6551 ACIA circuits (the chips that control
serial communication). How to use these sources of interrupts in
conjunction with the built-in interrupt handler is discussed later in
this appendix.

Mouse use can cause interrupts when

o the mouse is moved in the horizontal (X) direction

o the mouse is moved in the vertical (Y) direction

o the mouse button is pressed

Interrupts can also be generated every 1/60 second by the rising
edge of the vertical blanking signal. This is called the vertical
blanking (VBL) interrupt and is synchronized with a signal used for
the video display.

Actions affecting the ACIA circuits can cause interrupts when

o a key is pressed (the firmware can use this interrupt to buffer
keystrokes, or it can pass the interrupt on to the user)

o either ACIA has received a byte of data from its port (the
firmware can use this interrupt to buffer data or it can pass the
interrupt on to the user)

o pin 5 of either serial port changes state (device ready/not ready
to accept data) (when the serial firmware is active, this interrupt
is absorbed; however, the serial firmware uses the signal to
decide whether or not to transmit the next byte of data)

o either ACIA is ready to accept another character to be
transmitted (when the serial firmware is active, this interrupt is
absorbed; however, the serial firmware uses the signal to decide
whether or not to transmit the next byte of data)

o the keyboard strobe is cleared (the firmware absorbs this
interrupt)

An interrupt can also be generated by a device attached to the
external disk drive port. The firmware can pass this interrupt on to
the user.

Firmware handling of interrupts
The following sections discuss how the various sources of interrupts
should be used together with the built-in interrupt handler.

Firmware for mouse and VBL
As described in Chapter 9, the mouse can be initialized (by the
SetMouse call) to nine different modes that enable one or more
sources of interrupts. In transparent mode, the interrupts are
entirely handled by the built-in interrupt handler; the other modes
require a user-installed interrupt handler.

When the mouse is initialized, the interrupt vector is copied to
addresses $FFFE and $FFFF in main and auxiliary bank-switched
RAM. This permits mouse interrupts with any memory
configuration.

When the mouse is active, possible sources of interrupts are those
listed earlier in this appendix as resulting from mouse use.

When an interrupt occurs, the built-in interrupt handler determines
whether that particular interrupt source was enabled (by the
SetMouse call). If so, the user's interrupt handler, whose address is
stored at $03FE, is called.

The user's interrupt handler should first call ServeMouse to
determine the source of the interrupt. This call updates the mouse
status byte at $077C and returns with the carry bit clear if mouse
movement, button, or vertical blanking was the source of the
interrupt.

Firmware handling of Interrupts 339

340 Appendix E: Interrupts

The values of this mouse status byte at $077C ($077F in the memory
expansion Ile) are as follows:

Bit 1 means that

3 Interrupt was from vertical blanking
2 Interrupt was from button
1 Interrupt was from mouse movement

If the interrupt was due to mouse movement or button, the user's
interrupt handler should then do a call to Read.Mouse. This causes
the mouse coordinates and status to be updated as follows:

$047C
$04FC
$057C
$05FC
$077C

Bit

7
6

5

Low byte of X coordinate
Low byte of Y coordinate
High byte of X coordinate
High byte of Y coordinate
Button and movement status

Means

0
0
1
0

button up; 1 = button down
button up on last Read.Mouse
button down on last Read.Mouse
no movement since last Read.Mouse

1 movement since last Read.Mouse
3-1 Always set to 0 (interrupt cleared)

After the interrupt has been handled, the routine should terminate
with an RTL

Remember that interrupts may be missed during disk accesses.

If you turn on mouse interrupts without initializing the mouse, the
built-in interrupt handler will absorb the interrupts. If you want to
handle mouse interrupts yourself, you must write your own interrupt
handler and place vectors to it at addresses $FFFE and $FFFF in
bank-switched RAM. Interrupts will be ignored whenever the
$DOOO-$FFFF ROM is switched in.

Firmware for keyboard interrupts
The Apple Ile hardware is able to generate an interrupt when a key is
pressed. The firmware is able to buffer up to 128 keystrokes,
completely transparently, when properly enabled to do so. It saves
them in the second half of page $08 of auxiliary memory. After the
buffer is full, subsequent keystrokes are ignored. Because interrupts
are only generated when keypresses occur, characters generated by
the auto-repeat feature are not buffered. They can, however, be
read when the buffer is empty.

Once keyboard buffering has been turned on, the next key should be
read by calling RdKey ($FDOC).

Warning Do not call the buffer reading routine directly. Its entry address
will not be the same In future versions of the computer.

The special characters Control-S (stop list) and Control-C (stop
Applesoft execution) do not work while keyboard buffering is turned
on. A new keystroke, Solid Apple-Control-X, clears the buffer.

Using keyboard buffering firmware

Keyboard buffering is automatically turned on when the serial
firmware is placed in terminal mode. Otherwise you must turn it on
yourself this way:

Memory expansion The Apple lie that supports memory expansion places the
keyboard screen holes in different locations from those used in
earlier versions. For the memory expansion lie, change all SnnnF
addresses to SnnnC (that is, change $05FF to $05FC).

1. Disable processor interrupts (SEI).

2. Set location $05FA to $80. This tells the firmware to buffer
keystrokes without calling the user's interrupt handler.

3. Set locations $05FF and $06FF to $80. These are pointers to
where in the buffer the next keystroke will be stored and where the
next will be read from, respectively.

4. Turn on the ACIA for port 2 by setting the low nibble of $COAA to
the value $OF. For example:

LDA $COAA

ORA #$OF

STA $COAA

Read port 2 ACIA command register
Set low nibble to $OF
Set port 2 ACIA command register

If you are using the serial ports at the same time, just set the low
bit of $COAA to 1. This prevents receiver interrupts from being
turned off.

A PR#2 or IN#2 or the equivalent will shut off keyboard
interrupts.

5. Enable processor interrupts CCLI).

User's Interrupt handler at $03FE 341

342 Appendix E: Interrupts

Using keyboard interrupts through firmware

Keyboard interrupts are received through the ACIA for port 2. They

can be enabled as follows:

1. Disable processor interrupts (SEI).

2. Set location $05FA to $CO. This tells the firmware to identify a
keystroke interrupt, and to call the user's interrupt handler.

3. Turn on the ACIA for port 2 by setting the low nibble of $COAA to

the value $OF. For example:

LDA $COAA Read port 2 ACIA command register

ORA #$OF Set low nibble to $OF
STA $COAA Set port 2 ACIA command register

4. Enable processor interrupts (CU).

When the user's interrupt handler is called, it can identify the
keyboard as the interrupt source by reading location $04FA. This is

a copy of the ACIA status register at the time of the interrupt. If the

interrupt was due to something on the ACIA for port 2, bit 7 is set. If

the interrupt was caused by a keystroke, bit 6 is set and bit 5 is

unchanged.

After servicing this interrupt, the interrupt handler should clear the

interrupt by setting $04FA to $00.

Using external interrupts through firmware

Pin 9 of the external disk drive connector (EXTIN1) can be used to

generate interrupts through the ACIA for port 1. It can be used as a

source of interrupts (on a high-to-low transition) if enabled as
follows:

1. Disable processor interrupts (SEI).

2. Set location $05F9 to $CO. This tells the firmware to identify an
external interrupt, and to call the user's interrupt handler.

3 . Turn on the ACIA for port 1 by setting the low nibble of $C09A to

the value $OF. For example:

LDA $C09A

ORA #$OF

STA $C09A

Read port 1 ACIA command register
Set low nibble to $OF
Set port 1 ACIA command register

4. Enable processor interrupts (CU).

When the user's interrupt handler is called, it can identify this
interrupt by reading location $04F9. This is a copy of the ACIA
status register at the time of the interrupt. If the interrupt was due to
something on the ACIA for port 1, bit 7 is set. If the interrupt was
caused by the e:Xternal interrupt line, bit 6 is clear and bit 5 is
unchanged.

After servicing this interrupt, the interrupt handler should clear the
interrupt by setting $04F9 to $00.

Firmware for serial interrupts
The Apple Ile hardware is able to generate interrupts both when the
ACIA receives data and when it is ready to send data. The built-in
interrupt handler responds to incoming data only. The firmware is
able to buffer up to 128 incoming bytes of serial data from either
serial port. After the buffer is full, data are ignored. Only one port
can be buffered at a time. The following sections assume that the
serial port to be buffered is already initialized, as explained in
Chapter 8.

Using serial buffering transparently

Serial buffering is automatically turned on when the serial firmware
is placed in terminal mode. Otherwise you must turn it on yourself,
as follows:

Memory expansion For the memory expansion lie, change all SnnnF addresses to
SnnnC and change the SOD value to $09.

1. Disable processor interrupts (SEI).

2. Set location $04FF to $Cl to buffer port 1, or to $C2 to buffer
port 2.

3. Set locations $057F and $067F to $00. These are pointers to the
next byte in the buffer to . be used and the next character to be
read from the buffer, respectively.

4. Turn on the ACIA for the port by setting the low nibble of $C09A
for port 1 or $COAA for port 2 to $OD. For example:

LOA $C09A
AND $F O
ORA #$00
STA $C09A

Read port 1 ACIA command register
Clear low nibble
Set low nibble to $OD
Set port 1 ACIA command register

The 0 in bit 1 of the command register enables receiver
interrupts; thus an interrupt is generated when a byte of data is
received.

Firmware handling of interrupts 343

5. Enable processor interrupts (CLI).

When serial port buffering is thus enabled, normal reads from the
serial port firmware fetch data from the buffer rather than directly
from the ACIA.

Using serial interrupts through firmware

It is also possible to use the firmware to call the user interrupt
handler whenever a byte of data is read by the ACIA. In this mode
buffering is not performed by the firmware.

Memory expansion For the memory expansion lie, change all SnnnF addresses to
SnnnC and change the SOD value to $09.

344 Appendix E: Interrupts

1. Disable processor interrupts (SE!).

2. Set location $04FF to a value other than $Cl or $C2.

3. Turn on the ACIA for the port by setting the low nibble of $C09A
for port 1 or $COAA for port 2 to $OD. For example:

LDA $C09A

AND $FO
ORI\ #$OD
STA $C09A

Read port 1 ACIA command register
Clear low nibble
Set low nibble to $OD
Set port 1 ACIA command register

The 0 in bit 1 of the command register enables receiver
interrupts; thus an interrupt is generated when a byte of data is
received.

4. Enable processor interrupts CCLI).

When a serial port is thus enabled, the user's interrupt handler is
called each time the port receives a byte of data. The status byte
saved by the firmware ($04F9 for port 1; $04FA for port 2) has the
high bit set if the interrupt occurred on that port. Bit 3 is set if the
interrupt was due to a received byte of data.

The interrupt handler should clear the interrupt by clearing bits 7
and 3 of that port's status byte ($04F9 for port 1; $04FA for port 2).

Transmitting serial data

The serial firmware does not implement buffering for serial output.
Instead it waits for two conditions to be true before transmitting a
character:

o The ACIA's transmit register must be ready to accept a character.
This is true if bit 4 of the ACIA's status register is 1.

o The device must signal that it is ready to accept data. This is true
if bit 5 of the ACIA's status register is 0. Bit 5 is 0 if pin 5 of the
port's connector is also 0.

When the serial firmware is active, a change of state on pin 5 of that
port generates an interrupt. That interrupt is absorbed, but the data
remain in bit 5 of the status register. Interrupts from the ACIA's
transmit register are normally disabled.

A loophole in the firmware

So that programs can make use of interrupts on the ACIAs without
affecting mouse interrupt handling, there is a tiny loophole
purposely left in the built-in interrupt handler. If transmit interrupts
are enabled on the ACIA-that is, if bits 3, 2, and 0 of the ACIA's
command register have the values 0, 1, and 1, respectively-then
control is passed to the user's interrupt handler if the interrupt is not
intended for the mouse (movement, button, or VBL).

This means that you can write more sophisticated serial interrupt
handling routines than the limited firmware space could provide
(such as printer spooling). The firmware will still set memory to its
standard state, handle mouse interrupts, and restore memory after
your routine is finished.

When you receive the interrupt, neither ACIA's status register has
been read. You are fully responsible for checking for interrupts on
both ACIAs, determining which of the four interrupt sources on
each ACIA caused the interrupt, and how to handle them. Refer to
the 6551 specification for more details. The built-in firmware itself
is an excellent example of how interrupts on the ACIA can be
handled.

Bypassing the interrupt firmware
The following sections give further details on using interrupts on the
Apple Ile computer without using the built-in interrupt handler.

A method of handling mouse interrupts directly is described in
Chapter 9.

Using mouse interrupts without the firmware
To use mouse interrupts without the firmware, as mentioned above,
you must set your own interrupt vectors. If the $DOOO--$FFFF ROM is
ever switched in, the built-in interrupt handler will absorb the
mouse interrupts.

Bypassing the interrupt firmware 345

346 Appendix E: Interrupts

Tables E-2 and E-3 show how to activate and read mouse interrupts
without using the firmware. Remember to disable interrupts (SED
before enabling mouse interrupts, then turn them on when done
(CLI).

Table E-2
Activating mouse interrupts

To activate Enable Select Enable Disable
interrupts on IOU access source source IOU access

Mouse X STA $C079 STA $C05C STA $C059 STA $C078
(rising edge)

Mouse X STA $C079 STA $C05D STA $C059 STA $C078
(falling edge)

Mouse Y STA $C079 STA $COSE STA $C059 STA $C078
(rising edge)

Mouse Y STA $C079 STA $C05F STA $C059 STA $C078
(falling edge)

VBL STA $C079 STA $C05B STA $C078

Table E-3
Reading mouse interrupts

To read Read direction Determine Handle
interrupts from (A.S.A.P) source it Return

Mouse X LDA $C066 LDA $C015 ... RTI
(bit 7=1 if true)

Mouse Y LDA $C067 LDA $C017 RTI
(bit 7=1 if true)

VBL LDA $C019 RTI
(bit 7=1 if true)

The mouse direction data read from $C066 and $C067 are
guaranteed valid for at least 40 microseconds, and average duration
is at least 200 microseconds, so you should read the direction as
soon as possible.

Using ACIA interrupts without the firmware
To use ACIA interrupts without the firmware, you must set your own
interrupt vectors. If the $DOOO-$FFFF ROM is ever switched in, the
built-in interrupt handler will handle the interrupt as determined by
certain mode bytes.

When writing your serial interrupt handler, refer to Figures 11-31
through 11-33 and to the Synertek 6551 ACIA specification. As
shown in Chapter 11, the ACIAs have the following connections:

Port 1 DSR line connected to the EXTINT line on the
external disk port.
DCD line connected to pin 5 of port 1 connector.

Port 2 DSR line goes high when a key is pressed.
DCD line connected to pin 5 of port 2 connector.

The ACIA registers have the following addresses:

Port 1

Data register = $C098
Status register = $C099
Command register = $C09A
Control register = $C09B

Port 2

Data register = $COA8
Status register = $COA9
Command register = $COAA
Control register = $COAB

Bypassing the Interrupt firmware 347

348

Appendix F

Apple II Series Differences

This appendix compares the Apple Ile to the Apple Ile,
Apple II Plus, and Apple II. It does not contain an exhaustive list of
differences, but it does mention those differences most likely to
affect the accuracy of programs, displays, and instructions created
for end users of two or more Apple II series models.

Overview
The differences between the Apple II series computers can be
expressed as a series of equations: this computer equals that one
plus or minus certain features.

The following equations compare each model of Apple II series with
its predecessor in terms of functional equivalence, not literal
equality. For example,

Apple II Plus = Apple II - Integer BASIC firmware

does not mean that Integer BASIC firmware can be removed from
the Apple II-just that the one machine functions as if it were the
other without such firmware.

Apple II Plus = II + Autostart ROM
+ Applesoft firmware
+ 48K RAM standard
- old Monitor ROM
- Integer BASIC firmware

Apple lie =II Plus + Apple Language Card (with 16K of RAM)

Apple lie = Ile

+ 80-column (enhanced) video firmware
+ built-in diagnostics
+ full ASCII keyboard
+ internal power light
+ FCC approval
+ improved back panel
+ 9-pin back panel game connector
+ auxiliary slot (with possibility of 80-column

text card and extra 64K RAM)

- slot 0
+ interrupt support in firmware

(enhanced Apple Ile)
+ Mini-Assembler in firmware

(enhanced Apple Ile)

+ extended 80-column text card
+ 80/ 40 switch
+ keyboard switch
+ disk-use light
+ disk controller port
+ disk drive
+ mouse port
+ serial printer port
+ serial communication port
+ built-in port firmware
+ video expansion connector
- removable cover
- slots 1to7
- auxiliary slot
- internal power light
- cassette I/ 0 connectors
- internal game 1/0 connector

(hence no game output)
- auxiliary video pin
- Monitor cassette support
+ Mini-Assembler in firmware (Apple Ile with

UniDisk 3.5 support)
+ Smartport in firmware (UniDisk 3.5 and

memory expansion Apple Ile)
+ memory expansion card support

(memory expansion Apple Ile)

Overview 349

Type of processor

The processor in the Apple II and II Plus is the 6502. The original
Apple Ile uses a 6502A. The Apple Ile and enhanced Apple Ile both
use the 65C02: this is a redesigned CMOS CPU that has 27 new
instructions, new addressing modes, and for some instructions a
differing execution scheme and machine cycle counts (see
Appendix A).

Programs written for the Apple Ile will run on the earlier machines
only if they do not contain instructions unique to the 65C02, or
depend on shared instructions whose cycle times differ. Programs
should also use only published entry points . in the Monitor firmware
to allow maximum compatibility between different Apple II series
computers.

Machine identification

Identification of Apple II series computers is as shown in Table F-1.

Table F-1
Apple II series Identification bytes

Machine $FBB3 $FB1E $FBCO $FBBF

Apple II $38
Apple II Plus $EA $AD
Apple Ile $06 $EA
Apple Ile (enhanced) $06 $EO
Apple Ile $06 $00 $FF
Apple Ile (UniDisk 3.5 support) $06 $00 $00
Apple Ile (memory expansion) $06 $00 $03
Apple III in Apple II
emulation mode $EA $8A

Any future Apple II series computer or ROM release will have
different values in these locations. Machine identification routines
are available from Apple Vendor Technical Support.

The MachID byte for ProDOS ($BF98 on the global page) will have
bit 3 set to 0 if the computer is an Apple II, II Plus, Ile, or III, and
to 1 if the computer is not one of these machines. In an Apple Ile,
bits 7 and 6 are also set to binary 10.

Bits 7 and 6 set to binary 10 indicate that a computer is Apple Ile
and Ile compatible, regardless of the value of bit 3.

350 Appendix F: Apple II Series Differences

Memory structure
This section compares the memory organization of the Apple Ile
with that of the Apple II, II Plus, and Ile. These machines differ in
RAM space, ROM space, slot or port address space, and hardware
page use.

Amount and address ranges of RAM

The Apple II could have as little as 4K of RAM at the time of
purchase, and could be upgraded to as much as 48K of RAM.

The Apple II Plus has 48K of RAM ($0000 through $BFFF) as a
standard feature. With the addition of an Apple Language Card, a
48K Apple II or II Plus could be expanded to have 64K of RAM.

The Apple Ile has a full 64K of RAM. The top 12K addresses overlap
with the ROM addresses $DOOO through $FFFF. There is an
additional bank-switched area of 4K from $DOOO through $DFFF.
This arrangement is equivalent to an Apple II Plus with an Apple
Language Card installed. A program selects between the RAM and
ROM address spaces and between the $Dxxx banks by changing soft
switches located in memory.

With an Extended 80-Column Text Card installed in its auxiliary
slot, an Apple Ile has an additional 64K of RAM available, although
no more than half of the 128K of RAM space is available at any given
time. Soft switches located in memory control these address space
selections.

The RAM in the Apple Ile is equivalent to the RAM in an Apple Ile
with an Extended 80-Column Text Card. The optional memory
expansion card can add as much as lMb of RAM to the Ile in 256K
steps.

Amount and address ranges of ROM

The Apple II has 8K of ROM ($EOOO through $FFFF), and the
Apple II Plus has 12K of ROM ($DOOO through $FFFF). Users can
plug their own ROMs into the sockets provided. The on-board (as
opposed to slot) ROM address range is from $DOOO through $FFFF.

Memory structure 351

The Apple Ile has 16K of ROM, of which it uses 15.75K (addresses
$C100 through $FFFF; page $CO addresses are for I/0 hardware).
ROM addresses $C300 through $C3FF (normally assigned to the
ROM in a card in slot 3) and $C800 through $CFFF contain 80-
column video firmware; ROM addresses $C100 through $C2FF and
$C400 through $C7FF (normally assigned to the ROM on cards in
slots 1, 2, 4, 5, 6, and 7) contain built-in self-test routines.

A soft switch in RAM controls whether the video firmware or slot 3
card ROM is active. Invoking the self-tests with Solid Apple
Control-Reset causes the self-test firmware to take over the slot ROM
address spaces.

The Apple Ile ROM also uses the 15.75K from $C100 through $FFFF,
and its enhanced video firmware has the same entry point addresses
as on the Apple Ile. However, there are only rudimentary built-in
self-tests, and these do not preempt any port firmware space.

UniDisk 3.5 The Apple lie with built-In UniDisk 3.5 support has twice the
ROM (32K) of the original Apple lie. The extra ROM contains
support for the Smartport, a Mini-Assembler, STEP and TRACE
functions In the Monitor firmware, expanded self-test routines,
and Improved Interrupt support.

In the Apple Ile, addresses $C100 through $CFFF contain I/ 0 and
interrupt firmware, addresses $DOOO through $F7FF contain the
Applesoft BASIC interpreter, and addresses $F800 through $FFFF
contain the Monitor.

Peripheral-card memory spaces

Each Apple Ile port has up to 16 peripheral-card 1/0 space
locations in main memory on the hardware page (beginning at
location $COsO + $80 for slot or port s), allocated in the standard
Apple II series way (that is, beginning at location $COsO + $80 for
each slot s).

The peripheral-card ROM space (page $Cs for slot s in the Apple II,
II Plus, and Ile) contains the starting and entry-point addresses for
port s, but port routines are not limited to their allocated
$Cs pages.

The 2K-byte expansion ROM space from $C800 to $CFFF in the
Apple Ile is used by the enhanced video firmware and
miscellaneous I/ 0 and memory-transfer routines.

352 Appendix F: Apple II Serles Differences

The 128 bytes of peripheral-card RAM space (or scratch-pad RAM)
(64 screen holes in main memory and their equivalent addresses in
auxiliary memory) are reserved for use by the built-in firmware. It is
extremely important for the correct operation of Apple Ile firmware
that these locations not be altered by software except for the specific
purposes described in Chapters 7, 8, and 9, and in Appendix E.

Hardware addresses

The hardware page (the addresses from $COOO through $COFF)
controls memory selection and input/output hardware
characteristics. All input and output (except video output) takes
place at one or more hardware page addresses. For the sake of
simplicity, this section presents only a general comparison between
the Apple Ile on the one hand, and the Apple II, II Plus, and Ile on
the other, with respect to hardware page use. However, for many
characteristics, the Apple Ile and Ile work one way, while the
Apple II and II Plus work another.

$COQO-$COOF

On all Apple II series computers, reading any one of these
addresses reads the keyboard data and strobe. On the Apple Ile
and Ile, writing to each of these addresses turns memory and
display switches on and off. Writing to addresses $COo6, $C007,
$COOA, and $COOB performs ROM selection on the Apple Ile.
Writing to these four addresses is reserved on the Apple Ile.

For reading the keyboard, use $COOO; reserve $C001 through
$COOF.

$C01Q-$C01F

On all Apple II series computers, writing to any one of these
addresses clears the keyboard strobe. On the Apple Ile and Ile,
reading each of these addresses checks the status of a memory or
display switch, or the any-key-down flag.

For clearing the keyboard strobe, use $C010; reserve $C011 through
$COIF.

Memory structure 353

Reading $C015 checks the SLOTCXROM switch on the Apple Ile,
but it resets the X-movement interrupt (Xlnt) on the Apple Ile.
Similarly, reading $C017 checks the SLOTC3ROM switch on the
Apple Ile, but it resets the Y-movement interrupt (Yint) on the
Apple Ile.

Reading $C019 checks the current state of vertical blanking (VBL)
on the Apple Ile, but it resets the latched vertical blanking interrupt
(VBlint) on the Apple Ile.

$C020-$C02F

On the Apple II, II Plus, and Ile, reading any address $C02x toggles
the cassette output signal. On the original Apple Ile, both reading
from and writing to these locations are reserved. The Apple Ile with
32K of ROM uses $C028 to switch in or out the extra 16K of ROM.

$C030-$C03F

On all Apple II series computers, reading an address of the form
$C03x toggles the speaker. For full Apple II series compatibility,
toggle the speaker using $C030, and reserve $C031 through $C03F.

On the Apple Ile, writing to $C031 through $C03F is explicitly
reserved.

$C040-$C04F

On the Apple II, II Plus, and Ile, reading any address of the form
$C04x triggers the utility strobe. The Apple Ile has no utility strobe.

On the Apple Ile, addresses $C044 through $C047 are explicitly
reserved, and reading or writing any address from $C048 through
$C04F resets both the X and Y mouse interrupts (Xlnt and Ylnt).

$C050-$COSF

Addresses $C050 through $C057 work the same on the Apple Ile as
on the Apple Ile: they turn the TEXT, MIXED, Page2, and HiRes
switches on and off.

On the Apple Ile, addresses $C058 through $C05F turn the
annunciator outputs on and off. On an Apple Ile with a revision B
main logic board or later, an Apple Extended 80-Column Text
Card, and a jumper installed on the card, reading locations $C05E
and $C05F set and clear double high-resolution display mode.

354 Appendix F: Apple II Serles Differences

On the Apple Ile, if the IOUDis switch is on, both reading from and
writing to addresses $C058 through $C05D are reserved, and
addresses $COSE and $C05F set and clear the double high
rese lution display (as on the Apple Ile equipped as described in the
preceding paragraph). If the IOUDis switch is off, then addresses
$C058 through $C05F control various characteristics of mouse and
vertical blanking interrupts (Table 9-2).

$C060-$C06F

On the Apple Ile, writing to any address of the form $Co6x is
reserved, and reading adaresses $C068 through $C06F is reserved.

Reading addresses $C06 I and $C062 is the same as on the Apple Ile
(switch inputs and Apple keys). Reading addresses $C064 and
$Co65 is the same as on all other Apple II series computers (analog
inputs 0 and 1).

On the Apple Ile, address $C063 bit 7 is 1 if the mouse switch is not
pressed, and 0 if it is pressed, so that software looking for the shift
key mod (used on Apple II, II Plus, and Ile with some text cards) will
find it and display lowercase correctly. If by chance the mouse
button is pressed when the software checks location $Co63, it will
appear that the Shift-key mod is not present.

On the Apple Ile, address $C06o is used for reading the state of the
80/40 switch; on the Apple II, II Plus, and Ile, this address is for
reading cassette input.

The Apple Ile has two, rather than four, analog (paddle) inputs.
Addresses $Co66 and $C067 are used for reading the mouse X and
Y direction bits.

$C07()-$C07F

On the Apple II, II Plus, and Ile, reading from or writing to any
address of the form $C07x triggers the (analog input) paddle
timers.

On the Apple Ile, only address $C070 is to be used for that one
function. Addresses $C071 through $C07D are explicitly reserved.
The results of reading from or writing to addresses $C07E and
$C07F are described in Table 5-8.

Memory structure 355

$C080-$C08F

On the Apple Ile and Ile, accessing addresses in this range selects
different combinations of bank-switched memory banks. However,
addresses $C084 through $C087 duplicate the functions of the four
addresses preceding them, and addresses $C08C through $C08F do .
also. These eight addresses are explicitly reserved on the Apple Ile.

$C090-$COFF

On the Apple II, II Plus, and Ile, each group of 16 addresses of the
form $C080 + $s0 is allocated to an interface card (if present) in
slots.

On the Apple Ile, addresses corresponding to slots 1, 2, 3, 4, and 6
are allocated to a serial interface card, communication interface
card, 80-column text card, mouse interface card, and disk
controller card, respectively. All other addresses in this range are
reserved.

Monitors
The older models of the Apple II and Apple II Plus included a
different version of the System Monitor from the one built into
more recent models (and the Apple Ile and Ile). The older version,
called the Monitor ROM, had the same standard 1/0 subroutines as
the newer Autostart ROM, but a few of their features were different;
for example, there were no arrow keys for vertical cursor motion.

When you start the Apple Ile with a DOS or BASICS disk and it loads
Integer BASIC into the bank-switched area in RAM, it loads the old
Monitor along with it. When you type INT from Applesoft to
activate Integer BASIC, you also activate this copy of the old
Monitor, which remains active until you either type FP to switch
back to Applesoft, which uses the new Monitor in ROM, or activate
the 80-column firmware.

356 Appendix F: Apple II Serles Differences

1/0 in general
Apple Ile 1/0 is different from 1/0 on the Apple II, II Plus, and Ile
in three important respects: the possibility of direct memory access
(OMA) transfers, the presence or absence of slots, and the
presence or absence of built-in interrupt handling.

OMA transfers
The Apple II, II Plus, and Ile allow OMA transfers, because both the
address and the data bus are available at the slots. No true OMA
transfer is possible with the Apple Ile because neither bus is
available at any of the back panel connectors.

Slots versus ports
The Apple II and II Plus have eight identical slots; the Apple Ile has
seven identical slots plus a 60-pin auxiliary slot for video, add-on
memory, and test cards. The Apple Ile has no slots; instead, it has
back panel connectors and built-in hardware and firmware that are
functional equivalents of slots with cards in them. The back panel
connectors are called ports on the Apple Ile.

Interrupt~

The Apple Ile is the first computer in the Apple II series to have
built-in interrupt-handling capabilities. The enhanced Apple Ile
has very similar interrupt-handling capability included.

The keyboard
Both keyboard layout and character sets vary in the Apple II series
computers. The major keyboard difference in the Apple II series is
that the Apple Ile and Ile have full ASCII keyboards, while the
Apple II and II Plus do not.

The keyboard 357

Keys, switches, and lights
The Apple II and II Plus have identical 52-key keyboards. The
Apple Ile and Apple Ile keyboards have the same 63-key full ASCII
keyboard layout, with new and repositioned keys and characters as
compared to the Apple II and II Plus. While the Apple II and II Plus
have a Rept key, the Ile and Ile have an auto-repeat feature built into
each character key.

Some Apple II and Apple II Plus machines have a slide switch inside
the case, under the keyboard edge of the cover, for selecting
whether or not Reset works without Control. On the Apple Ile and
Apple Ile, there is no choice: Control-Reset works, and Reset alone
does not.

The Apple Ile and Ile have an Open Apple and a Solid Apple key;
the Apple II and II Plus do not have these two keys.

The captions on several keys-Escape, Tab, Control, Shift, Caps
Lock, Delete, Return, and Reset-can vary: on the Apple II and
II Plus some are abbreviated or missing; on the Apple Ile all
keycaps are lowercase italic; on international models, some
captions are replaced by symbols (Appendix G).

The Apple Ile has two switches that the other models do not have.
One switch is for changing between 40-column and 80-column
display, the other is for selecting keyboard layout (Sholes versus
Dvorak on USA models), or both keyboard layout and character set
(on international models).

The position of the power-on light differs on the Apple II and
II Plus, Apple Ile, and Apple Ir'c. The Apple Ile has a disk-use light
as well.

Character sets
The Apple II and II Plus keyboard character sets are the same. They
are described in the Apple II Reference Manual.

The Apple Ile and Apple Ile keyboard character sets are the same:
full ASCII. The standard (Sholes) layout and key assignments are
described in the Apple Ile Reference Manual. The Dvorak layout
and key assignments are described in Chapter 4 and Appendix G of
this manual.

358 Appendix F: Apple II Serles Differences

To change between the two available keyboard layouts requires
modification to the main logic board on the Apple Ile, but only
toggling of the keyboard switch on the Apple Ile.

Apple Computer, Inc., manufactures fully localized models (with
regard to power supply and character sets) of both the Apple Ile and
the Apple Ile. However, there are minor variations in keyboard
layout, even among early and late production models of the same
machine. For further details, refer to Appendix G of this manual or
to the Apple Ile Supplement to the Owner's Manual.

The speaker
The Apple Ile has two speaker features that the three previous
models do not have. They are a two-channel, but monaural, audio
output jack for headphones-which disconnects the internal
speaker when something is plugged into it-and a volume control.

The video display
This section discusses the general differences between Apple Ile
video display capabilities and those of the other computers in the
series. Note, however, that as new ROMs become available for the
Apple Ile, many differences between these two machines will
vanish.

Character sets
The Apple II and II Plus display only uppercase characters, but they
display them in three ways: normal, inverse, and flashing. The
Apple Ile and Ile can display uppercase characters in all three ways,
and they can display lowercase characters in the normal way. This
combination is called the primary character set.

The video display 359

The Apple Ile and Ile have another character set, called the
alternate character set, that displays a full set of normal and inverse
uppercase and lowercase characters, but can't display flashing
characters. The primary and alternate character sets are described
in Chapter 5. You can switch character sets at any time by means of
the AltChar soft switch, also described in Chapter 5.

Flashing display must not be used with the enhanced video firmware
active. Use it in 40-column mode with the enhanced video firmware
turned off; otherwise, strange displays may result, such as
MouseText characters appearing in place of uppercase letters.

To be sure of compatibility with some software, you have to switch
the Apple Ile keyboard to uppercase by pressing Caps Lock.

Mouse Text

MouseText characters (Chapter 5) are available on every Apple Ile,
and on the enhanced Apple Ile.

Vertical blanking

A signal called vertical blanking indicates when a display device
should stop projecting dots until the display mechanism returns
from the bottom of the screen to the top to make another pass.
During this interval, a program can make changes to display
memory pages, and thus provide a smooth, flicker-free transition
to a new display.

On the Apple Ile, vertical blanking (VBL) is a signal whose level
must be polled. (VBL is not available to software on the Apple II or
II Plus.) On the Apple Ile, vertical blanking is an interrupt (VBllnt)
that occurs on the trailing edge of the active-low VBL signal.
Programs intended to run on all Apple II series computers must take
this difference into account.

Display modes

All models have 40-column text mode, low-resolution graphics
mode, high-resolution graphics mode, and mixed graphics and
text modes. The Apple Ile (revision B motherboard) with an Apple
Extended 80-Column Text Card, and the Apple Ile have double
high-resolution graphics mode also.

360 Appendix F: Apple II Serles Differences

Disk 1/0
The Apple II, II Plus, and Ile can support up to six disk drives
(although four is the recommended maximum) attached in
controller cards plugged into slots 6, 5, and 4. The Apple Ile
supports up to two disk drives: its built-in drive (treated as slot 6,
drive 1), and one external disk drive (treated as slot 6, drive 2; also
treated as slot 7, drive 1 under ProDOS) for external-drive startup
purposes.

Uni Disk 3.5 The Apple lie with Uni Disk 3.5 support does not use slot 7,
drive l for external drives. They are handled through the
Smartport described In Chapter 6. The firmware for slot 7 ($C7xx)
Is needed for other parts of the firmware.

Serial 1/0
The Apple Ile serial ports (ports 1 and 2) are similar to Super Serial
Cards installed in slots 1 and 2 of an Apple Ile. The serial port
commands are a slightly modified subset of Super Serial Card
commands. This subset includes all the commands supported by
the earlier Apple Serial Interface Card and Communication Card.

Serial ports versus serial cards
There are several important differences between Apple Ile serial
ports and other Apple II series computers with serial cards installed
in them.

Apple Ile serial ports have no switches. Instead, initial values are
moved from firmware locations into auxiliary memory when the
power is turned on. Changes made to these values in auxiliary
memory remain in effect until the power is turned off. Pressing
Open Apple-Control-Reset does not change them.

When the port itself is turned on (with an IN or PR command), the
initial values in auxiliary memory are placed in the main memory
screen holes assigned to the port. These characteristics can be
changed by the port commands. The changed characteristics
remain in effect until the port is turned off and then on again (with
PR and IN commands).

Serial 1/0 361

The command syntax for the Apple Ile ports also differs from the
syntax for serial cards. A separate command character, Control-A
or Control-I, must precede each individual port command,
whereas several commands to a serial card can be strung together
between the command character and a carriage return character.

The letters used for some of the commands have been changed
from those used with the Super Serial Card (such as S instead of B for
sending a BREAK signal). Each serial port command letter is
unique, to simplify command interpretation.

Changing the command character from Control-A to Control-I, or
vice versa, makes the Super Serial Card change from
communication mode to printer mode and back; this is not the case
with Apple Ile serial ports. With the Apple Ile, use the System
Utilities disk to change modes.

Super Serial Card commands support some functions that Apple Ile
serial port commands don't support: translating incoming
characters, such as changing lowercase to uppercase (for the benefit
of the Apple II or II Plus); delaying after sending carriage return,
line feed, or form feed, and so on.

UniDisk 3.5 Several new serial port commands are available on the
Apple lie with UnlDisk 3.5 support. These commands have been
added to make It easier to write programs that are also
compatible with the Super Serial Card. See Chapters 7 and 8 for
these new commands.

Following a Control-I nnnN command, the Apple Ile automatically
generates a carriage return after nnnN characters; with the Super
Serial Card, you need to turn this on with Control-IC.

Serial 1/0 buffers
The communication port firmware uses auxiliary memory page $08
as an input and output buffer. By doing so, the firmware can keep up
with higher baud rates. It can also hide data from the Monitor,
Applesoft, and other system software.

Programs written for the Apple Ile or Ile can, of course, store
information in auxiliary memory page $08. However, such
information is destroyed when the communication port is
activated.

362 Appendix F: Apple II Serles Differences

Mouse and hand controllers
The DB-9 back panel connector on the Apple Ile is used for both
the mouse and hand controllers. On the Apple Ile, the DB-9
connector supports hand controllers only; the mouse must use the
connector on the interface card.

Mouse input

The Apple Ile provides built-in firmware support for a mouse
connected to the DB-9 mouse and hand controller connector.
Apple Ile mouse support includes mouse movement and button
interrupts (and vertical blanking interrupts for synchronization with
the display); Apple Ile mouse support relies on polling VBL instead
of vertical blanking interrupts.

As a result of how interrupts are handled on the two machines, the
mouse firmware routine calls function somewhat differently for the
Apple Ile and Apple Ile. However, using the calls in the manner
described in Chapter 9 ensures mouse support compatibility
between the two machines. The ratio of mouse movement to cursor
movement is different on the Apple Ile from on the Apple Ile.

Hand controller input and output

The Apple II, II Plus, and Ile have a 16-pin game 1/0 connector
inside the case that supports three switch inputs, four analog
(paddle) inputs, and four annunciator outputs. The Apple Ile and
Apple Ile have a DB-9 back panel connector that supports the three
switch inputs and two paddle inputs (plus two more on the internal
GAME 1/0 connector of the Apple II, II Plus, and Ile).

The Apple Ile does not support the four annunciator outputs.

The characteristic response curve for hand controllers differs for
the Apple Ile from that of the Apple II, II Plus, and Ile. Compare
Figure F-1 with Figure 11-42. This was done so the hardware would
support identifiable mouse and hand controller signals using the
same circuits.

Mouse and hand controllers 363

The paddle-timing circuit on the Apple II Plus is slightly different

from the one on the Apple Ile and Ile. On the Apple Ile and Ile the

100-ohm fixed resistor is between the NE556 discharge lead and the

capacitor; the variable resistor in the paddle is connected directly

to the capacitor. On the Apple II Plus, the capacitor is connected

directly to the discharge lead, and the fixed resistor is in series with

the paddle resistor.

Input Current
(mA)

ft5 Undefined
10

9

8

7

6

5

4

3

2

0 0 .8 1 2 2.4 3

Figure F-1
Apple II. II Plus, and lie hand controller signals

Cassette 1/0

4 5

Input Voltage
(volts)

The Apple II, II Plus, and Ile all have cassette input and output

jacks, memory locations, and Monitor support. The Apple Ile does

not.

UnlDisk 3.5 If you plan to run a program on your Apple lie that handles
cassette 1/0. make sure that It does not access $C028. The
Apple lie with UnlDlsk 3.5 support uses address $C028 to toggle
between Its two 16K banks of memory.

364 Appendix F: Apple II Serles Differences

Hardware
Besides the different microprocessors used in various models in the
Apple II series, there are important differences in power
specifications and custom chips.

Power

The power supplies for the Apple II, II Plus, and Ile are essentially
the same. The floor transformer and voltage converter for the
Apple Ile have smaller capacity for current and heat dissipation.
Therefore, it is important to observe the load limits specified in
each of the reference manuals.

Custom chips

The Apple Ile custom chips (memory management unit and
input/output unit) replaced dozens of Apple II Plus chips, and
added the functionality of dozens more. The Apple Ile has custom
MMU and IOU chips, too, but they represent different bonding
options, and so their pin assignments are not compatible.

In addition, the Apple Ile has a custom general logic unit (GLU),
timing generator (TMG), and disk controller unit (also known as an
Integrated Woz Machine, or IWM). The Apple Ile has two hybrid
units (AUD and VID) for audio and video amplification.

Hardware 365

366

Appendix G

USA and International Models

This appendix repeats some of the keyboard information given in
Chapter 4 for the two USA keyboard layouts, for easy comparison
with the other layouts available. Following these is a composite
table of the ASCII codes and the characters associated with them on
all the models discussed.

Keyboard layouts and codes
Each of the following subsections has a keyboard illustration and a
table of the codes that result from the possible keystrokes. Note,
however, that Table G-1 is the basic table of keystrokes and their
codes. For simplicity, suLsequent tables (up to Table G-7) list only
the keystrokes and codes that differ from those in Table G-1.

For example, pressing the A key produces a (hexadecimal 61);
pressing Shift-A produces uppercase A (hexadecimal 41); pressing
Control-A or Control-Shift-A produces SOH (the ASCII Start Of
Header control character, hexadecimal 01). You can tell that this
key has the same effect on all keyboards because nothing appears in
Tables G-2 through G-7 for that key.

A quick way to find out which characters in the ASCII set change on
international keyboards is to check Table G-8. In fact, only a few of
them change. The pairing of characters on keys varies more.

•!• Note: On all but the French and Italian keyboards, Caps Lock
affects only keys that can produce both lowercase letters (with or
without an accent) and their uppercase equivalents. With these
keys, Caps Lock down is equivalent to holding down Shift,
resulting in uppercase instead of lowercase. If a key produces
only a lowercase version of an accented letter, then Caps Lock
does not affect it.

On the French and Italian keyboards, Caps Lock shifts all the
keys. Furthermore, on the French keyboard, when Caps Lock is
down the Shift key undoes the shifting.

The shapes and arrangement of keys in Figures G-1 and G-2 follow
the ANSI (American National Standards Institute) standard, which is
used mainly in North and South America. The shapes and
arrangement of keys in Figure G-3 follow the ISO (International
Standards Organization) standard used in Europe and elsewhere.

The only differences between the ANSI and ISO versions of the USA
keyboard are

o the shapes of three keys: the left Shift key, Caps Lock, and Return

o the resulting repositioning of two keys (I and -) in Figures G-1
and G-3

o for some countries, the arrow symbols on Tab, Caps Lock,
Return, and the two Shift keys (as shown in Figure G-3)

USA standard (Sholes) keyboard
Figure G-1 shows the standard (Sholes) keyboard as it is laid out for
USA models of the Apple Ile with the keyboard switch up. Table G-1
lists the ASCII codes resulting from all simple and combination
keystrokes on this keyboard.

Keyboard layouts and codes 367

/fao/40 ~eyboard

I @ # $ % A & * () + -
esc 7 2 3 4 5 6 7 8 9 0 - = delete

{ } I
tab D w E R T y u I 0 p [] \

: II

control A s D F G H J K L : I re tum

< > ?
shift z x c v 8 N M I shift

-caps
I Cl {, t lock • ~ - · .. .,.

-
Figure G-1
USA standard (or Sholes) keyboard, keyboard switch up

Table G-1
Keys and ASCII codes

Key alone +Control + Shift +Both

Key Code Char Code Char Code Char Code Char

Delete 7F DEL 7F DEL 7F DEL 7F DEL
Left Arrow 08 BS 08 BS 08 BS 08 BS
Tab 09 HT 09 HT 09 HT 09 HT
Down Arrow OA LF OA LF OA LF OA LF
Up Arrow OB VT OB VT OB VT OB VT
Return OD CR OD CR OD CR OD CR
Right Arrow 15 NAK 15 NAK 15 NAK 15 NAK
Escape 1B ESC 1B ESC 1B ESC 1B ESC
Space 20 SP 20 SP 20 SP 20 SP
I II 27 27 22 22
,< 2C 2C 3C < 3C <

2D lF us SF lF us
. > 2E 2E 3E > 3E >
I ? 2F I 2F I 3F 3F
0) 30 0 30 0 29) 29)
1 ! 31 1 31 1 21 21
2@ 32 2 00 NUL 40 @ 00 NUI
3# 33 3 33 3 23 # 23 #

368 Appendix G: USA a nd International Models

Table G-1 (continued)
Keys and ASCII codes

Key alone +Control + Shift +Both

Key Code Char Code Char Code Char Code Char

4$ 34 4 34 4 24 $ 24 $
5% 35 5 35 5 25 % 25 %
6A 36 6 1E RS 5E A 1E RS
7& 37 7 37 7 26 & 26 &
8 • 38 8 38 8 2A • 2A
9(39 9 39 9 28 (28 (

, . 3B 3B 3A 3A
= + 3D 3D 2B + 2B +
[{ 5B [1B ESC 7B { 1B ESC
\ I 5C \ lC FS 7C I lC FS
l } 5D l lD GS 7D } lD GS
!- 60 60 7E 7E
A 61 a 01 SOH 41 A 01 SOH
B 62 b 02 STX 42 B 02 STX
c 63 c 03 ETX 43 c 03 ETX
D 64 d 04 EOT 44 D 04 EOT
E 65 e 05 ENQ 45 E 05 ENQ
F 66 f o6 ACK 46 F 06 ACK
G 67 g 07 BEL 47 G 07 BEL
H 68 h 08 BS 48 H 08 BS
I 69 09 HT 49 I 09 HT
J 6A j OA LF 4A J OA LF
K 6B k OB VT 4B K OB VT
L 6C I oc FF 4C L oc FF
M 6D m OD CR 4D M OD CR
N 6E n OE so 4E N OE so
0 6F 0 OF SI 4F 0 OF SI
p 70 p 10 DLE 50 p 10 DLE
Q 71 q 11 DCl 51 Q 11 DCl
R 72 r 12 DC2 52 R 12 DC2
s 73 s 13 DC3 53 s 13 DC3
T 74 t 14 DC4 54 T 14 DC4
u 75 u 15 NAK 55 u 15 NAK
v 76 v 16 SYN 56 v 16 SYN
w 77 w 17 ETB 57 w 17 ETB
x 78 x 18 CAN 58 x 18 CAN
y 79 y 19 EM 59 y 19 EM
z 7A z lA SUB 5A z lA SUB
Note: Codes are in hexadecimal here; refer to Tabfe G-8 for decimal
equivalents.

Keyboard layouts and codes 369

§e0/40 ~eyboard

·'
@ # $

esc I 2 3 4

II < >
tab I p

control A 0 E

:

shift : 0 J

"' caps
\ cJ lock

Figure G-2

USA simplified (Dvorak) keyboard
Figure G-2 shows the Dvorak layout of the USA keyboard.
Characters are paired up on keys in exactly the same way as on the
USA standard keyboard; only individual key positions are changed.
In fact, you can change the keycap arrangement to match
Figure G-2, lock the keyboard switch in its down position, and have
a working Dvorak keyboard. All keystrokes produce the same ASCII
codes as those shown in Table G-1.

°lo " & * () [}
5 6 7 8 9 0 [j delete

? + I
y F G c R L I = \

-u I D H T N s - relllrn

K x B M w v z shift

• <f-·· ··-7 .i t

USA simplified (or Dvorak) keyboard, keyboard switch down

370 Appendix G: USA and International Models

I @ # $
esc ' 2 3 4

-?/ D w E R

control A s D

I
{) \ z x c

0 0

Figure G-3

ISO layout of USA keyboard
Figure G-3 shows the layout of all ISO European keyboards (except
the Italian keyboard) when the keyboard switch is up. All keystrokes
produce the same ASCII codes as those shown in Table G-1.

% /\ & * (} + -
5 6 7 8 9 0 - = delete

{ }
T y u I 0 p [] ~

: II "'
F G H J K L ; I I

< > ?
v 8 N M I {)

• ~· · ··-? .j, t

ISO version of USA standard keyboard, keyboard switch up

Keyboard layouts and codes 371

/)0140 ~;;;

I @ £ $
esc 7 2 3 4

tab D w E R

control A s D

I
shift \ z x c
caps

c'.l lock

Figure G-4

English keyboard
With the keyboard switch up, the English model of the Apple Ile
keyboard layout is as shown in Figure G-3, and keystrokes produce
the ASCII codes shown in Table G-1.

With the keyboard switch down, the English model keyboard layout
is as shown in Figure G-4. The change in ASCII code production
(from that in Table G-1) is shown in Table G-2.

The only changed character is the substitution of the British pound
sterling symbol (£) for the cross-hatch symbol (#) on the shifted
3-key.

/n /UJ

% /\ & * () + -
5 6 1 8 8 0 - = delete

[}
T y u I 0 p [J return

: II N

F G H J K L ; I I

< > ?
v B N M I shift

• ~· ·,. .i. t

English keyboard , keyboard switch down

Table G-2
English keyboard code differences from Table G-1

Key alone + Control +Shift +Both

Key Code Char Code Char Code Char Code Char

3 £ 33 3 33 3 23 £ 23 £

Note: Codes are in hexadecimal here; refer to Table G-8 for decimal
equivalents.

372 Appendix G: USA and International Models

I 2 3 4
esc & e II I

-7/ A z E R

control D s D

>
{) < w x c

{} (3

Figure G-5

French keyboard
With the keyboard switch up, the French model of the Apple Ile
keyboard layout is as shown in Figure G-3, and keystrokes produce
the ASCII codes shown in Table G-1.

With the keyboard switch down, the French model keyboard layout
is as shown in Figure G-5. The changes in ASCII code production
(from that in Table G-1) are shown in Table G-3.

Note that on the French keyboard, Caps Lock shifts to the upper
characters on all keys. With Caps Lock on, Shift "unshifts" to the
lower character on any key pressed with it.

5 6 7 8 9 0 0

-
(§ e I c a) - delete

..
* T y u I 0 p /\ $ ~

% £
f G H J K L M iJ I

? I + v 8 N : : = {)

• ~·· ··-7 -i t

French keyboard, keyboard switch down

Keyboard layouts and codes 373

Table G-3
French keyboard code differences from Table G-1

Key alone +Control + Shift +Both

Key Code Char Code Char Code Char Code Char

&1 26 & 26 & 31 1 31 1
e2 7B e 7B e 32 2 32 2
II 3 22 22 33 3 33 3
14 27 27 34 4 34 4
(5 28 (28 (35 5 35 5
§ 6 5D § ID GS 36 6 lD GS
e7 7D e 7D e 37 7 37 7
!8 21 21 38 8 38 8
~9 5C ~ lC FS 39 9 lC FS
aO 40 a 00 NUL 30 0 00 NUL
) 0 29) 1B ESC 5B 0 lB ESC
A .. 5E A 1E RS 7E 1E RS
$ • 24 $ 24 $ 2A 2A
ii% 7C ii 7C ii 25 % 25 %
'£ 60 60 23 £ 23 £
< > 3C < 3C 3E > 3E >

' ? 2C 2C 3F 3F
' . 3B 3B 2E 2E
: / 3A 3A 2F I 2F I

Note: Codes are in hexadecimal here; refer to Table G-8 for decimal
equivalents.

374 Appendix G: USA and International Models

I @ 0 #£ $
esc ' 2 3 4

tab D w E R

control A s D

shift z x c
caps ~I

lock \ .. cJ

Figure G-6

Canadian keyboard
With the keyboard switch up, the Canadian model of the Apple He
keyboard layout is as shown in Figure G-1, and keystrokes produce
the ASCII codes shown in Table G-1.

With the keyboard switch down, the Canadian model keyboard
layout is as shown in Figure G-6. The changes in ASCII code
production (from that in Table G-1) are shown in Table G-4.

% /\ § & * () - +
5 6 7 8 9 0 - = delete

r e } /\ I
T y u I 0 p r a Ju \

: II

F G H J K L : I return

< > ? c
v B N M I e shift

• <f--· ·-7 {, t

?
\

Canadian keyboard, keyboard switch down

Table G-4
Canadian keyboard code differences from Table G-1

Key alone +Control + Shift +Both

Key code Char Code Char Code Char Code

2 0 32 2 00 NUL SB 0 00
3£ 33 3 33 3 23 £ 23
6 § 36 6 RS 1E SD § RS
ae 40 a 7F DEL 7D e 7F
U A 7C 0 7C 0 SE A SE
' ? 60 ESC 1B 3F lD
e~ 7B e lC FS SC ~ lC
" I 7E 7E 2F I 2F

Note: Codes are in hexadecimal here; refer to Table G-8 for decimal
equivalents.

Char

NUL
£
1E
DEL
A

GS
FS
I

Keyboard layouts and codes 375

I fl § $
esc 1 2 3 4

-7/ D w E R

control A s D

>
{) < y x c

0 0

Figure G-7

German keyboard
With the keyboard switch up, the German model of the Apple Ile
keyboard layout is as shown in Figure G-3, and keystrokes produce
the ASCII codes shown in Table G-1.

With the keyboard switch down, the German model keyboard layout
is as shown in Figure G-7. The change in ASCII code production
(from that in Table G-1) is shown in Table G-5.

% & I () = ? I

5 6 7 8 9 0 IS I delete

* T z u I 0 p (j + ~

/\

f G H J K L (j ,4 #

: : -v 8 N M - {)

• <:-·· ··-? -!- t

German keyboard, keyboard switch down

376 Appendix G: USA and International Models

Table G-5
German keyboard code differences from Table G-1

Key alone +Control + Shift +Both

Key Code Char Code Char Code Char Code Char

2 II 32 2 32 2 22 22
3 § 33 3 00 NUL 40 § 00 NUL
6& 36 6 36 6 26 & 26 &
71 37 7 37 7 2F I 2F I
8(38 8 38 8 28 (28 (

9) 39 9 39 9 29) 29)

O= 30 0 30 0 3D 3D
B? 7E B 7E B 3F ? 3F ?
fJ 7D fJ lD GS 5D fJ lD GS
+ • 2B + 2B + 2A • 2A •
b 7C b lC FS 5C b lC FS
A. 7B A. 1B ESC 5B A. 1B ESC
/\ 23 # 1E RS 5E /\ 1E RS
< > 3C < 3C < 3E > 3E >

' '
2C 2C 3B 3B

.. 2E 2E 3A 3A

Note: Codes are in hexadecimal here; refer to Table G-8 for decimal
equivalents.

Keyboard layouts and codes 377

I 2 3 4
esc & II I (

~ D z E R

control A s D

>
-0- < w x c

{} 0

Figure G-8

Italian keyboard
With the keyboard switch down, the Italian model keyboard layout is
as shown in Figure G-8. The change in ASCII code production (from
that in Table G-1) is shown in Table G-6.

With the keyboard switch up, the Italian model keyboard produces
exactly the same ASCII codes for each key, but what is displayed
differs for the ten characters indicated with the circled numbers 0,
2-5, and 7-11 in Table G-8.

5 6 7 8 9 0 - +
c iJ) £ a e - = delete

/\

* T y u I D p ; $ ~

°lo 0

F G H J K L M iJ §

? I !
v 8 N ; : iJ -0-

• <f-·· ··-7 t t

Italian keyboard, keyboard switch down

378 Appendix G: USA and International Models

Table G-6
Italian keyboard code differences from Table G-1

Key alone +Control + Shift +Both

Key Code Char Code Char Code Char Code Char

&1 26 & 26 & 31 1 31 1
II 2 22 22 32 2 32 2
'3 27 27 33 3 33 3
(4 28 (28 (34 4 34 4
~5 5C ~ lC FS 35 5 lC FS
e6 7D e 7D e 36 6 36 6
)7 29) 29) 37 7 37 7
£8 23 £ 23 £ 38 8 38 8
a9 7B a 7B a 39 9 39 9
eO 5D e lD GS 30 0 lD GS
IA 7E I 1E RS 5E A 1E RS
$ • 24 $ 24 $ 2A • 2A •
U.% 60 u 60 u 25 % 25 %
§0 40 § 00 NUL 5B 0 1B ESC
< > 3C < 3C < 3E > 3E >

? 2C 2C 3F ? 3F ? , .
, . 3B 3B 2E 2E
:/ 3A 3A 2F I 2F I
o! 7C 0 7C 0 21 21

Note: Codes are in hexadecimal here; refer to Table G-8 for decimal
equivalents.

Keyboard layouts and codes 379

i i £ $
esc 1 2 3 4

~ D w E R

control A s D

0 z x c
>

v < 0

Figure G-9

Western Spanish keyboard

With the keyboard switch up, the Western (that is, American)
Spanish model of the Apple Ile keyboard layout is as shown in
Figure G-1, and keystrokes produce the ASCII codes shown in
Table G-1.

With the keyboard switch down, the Western Spanish model
keyboard layout is as shown in Figure G-9. The change in ASCII
code production (from that in Table G-1) is shown in Table G-7.

% I & * () - +
5 6 7 8 g 0 - = delete

0 /\ §

T y u I 0 p I \ ~

:

F G H J K L ii ; ~

7 I II

v 8 N M r; 0

• <!--- - ·- ?> -} t

Western Spanish keyboard, keyboard switch down

380 Appendix G: USA and International Models

Table G-7
Western Spanish keyboard code differences from Table G~l

Key alone +Control + Shift +Both

Key Code Char Code Char Code Char Code Char

1 j 31 1 31 1 5B 5B
2 l 32 2 32 2 5D l 5D l
3£ 33 3 33 3 23 £ 23
61 36 6 36 6 2F I 2F I
, 0 27 27 7B 0 7B 0

'/\ 60 00 NUL 5E /\ 00 NUL
- § 7E 7F DEL 40 § 7F DEL
:N 7C :N lC FS 5C :N lC FS

? 2C 2C 3F ? 3F ? , .
. ! 2E 2E 21 ! 21
~II 7D ~ lD GS 22 lD GS
< > 3C < 1E RS 3E > 1E RS

Note: Codes are in hexadecimal here; refer to Table G-8 for decimal
equivalents.

ASCII character sets
Table G-8 lists the ASCII (American National Standard Code for
Information Interchange) codes that the Apple Ile uses, as well as
the decimal and hexadecimal equivalents. Where there are
differences between character sets, an asterisked number in the
main table refers to a column in the following part of the table.

Table G-8
ASCII code equivalents

ASCII Dec Hex ASCII Dec Hex ASCII Dec Hex ASCII Dec Hex

NUL 00 00 SP 32 20 2• 64 40 7• 96 6o
SOH 01 01 33 21 A 65 41 a 97 61
STX 02 02 34 22 B 66 42 b 98 62
ETX 03 03 o• 35 23 c 67 43 c 99 63
EQT 04 04 1* 36 24 D 68 44 d 100 64
ENQ 05 05 % 37 25 E 69 45 e 101 65
ACK 06 06 & 38 26 F 70 46 f 102 66
BEL 07 07 39 27 G 71 47 g 103 67

ASCII character sets 381

Table G-8 (continued)
ASCII code equivalents

ASCII Dec Hex ASCII Dec Hex ASCII Dec Hex ASCII Dec Hex

BS 08 08 (40 28 H 72 48 h 104 68
HT 09 09) 41 29 I 73 49 105 69
LF 10 OA • 42 2A J 74 4A j 106 6A
VT 11 OB + 43 2B K 75 4 k 107 6B
FF 12 oc 44 2C L 76 4C l 108 6C
CR 13 OD - 45 2D M 77 4D m 109 6D
so 14 OE 46 2E N 78 4E n 110 6E
SI 15 OF I 47 2F 0 79 4F 0 111 6F
DLE 16 10 0 48 30 p 80 50 p 112 70
DCl 17 11 1 49 31 Q 81 51 q 113 71
DC2 18 12 2 50 32 R 82 52 r 114 72
DC3 19 13 3 51 33 s 83 53 s 115 73
DC4 20 14 4 52 34 T 84 54 t 116 74
NAK 21 15 5 53 35 u 85 55 u 117 75
SYN 22 16 6 54 36 v 86 56 v 118 76
ETB 23 17 7 55 37 w 8 57 w 119 77
CAN 24 18 8 56 38 x 88 58 x 120 78
EM 25 19 9 57 39 y 89 59 y 121 79
SUB 26 lA 58 3A z 90 5A z 122 7A
ESC 27 1B 59 3B 3• 91 5B 3• 123 7B
FS 28 lC < (,() 3C 4• 92 5C 9• 124 7C
GS 29 lD 61 3D 5• 93 5D 10· 125 7D
RS 30 1E > 62 3E 6• 94 5E lP 126 7E
us 31 lF 63 3F 95 5F DEL 127 7F

The following characters correspond to those followed by an
asterisk in the preceding part of the table.

0 2 3 4 5 6 7 8 9 10 11

Hexadecimal 23 24 40 5B 5C 5D 5E 60 7B 7C 7D 7E
English (USA) # $ @ [\ l /\ { I }
English (UK) £ $ @ [\ l /\ { I }
German # $ § A 6 D /\ a 0 ti B
French £ $ a 0 c § /\ e D e
Italian £ $ § 0 c e /\ D a 0 e
Spanish £ $ § N /\ 0 ii c

382 Appendix G: USA and International Models

Certification
In the countries where it is applicable, the following product safety
certification supplements the USA FCC Class B notice printed on
the inside front cover of this manual. The safety instructions apply
to all countries.

Product safety
This product is designed to meet the requirements of safety
standard IEC 380, Safety of Electrically Energized Office Machines.

Important safety instructions
This equipment is intended to be electrically grounded. This
product is equipped with a plug having a third (grounding) pin. This
plug will fit only into a grounding-type alternating current outlet.
This is a safety feature.

If you are unable to insert the plug into the outlet, contact a licensed
electrician to replace the outlet and, if necessary, install a
grounding conductor.

Do not defeat the purpose of the grounding-type plug.

Power supply specifications
The basic specifications of the power supply furnished with the
Apple Ile for use in Europe and other countries having 50-Hz
alternating current are shown in Table G-8.

Table G-8
50-Hz power supply specifications

Line voltage
Maximum input
power consumption
Supply voltage
Supply current

199 to 255 VAC, 50 Hz
25W

+15 VDC (nominal)
1. 2 A (nominal)

Power supply specifications 383

384

Appendix H

Conversion Tables

This briefly discusses bits and bytes and what they can represent,
and peripheral identification numbers. It also contains conversion
tables for hexadecimal to decimal and negative decimal, and a
number of 8-bit codes.

These tables are intended for convenient reference. This appendix
is not intended as a tutorial for the materials discussed. The brief
section introductions are for orientation only.

Bits and bytes
This section discusses the relationships between bit values and their
position within a byte. Here are some rules of thumb regarding the
65C02:

o A bit is a binary digit; it can be either a 0 or a 1.

o A bit can be used to represent any two-way choice. Some choices
that a bit can represent in the Apple Ile are listed in Table H-1.

o Bits can also be combined in groups of any size to represent
numbers. Most of the commonly used sizes are multiples of four
bits.

o Four bits make a nibble (sometimes spelled nybble).

o One nibble can represent any of 16 values. Each of these values is
assigned a number from 0 through 9 and (because our decimal
system has only 10 of the 16 digits we need) A through F.

o Eight bits (two nibbles) make a byte (Figure H-1).

o One byte can represent any of 16 x 16 (or 256) values. The value
can be specified by exactly two hexadecimal digits.

o Bits within a byte are numbered from bit 0 on the right to bit 7 on
the left.

o The bit number is the same as the power of 2 that it represents, in
a manner completely analogous to the digits in a decimal
number.

o One memory position in the Apple Ile contains one 8-bit byte of
data.

o How byte values are interpreted depends on whether the byte is
an instruction in a language, part or all of an address, an ASCII
code, or some other form of data. Tables H-6 through H-9 list
some of the ways bytes are commonly interpreted.

o Two bytes make a word. The 16 bits of a word can represent any
one of 256 x 256 (or 65,536) different values.

o The 65C02 uses a 16-bit word to represent memory locations. It
can therefore distinguish among 65,536 (64K) locations at any
given time.

o A memory location is one byte of a 256-byte page. The low-order
byte of an address specifies this byte. The high-order byte
specifies the memory page the byte is on.

Table H-1
What a bit can represent

Context Representing O= 1 =

Binary number Place value 0 1 x that
power of2

Logic Condition False True

Any switch Position Off On
Any switch Position Clear• Set

Serial transfer Beginning Start Carrier (no
information
yet)

Serial transfer Data 0 value 1 value
Serial transfer Parity SPACE MARK
Serial transfer End Stop bit(s)
Serial transfer Communication BREAK Carrier

state

Bits and bytes 385

Table H-1 (continued)
What a bit can represent

Context Representing

P reg. bit N Neg. result?
P reg. bit V Overflow?
P reg. bit B BRK command?
P reg. bit D Decimal mode?
P reg. bit I IRQ interrupts

P reg. bit Z Zero result?
P reg. bit C Carry required?
• Sometimes ambiguously termed reset.

Figure H-1
Bits, nibbles. and bytes

High Nibble

MSB
7 6 5 4

Hexadecimal $80 $40 $20 $10
Decimal 128 64 32 16

Table H-2
Values represented by a nibble

O=

No
No
No
No
Enabled

No
No

Low Nibble

3 2

$08 $04 $02
8 4 2

Binary Hex Dec Binary Hex Dec

0000 $0 0 1000 $8 8
0001 $1 1 1001 $9 9
0010 $2 2 1010 $A 10
0011 $3 3 1011 $B 11
0100 $4 4 1100 $C 12
0101 $5 5 1101 $D 13
0110 $6 6 1110 $E 14
0111 $7 7 1111 $F 15

386 Appendix H: Conversion Tables

1 =

Yes
Yes
Yes
Yes
Disabled
(masked out)
Yes
Yes

LSB
0

$01
1

Hexadecimal and decimal
Use Table H-3 for conversion of hexadecimal and decimal
numbers.

Table H-3
Hexadecimal/decimal conversion

Digit $xOOO $0x00 $00x0 $000x

F 61440 3840 240 15
E 57344 3584 224 14
D 53248 3328 208 13
c 49152 3072 192 12
B 45056 2816 176 11
A 40960 2560 160 10
9 36864 2304 144 9
8 32768 2048 128 8
7 28672 1792 112 7
6 24576 1536 % 6
5 20480 1280 00 5
4 16384 1024 64 4
3 12288 768 48 3
2 8192 512 32 2
1 40% 256 16 1

To convert a hexadecimal number to a decimal number, find the
decimal numbers corresponding to the positions of each
hexadecimal digit. Write them down and add them up.

For example:

$3C = ? $FD47 ?

$30 = 48 $FOOO 61440
$0C = 12 $ DOO 3328

$ 40 64
"$3C = 60 $ 7 7

$FD47 64839

To convert a decimal number to hexadecimal, subtract from the
decimal number the largest decimal entry in the table that is less
than it. Write down the hexadecimal digit (noting its place value)
also. Now subtract the largest decimal number in the table that is
less than the decimal remainder, and write down the next
hexadecimal digit. Continue until you have 0 left. Add up the
hexadecimal numbers.

Hexadecimal and decimal 387

For example:

16215 $?

16215 - 12288 = 3927 12288 $7000
3927 - 3840 = 87 3840 $ FOO

87 - 80 = 7 80 $ 50
7 7 $ 7

16215 $7F57

Hexadecimal and negative decimal
If a number is larger than decimal 32,767, Applesoft BASIC allows
and Integer BASIC requires you to use the negative-decimal
equivalent of the number. Table H-4 is set up to make it easy for you
to convert a hexadecimal number directly to a negative-decimal
number.

Table H-4
Hexadecimal to negative decimal conversion

Digit $xOOO $$0x00 $$00x0 $$000x

F 0 0 0 -1
E -4096 -256 -16 -2
D -8192 -512 -32 -3
c -12288 -768 -48 -4
B -16384 -1024 --64 -5
A -20480 -1280 -80 --0
9 -24576 -1536 -96 -7
8 -28672 -1792 -112 -8
7 -2048 -128 -9
6 -2304 -144 -10
5 -2560 -16o -11
4 -2816 -176 -12
3 -3072 -192 -13
2 -3328 -208 -14
1 -3584 -224 -15
0 -3840 -240 -16

388 Appendix H: Conversion Tables

To perform this conversion, write down the four decimal numbers
corresponding to the four hexadecimal digits (O's included). Then
add their values (ignoring their signs for a moment). The resulting
number, with a minus sign in front of it, is the desired negative
decimal number.

For example:

$C010
$COOO:
$ 000:
$ 10:
$ O:

$C010

- ?

-12288
- 3840
- 224

16

-16368

To convert a negative-decimal number directly to a positive
decimal number, add it to 65,536. (This addition ends up looking
like subtraction.)

For example:

-151 = + ?

65536 + (-151) = 65536 - 151 = 65385

To convert a negative-decimal number to a hexadecimal number,
first convert it to a positive-decimal number, then use Table H-3.

Peripheral identification numbers
Many Apple products now use peripheral identification numbers
(called PIN numbers) as shorthand to designate serial device
characteristics. The Apple II series Universal Utilities disk presents a
menu from which to select the characteristics of, say, a printer or
modem. From the selections made, it generates a PIN for the user.
Other products have a ready-made PIN that the user can simply type
in.

Table H-5 is a definition of the PIN number digits. When
communication mode is selected, the seventh digit is ignored.

For example:

252/1111 means:

Communication mode.
8 data bits, 1 stop bit.
300 baud (bits per second).
No parity.

Do not echo output to display.
No line feed after carriage return.
Do not generate carriage returns.

Peripheral Identification numbers 389

Table H-5
PIN numbers

1 = Printer mode
2 =Communication mode

1 = 6 data bits, 1 stop bit
2 = 6 data bits, 2 stop bits
3 = 7 data bits, 1 stop bit
4 = 7 data bits, 2 stop bits
5 = 8 data bits, 1 stop bit
6 = 8 data bits, 2 stop bits

1 = 110 bits per second
2 = 300 bits per second
3 = 1200 bits per second
4 = 2400 bits per second
5 = 4800 bits per second
6 = 9600 bits per second
7 = 19200 bits per second

1 =No parity
2 = Even parity (total on = even)
3 = Odd parity (total on = odd)
4 = lvIARK parity (parity bit = 1)
5 = SP ACE parity (parity bit = O)

1 = Do not echo output on screen
2 = Echo output on screen

1 = Do not generate LF after CR
2 =Generate LF after CR

1 = Do not generate CR•
2 = Generate CR after 40 characters
3 = Generate CR after 72 characters
4 = Generate CR after 80 characters
5 = Generate CR after 132 characters

x x I x x x x

• If you select communication mode, then seventh digit must equal 1. This value is supplied automatically when
you use the UUD.

390 Appendix H: Conversion Tables

Eight-bit code conversions
Tables H-6 through H-9 show the entire ASCII character set. Note
that chara~ter values are shown with the high bit off. Unless
otherwise noted, all ASCII character values above $7F (127 decimal)
generate the same character as that value with the high bit off. Here
is how to interpret these tables:

o The Binary column has the 8-bit code for each ASCII character.

o The first 128 ASCII entries represent 7-bit ASCII codes plus a
high-order bit of 0 (SPACE parity or Pascal)-for example,
01001000 for the letter H

o The last 128 ASCII entries (from 128 through 255) represent 7-bit
ASCII codes plus a high-order bit of 1 (MARK parity or
BASIC)-for example, 11001000 for the letter H

o A transmitted or received ASCII character will take whichever
form (in the communication register) is appropriate if odd or
even parity is selected-for example, 11001000 for an odd-parity
H, 01001000 for an even-parity H

o The ASCII Char column gives the ASCII character name.

o The Interpretation column spells out the meaning of special
symbols and abbreviations, where necessary.

o The What to type column indicates what keystrokes generate the
ASCII character (where it is not obvious).

o The columns marked Prl and Alt indicate what displayed
character results from each code when using the primary or
alternate display character set, respectively. Boldface is used for
inverse characters; italic is used for flashing characters.

Note mat the values $40 through $5F (and $CO through $DF) in
the alternate character set are displayed as MouseText characters
(Figure 5-1) if the firmware is set to do so, or if the firmware is
bypassed.

•:• Note: The primary and alternate displayed character sets in
Tables H-6 through H-9 are the result of firmware mapping.
The character generator ROM actually contains only one
character set. The firmware mapping procedure is described in
Chapter 3.

Eight-bit code conversions 391

Table H-6
Control characters, high bit off

ASCII
Binary Dec Hex char Interpretation What to type Prl Alt

0000000 0 $00 NUL Blank (null) Control-@ @ @

0000001 1 $01 SOH Start of header Control-A A A
0000010 2 $02 STX Start of text Control-B B B
0000011 3 $03 ETX End of text Control-C c c
0000100 4 $04 EOT End of transm. Control-D D D
0000101 5 $05 ENQ Enquiry Control-E E E
0000110 6 $06 ACK Acknowledge Control-F F F
0000111 7 $07 BEL Bell Control-G G G
0001000 8 $08 BS Backspace Control-H or Left Arrow-H H H
0001001 9 $09 HT Horizontal tab Control-I or Tab I I
0001010 10 $0A LF Line feed Control-] or Down Arrow-] J J
0001011 11 $OB VT Vertical tab Control-K or Up Arrow K K
0001100 12 $0C FF Form feed Control-L L L
0001101 13 $OD CR Carriage return Control-M or Return M M
0001110 14 $OE so Shift out Control-N N N
0001111 15 $OF SI Shift in Control-0 0 0
0010000 16 $10 DLE Data link escape Control-P p p

0010001 17 $11 DCl Device control 1 Control-Q Q Q
0010010 18 $12 DC2 Device control 2 Control-R R R
0010011 19 $13 DC3 Device control 3 Control-S s s
0010100 20 $14 DC4 Device control 4 Control-T T T
0010101 21 $15 NAK Neg. acknowledge Control-U or Right Arrow u u
0010110 22 $16 SYN Synchronization Control-V v v
0010111 23 $17 ETB End of text blk. Control-W w w
0011000 24 $18 CAN Cancel Control-X x x
0011001 25 $19 EM End of medium Control-Y y y

0011010 26 $1A SUB Substitute Control-Z z z
0011011 27 $1B ESC Escape Control-[or Escape [[
0011100 28 $1C FS File separator Control-\ \ \
0011101 29 $1D GS Group separator Control-]]]
0011110 30 $1E RS Record separator Control-A I\ I\

0011111 31 $1F us Unit separator Control--

392 Appendix H: Conversion Tables

Table H-7
Special characters, high bit off

ASCII
Binary Dec Hex char Interpretation What to type Pri Alt

0100000 32 $20 SP Space Space bar
0100001 33 $21
0100010 34 $22
0100011 35 $23 # # #

0100100 36 $24 $ $ $
0100101 37 $25 % % %
0100110 38 $26 & & &

0100111 39 $27 Apostrophe
0101000 40 $28 (((

0101001 41 $29)))

0101010 42 $2A * *
0101011 43 $2B + + +
0101100 44 $2C Comma
0101101 45 $2D Hyphen
0101110 46 $2E Period
0101111 47 $2F I I I
0110000 48 $30 0 0 0
0110001 49 $31 1 1 1

0110010 50 $32 2 2 2

0110011 51 $33 3 3 3
0110100 52 $34 4 4 4
0110101 53 $35 5 5 5
0110110 54 $36 6 6 6
0110111 55 $37 7 7 7
0111000 56 $38 8 8 8
0111001 57 $39 9 9 9
0111010 58 $3A
0111011 59 $3B
0111100 60 $3C < < <
0111101 61 $3D
0111110 62 $3E > > >
0111111 63 $3F ? ?

Eight-bit code conversions 393

Table H-8
Uppercase characters, high bit off

ASCII
Binary Dec Hex char Interpretation What to type Pri Alt

1000000 64 $40 @ @ • 1000001 65 $41 A A 0
1000010 66 $42 B B

1000011 67 $43 c c z
1000100 68 $44 D D v
1000101 69 $45 E E r.
1000110 70 $46 F F ~
1000111 71 $47 G G -
1001000 72 $48 H H ~

1001001 73 $49 I I

1001010 74 $4A J J ,J..
1001011 75 $4B K K 1'
1001100 76 $4C L L

1001101 77 $4D M M +1
1001110 78 $4E N N I
1001111 79 $4F 0 0 ~
1010000 80 $50 p p ~
1010001 81 $51 Q Q ..
1010010 82 $52 R R ~ I
1010011 83 $53 s s
1010100 84 $54 T T L
1010101 85 $55 u u ~

1010110 86 $56 v v • 1010111 87 $57 w w • 1011000 88 $58 x x c
1011001 89 $59 y y :::::i

1011010 90 $5A z z I
1011011 91 $5B [Opening bracket [•
1011100 92 $5C \ Reverse slant \

1011101 93 $5D] Closing bracket J .IL ,,.
1011110 94 $5E /\ Caret /\ :!]
1011111 95 $5F Underline I
• If the high bit is set, the MouseText characters are replaced with their equivalent in the primary character set

with that value.

394 Appendix H: Conversion Tables

Table H-9
Lowercase characters, high bit off

ASCII

Binary Dec Hex char Interpretation What to type Pri Alt

1100000 96 $60 Grave accent
1100001 97 $61 a I a
1100010 98 $62 b b
1100011 99 $63 c # c
1100100 100 $64 d $ d
1100101 101 $65 e % e
1100110 102 $66 f & f
1100111 103 $67 g g
1101000 104 $68 h (h
1101001 105 $69) i
1101010 106 $6A j

,. j
1101011 107 $6B k + k
1101100 108 $6C 1 I
1101101 109 $6D m m
1101110 110 $6E n n
1101111 111 $6F 0 I 0

1110000 112 $70 p 0 p
1110001 113 $71 q 1 q
1110010 114 $72 r 2 r
1110011 115 $73 s 3 s
1110100 116 $74 t 4 t
1110101 117 $75 u 5 u
1110110 118 $76 v 6 v
1110111 119 $77 w 7 w
1111000 120 $78 x 8 x
1111001 121 $79 y 9 y
1111010 122 $7A z z
1111011 123 $7B { Opening brace (
1111100 124 $7C I Vertical line < I
1111101 125 $7D } Closing brace)
1111110 126 $7E Overline (tilde) >
1111111 127 $7F DEL Delete/rubout ? DEL

Eight-bit code conversions 395

396

Appendix

Firmware Listings

Appendix I is a listing of the source code for the Monitor firmware
(including the Smartport) contained in the memory expansion
version of the Apple Ile.

If you are developing products for an earlier version of the Ile, you
can obtain a complete set of firmware listings from the Apple
Programmer's and Developer's Association (APDA). You can also
order additional technical information on other Apple products
from the APDA. To obtain the listing set or other technical
information, write to

Apple Programmer's and Developer's Association
290 SW 43d Street
Renton, WA 98055
206-251-6548

Table 1-1
Main side ROM map

ClOO serial port

C200 communications port

C300 80-column routines

C400 memory expansion card: boot code/entry point
for ProDOS/entry point for DOS

C500-C58D UniDisk 3.5 routines

C58E miscellaneous

C600 Disk II routines

C700-C77F Mouse entry points

C780 ROM switch routines

C7FC last screen hole

C800 Interrupt routines

C900 Paddle patch; Mini-Assembler

CAOO Mini-Assembler; step and trace

CBOO scroll routines

CCOO pasinvert; picky; showcur; update; escape

CDOO video routines

CEOO video routines

CFOO video routines; miscellaneous

DOOO-F7FF Applesoft BASIC

F8@-FFFF RESET vectors

Appendix I: Firmware Listings 397

Table 1-2
Auxiliary side ROM map

ClOO

C200

C300

C400

C500-C57F

C780

C800-C87F

C880-CFFF

DOOO

DlOO

D200-D249

D24A-D3FF

D400

D4A9-D52B

D500-D52B

D52C-D5FF

D600-D700

D800

D900

DAOO

DBOO

DCOO

DCFO-DCFF

DDOO

DEOO

DfOO

EOOO-FFF9

398 Appendix I: Firmware Listings

Mouse interrupt handler; ACIA interrupt handler

continue; ACIA routines

ACIA routines; moveaux; xfer; memory test

continue; switch test

diagnostics

ROM switch routines

miscellaneous

UniDisk 3.5 routines

command processor for serial and
communications ports

continue

Mouse BASIC routines

empty

basilin; hex-to-dee

zero page test

miscellaneous

empty

Mouse routines

execute; xdiag; xstatus; pstatO; pcn41; pstatus;
xread; xwrite; prdblk; pwrblk; pread

pread continue; pwrite

despatch; dosconv; stattbl; parmtbl; undtbl;
testsize; format

fmpas; fmdos; makecat; cattbl; precut

doscut; pascut

diagnostics (orged at $DDOO)

stattest; addresstest; rollovertest; addbustest;
cleartest; fulltest

continue; computed; pass; fail; miscellaneous

print; messages

empty

(..)

'° '°

INCLUDE FILE t02 =>NAMES
IllCLUDE FILE t03 =>EQUATES
INCLUDE FILE t04 =>SERIAL
INCLUDE FILE t05 =>SER
INCLUDE FILE tO 6 =>CO!tl
INCLUDE FILE t07 =>CJSPACE
INCLUDE FILE t08 =>EQUATES2
INCLUDE FILE t09 =>SLINKY
INCLUDE FILE tl 0 =>MI SC
INCLUDE FILE tll =>BOOT
INCLUDE FILE tl2 =>~USE
INCLUDE FILE tl3 =>ICOOE.X
INCLUDE FILE tl 4 =>SWITCHER
INCLU~E FILE tl5 => IRQBUF
INCLUDE FILE tl 6 =>MINI
INCLUDE FILE tl 7 =>SCROLLING
INCLUDE FILE' tl8 =>ESCAPE
INCLUDE FILE tl9 =>PASCAL
INCLUDE FILE t20 =>~REMISC
INCLUDE FILE t21 =>AUTOSTl
INCLUDE FILE . t22 =>AUTOST2
INCLUDE FILE t23 •>BANK2
INCLUDE FILE t24 =>HINT
INCLUDE FILE t25 •>AUXSTUFF
IMCLUDE FILE t26 =>BANGER2
INCLUDE FILE t27 =>Rll.SLINKY
INCLUDE FILE t28 =>!COOE.X.AUX
INCLUDE FILE t29 •>SllITCHER2
INCLUDE FILE t30 =>CO!t!AND
IllCLUDE FILE t31 •>HHASIC
IllCLUDE FILE t32 =>BANGER
INCLUDE FILE t33 ·>~USEIN7 .X
INCLUDE FILE t34 •>S. EXECUTE
INCLUDE FILE t3 5 =>S. HAKECAT
INCLUDE FILE t36 •>S.DIAGO.SRC
INCLUDE . FILE t37 =>VECTORS2

Ul l"IKl'I

0000:

0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:

20-0CT-8b Ub:41 PAGE 2

0000 2 x6502

3 1st on, vsym,asym
4
5 •
6 • Firmware for the Apple /le
7 • Copyright Apple Computer Inc. , 1983,1985,1986
8 • All Rights Reserved
9 •

10 • Initial release -- December 1983
ll • Written by Rich llilliams, Ernie Beernink and James R Huston
12 •
13 ••
14 •
15 • Revision 2 -- May 1985, Richard llilliams
16 • rem expanded to 32K in 2 16K banks
17 • new features added:
18 • Protocol converter slot 5
19 • AppleTalk slot 7
20 • lie diagnostics
21 • Enhanced serial port commands
22 • Mini assembler
23 • Step and trace .
24 • most $F8 rom changes marked with a +
25 •
26 .. .
27 •
28 • Revision 3 -- April 1986, Raymond Chiang
29 • mouse aoved froa slot 4 to slot 7
30 • appletalk removed from slot 7
31 • memory card (slinky) added to slot 4
32 • boot sequence is now slot 4, then slot 6 and then slot 5
33 • $fbbf the rev byte will be 3. 1 and 2 will not be used
34 •
35

F800 36 F80RG EQU $F800

INCLUDE FILE t02 ·=>NAMES
ClOO: 39 1st on, vsym; asym
C100: 40 include equates ;Equates for Video ' Monitor RCJ!

~ 03 EauATES Apple //c Video Firmware 20-0CT-86 06:41 PAGE 3 03 EauATES Apple II c Video Firmware 20-0CT-86 06:41 PAGE ·4

8 C!OO: 2 CIOO : 0030 60 AIR Eau $30 ;Monitor temp
CIOO: 3 • CIOO: 003E 61 A2L Eau $3E ; lloni tor temp
CIOO: 4 ' APPle /le C!OO: 003F 62 A2H Eau $3F ;Monitor temp
C!OO: S • Video Firmware and CIOO: 0040 63 AJL Eau $40 ;Monitor temp
CIOO: 6 • Monitor RCM Source CIOO: 0041 64 AJH Eau $41 ;Monitor temp
CIOO: 1 • CIOO: 0042 6S A4L Eau $42 ;Monitor temp
C!OO: 8 ' COPYRIGHT 1977-1983 BY CIOO: 0043 66 A4H Eau $43 ;Monitor temp
CIOO: 9 ' APPLE CCMPUTER, IliC. CIOO: 0044 67 ASL Eau $44 ;Monitor temp
CIOO: 10 • CIOO: 004S 68 ASH Eau $4S ;Monitor temp
CIOO: 11 • ALL RIGHTS RESERVED CIOO: 69 •
CIOO: 12 • C!OO: 10 • Note: In Apple II, /le, both interrupts and BRX destroyed ·
CIOO: 13 ' S. l«lZNIAK 1977 CIOO: 71 • location $4S. Now only BRX destroys $4S (ACC) and it
C!OO: 14 ' A. BAUM 1977 CIOO: 72 • also destroys $44 (MACSTAT).
CIOO: IS ' JOH!i A NOV 1978 C!OO: 13 •
CIOO: 16 * R. AURICCHIO SEP 1981 CIOO: 0044 74 111\CSTAT Eau $44 ;Machine state after BRK
C!OO: 17 • E. BEERHINK 1983 CIOO : 004S 7S ACC Eau $45 ; Ace after BRK
CIOO: 18 • C!OO: 76 •
C!OO: 19 CIOO: 0046 11 XREG Eau $46 ; X reg after break
CIOO: 20 • CIOO: 0047 78 YREG Eau $47 ; Y reg after break
CIOO: 21 ' ZERO PAGE EauATES C!OO: 0048 79 STATUS Eau $48 ; P reg after break
C!OO : 22 • CIOO: 0049 80 SPNT Eau $49 ; SP after break
CIOO: 0000 23 LOCO Eau $00 ; vector for autostart from disk C!OO: 004E 81 RNOL EQU $4E ; random counter low
C!OO: 0001 24 LOCI Eau $01 CIOO: 004F 82 RNOH EQU $4F ; random counter high
CIOO: 0020 2S liNOLFT EQU $20 ; left edge of text window C!OO: 83 •
C!OO: 0021 26 liNDWDTH EQU $21 ; width of text window CIOO: 84 • Value equates
CIOO: 0022 27 liNDTOP EQU $22 ; top of text window C!OO: BS •
CIOO: 0023 28 liNDBTM EQU $23 ;bottom+! of text window CIOO: 0006 86 GCXlDFB EQU $06 ;value of /le, lolly ID byte
CIOO: 0024 29 CH EQU $24 ; cursor horizontal position C!OO: 009S 87 PICK EQU $9S ;CONTROL-U character
C!OO: 0025 30 CV EQU $2S ; cursor vertical position CIOO: 0098 88 ESC EQU $9B ;what ESC generates
C!OO: 0026 31 GBASL EQU $26 ; lo-res graphics base addr. ClOO: 89 •
CIOO: 0027 32 GBASH EQU $21 CIOO: 90 • Characters read by GETLN are placed in
C!OO: 0028 33 BASL EQU $28 ; text base address C!OO: 91 • IN, terminated by a carriage return.
ClOO: 0029 34 BASH EQU $29 CIOO: 92 •
C!OO: 002A 3S BAS2L EQU $2A ; temp base for scrolling C!OO: 0200 93 IN EQU $0200 ; input buffer for GETLN
CIOO: 0028 36 BAS2H EQU $28 CIOO: 94 •
CIOO: 002C 31 82 EQU $2C ;temp for lo-res graphics CIOO: 9S • Page 3 vectors
CIOO: 002C 38 LMNEM EQU $2C ;temp for mnemonic decoding CIOO: 96 •
C!OO: 002C 39 RTNL equ $2C ; Step return address CIOO: 03FO 97 BRKV EQU $03FO vectors here after break
CIOO: 0020 40 V2 EQU $20 ;temp for lo-res graphics CIOO: 03F2 98 SOFTEV EQU $03F2 vector for warm start
C!OO: 0020 41 RMNEM EQU $20 ; temp for mllellOnic decoding C!OO: 03F4 99 PllREDUP EQU $03F4 THIS HUST ~ EOR 1$A5 OF SOFTEV+l
CIOO: 0020 42 rtnh equ $20 ; Step return address C!OO: 03FS 100 AHPERV EQU $03FS APPLESOFT ' EXIT VECTOR
C!OO: 002£ 43 MASK EQU $2E ; color mask for lo-res gr. C!OO: 03FB 101 USRADR EQU $03F8 APPLESOFT USR function vector
CIOO: 002£ 44 FORMAT EQU $2E ; temp for opcode decode C!OO: 03FB 102 NM! EQU $03FB NM! vector
C!OO: 002F 4S LENGTH EQU $2F ; temp for opcode decode C!OO: 03FE 103 JRQLOC EQU $03FE Maskable interrupt vector
CIOO: 0030 46 COLOR EQU $30 ; color for lo-res graphics CIOO: 0400 104 LINE! EQU $0400 first line of text screen
CIOO: 0031 47 MOOE EQU m ; Monitor mode CIOO: 07F8 105 MSW! EQU $07FB owner of $CB space
C!OO: 0032 48 INVFLG EQU $32 ; normal/inverse(/ flash) CIOO: 106 •
CIOO: 0033 49 PROMPT EQU $33 ;prompt character CIOO: 107 ' HARDWARE EQUATES
C!OO: 0034 SO YSAV EQU $34 ;position i n Monitor command C!OO: 108 •
CIOO: 003S SI YSAVI EQU $3S ;temp for Y register CIOO: cooo 109 IOADR EQU $COOO for !NI, PRI vector
CIOO: 0036 S2 CSWL EQU $36 ; character output hook C!OO: cooo 110 KBD EQU $COOO >127 if keystroke
CIOO: 0031 S3 CSWH EQU $31 ClOO: cooo l ll CLRBOCOL EQU $COOO disable 80 column store
CIOO: 0038 S4 KSWL EQU $38 ; character input hook ClOO: COO! 112 SETBOCOL EQU $COO! enable 80 column store
C!OO: 0039 SS KSWH EQU $39 C!OO: C002 113 RDMAINRAM EQU $C002 read from main 4BK RAM
C!OO: 003A S6 PCL EQU $3A ; temp for program counter ClOO: C003 114 ROCARDRAM EQU $C003 read from alt • 4 BK RAM
C!OO: 0038 S7 PCH EQU $38 C!OO: C004 llS WRMAINRAM EQU $C004 write to main 48K RAM
C!OO: 003C SB XQT EQU $3C ; Step and trace execute area C!OO: coos 116 WRCARDRAM EQU $COOS write to alt. 4BK RAM
ClOO: 003C S9 AlL EQU $3C ;Monitor temp ClOO: coos 117 SETSTDZP EQU $COOB use main zero paqe/stack

03 EQUATES Apple //c Video Firmware 20-0CT-86 06 :41 PAGE 5 03 EQUATES Apple //c Video Firmware 20-0CT-86 06:41 PAGE 6

ClOO : C009 118 SETALTZP EQU $C009 ;use al t . zero paoe/staci ClOO: 176 • • • 1. - Don' t print ctrl chars
ClOO: cooc 119 CLR80VID EQU $COOC ;di sable 80 collllln hardware Cl OO : 177 • •• • o -
ClOO : COOD 120 SET80VID EQO $COOD ;enable 80 colu1111 hardware ClOO : 178 •• •• 1. •• • -
ClOO: COOE 121 CLRALTCBAlt EQO $COOE ; normal LC, flashino OC ClOO: 179 • • •• • o .. . - Print control characters
ClOO : COOF 122 SETALTCBAlt EQU $COOF ; normal inverse, LC; no flash ClOO: 180 • •• • • 1. .. - Don't print ctrl chars,
Cl OO: C010 123 KBDSTRB EQU $C010 ; turn off key pressed flao ClOO : 181 • •• • •• o .. -
ClOO: COll 124 RDLCBNK2 EQU $C011 ;>127 if LC bank 2 is in ClOO: 182 • • •••• 1.. -
Cl OO: C012 125 RDLCRNI EQU $C012 ;>127 if LC RAii read enabled ClOO: 183 • •• • ••• o. -
ClOO: C013 126 RDRNIRD EQO $C013 ;>127 if readi no main 48K ClOO: 184 •• •• ••• 1. -
ClOO: C014 127 RDRNlliRT EQO $C014 ;>127 if wri t i no main 48K ClOO: 185 • ••••• •• O - Print mouse characters
ClOO: C016 128 RDALTZP EQO $C016 ;>127 if Alt ZP and LC switched in ClOO : 186 • •• • ••• • 1 - Don' t print mouse characters
ClOO : C018 129 RD80COL EQO $C018 ;>127 if 80 col111n store ClOO: 187 •
ClOO: C019 130 RDVBLBAlt EQO $C019 ;>127 if not VBL ClOO: 0040 188 M.40 EQO $40
Cl OO : CO lA 131 RDTEXT EQO $C0 1A ;>127 if text (not oraphics) ClOO : 0020 189 M.CTL2 EQU $20 ; Don't print controls
ClOO : COlB 132 RDM JX EQU $C018 ;>127 if mixed mode on ClOO: 0008 190 M.CTL EQO $08 ; Don't pr int controls
ClOO : COlC 133 RDP1.GE2 EQU $C01C ;>127 if TXTPAGE2 switched in ClOO: 0001 191 M.MOOSE EC!] $01 ; Don't print 11<>use chars
ClOO : COlD 134 RDHIRES EQU $C01D ;>127 if HIRES is on ClOO : 192 •
ClOO: COlE 135 ALTCBAltSET EQO $CO lE ;>127 if alternat e char set in use ClOO: 193 • Pascal Mode Bits
ClOO : CO lF 136 RD80VID EQO $C01F ; >127 if 80 col111n hardware in ClOO: 194 •
Cl OO: C028 137 RCMBAMK EQO $C028 ; Swi tches roabanks ClOO: 195 • 1. • - BASIC active
ClOO: C030 138 SPKR EQO $C030 ; clicks the speaker ClOO: 196 • 0 ••• ••• • - Pascal active
ClOO : C050 139 TXTCLR EQO $C050 ;switch in oraphics (not text) ClOO: 197 •• o•
ClOO: C051 140 TXTSET EQO $C051 ; swit ch in text (not oraphics) ClOO : 198 • • 1.
Cl OO : C052 141 MIXCLR EQO $C052 ; clear mixed-mode Cl OO : 199 • •• o -
ClOO: C053 142 HIXSET EQO $C053 ; set mixed-mode (4 lines text) ClOO : 200 • •• 1. -
ClOO : C054 143 TXTPAGEl EQO $C054 ; switch in text Qaoe 1 ClOO: 201 • • •• 0 • •• • - Cursor always on
ClOO: C055 144 TXTPAGE2 EQO $C055 ; switch in text paoe 2 ClOO : 202 • ••• 1. •• . - Cursor always off
Cl OO: C056 145 LORES EQO $C056 : low-resolution oraphics ClOO: 203 • •••• o ..• - ooroXY n/a
Cl OO ~ C057 146 HIRES EQO $C057 ;hioh-resolution oraphics ClOO: 204 • •• • • 1. . . - OOXOXY in praoress
Cl OO: C058 147 CLRANO EQO $C058 ClOO : 205 • •••• • O •• - Normal Video
ClOO : C059 148 SETANO EQO $C059 ClOO : 206 • •••• • 1. • - Inverse Video
ClOO: C05A 149 CLRANl EQO $C05A ClOO : 207 • • •• • · •• o. -
ClOO : C05B 150 SETANl EQO $C05B ClOO : 208 • •• ••• • 1. -
ClOO: C05C 151 CLRAN2 EQO $C05C ClOO: 209 • • •• •• •• O - Print 11<>use chars
ClOO: C05D 152 SETAN2 EQO $C050 ClOO: 210 • • •••••• 1 - Don't print 11<>use chars
ClOO: C05E 153 CLRAN3 EQO $C05E ClOO: 211 •
Cl OO: C05F 154 SETAN3 EC!] $C05F ClOO : 0080 212 M.PASCAL EQO $80 Pascal active
Cl OO : C0 60 155 RD40SN EC!] $C060 ;>127 if 40 / 80 switch in 40 pos ClOO: 0010 213 H.CURSOR EQO $10 Don't print cursor
ClOO : C061 156 BUTNO EQO $C0 61 ; open apple key ClOO : 0008 214 H.GOXY EQO $08 GO'!OXY IN PRcx;RESS
ClOO: C062 157 BUTNl EQO $C0 62 ; closed apple key Cl OO : 0004 215 H.VKJOE EC!l $04
ClOO : C064 158 PADDLO EQO $C064 ; read paddle 0 ClOO: 216 •
ClOO: C070 159 PTRJG EQO $C070 ;triooer the paddles ClOO: 0478 217 RCMSTATE EC!l $478 temp store of RC»! state
ClOO : COB! 160 RCMIN EQO $C081 ;swi tch i n $0000- $FFFF RCM ClOO : 04F8 218 TD4Pl EQO $4F8 used by CTLCBAlt
ClOO: C083 161 LCHANK2 EC!] $C083 ; switch i n LC bank 2 ClOO: 0578 219 TOOA EQU $578 used by scroll
ClOO: CO BB 162 LCBANKl EC!l $C08B ;switch i n LC bank l ClOO : 05F8 220 TD4PY EQO $5F8 used by scroll
ClOO: CFFF 163 CLRROH EC!] $CFFF ; switch out $C8 RCMs Cl OO: 221 •
ClOO : EOOO 164 BASIC EC!] $£000 ;BASIC entry point ClOO: 047B 222 OLDCH EQO $478+3 last value of CH
ClOO: £003 165 BASIC2 EQO $£003 ;BASIC warm entry point ClOO: 057B 223 OURCH EQU $578+3 80-COL CH
Cl OO: 166 • Cl OO : 05FB 224 OURCV EQO $5F8+3 CURSOR VERTICAL
ClOO : 04FB 167 VKJDE EQO $4F8+3 ; OPERATING HOOE ClOO : 067B 225 VFACTV EQO $678+3 Bit7-video firmware inactive
Cl OO : 168 • ClOO: 06FB 226 XCOORD EQO $6F8+3 X-COORD (GOfOXY)
Cl OO: 169 ' BASIC VKJDE BITS ClOO 077B 227 NXTCUR EQO $778+3 next cursor to di splay
Cl OO: 170 • ClOO 07FB 228 CURSOR EQO $7F8+3 the current cursor char
ClOO: 171 • 1. - BASIC acti ve ClOO 229 •
ClOO: 172 • 0 •• ••••• - Pascal active ClOO 230 • Disk II boot rom equates
Cl DO: 173 •• o • • . . . • ClOO 231 •
ClOO: 174 • • 1. ClOO 0356 232 DNIBL EQU $356
ClOO: 175 • • • O •• •• • - Print control characters ClOO 0300 233 NBUFl EQO $300

.t>.
9

.t>. 03 EQUATES 0

"' CIOO: 0028
CIOO: 003C
ClOO: 004F

CIOO:
CIOO:
CIOO:
CIOO: C880
CIOO: cm
CIOO: C5F8
ClOO: C580
CIOO:

Apple //c Videc Firmware 20-0CT-86 06:41 PAGE 7

234 SLOTZ EQU $28
2 3 5 8CXYl'l'MP EQU $3C
236 BOOTDEV EQU $4F

238 ••••••••••••••••• •• •••••••••••••••••••••
239 • Entry points for other modules
240 tUUUUUttttttUUttttttttUttUUUt

241 pcnv equ $C880
242 bootfail equ $C5F5 Boot fails messaoe
243 pcnvrst equ $C5F8 Protocol converter reset
244 atalk equ $C580 Apple talk

41 include serial Equates for seri al code

04 SERIAL

CIOO
CIOO
CIOO
CIOO
CIOO
CIOO
CIOO
CIOO
CIOO
CIOO
CIOO
CIOO
CIOO
CIOO
CIOO
CIOO
CIOO
CIOO
CIOO
CIOO
CIOO
CIOO
CIOO
CIOO
CIOO
CIOO
CIOO
ClOO
ClOO
ClOO
ClOO
ClOO
ClOO
CIOO
ClOO
CIOO
CIOO
CIOO
ClOO
ClOO
ClOO
ClOO
ClOO
ClOO
ClOO
ClOO
ClOO
CIOO
ClOO
ClOO
ClOO
ClOO
ClOO
ClOO
CIOO
ClOO
ClOO
CIOO

ClOO
C200

008F
OODF

008A
0091
0093
0388
0438
0488
0538
05F9
05FA
0679
067A
0638
0688

Serial ' Conaunications equates 20-0CT-86 06:41 PAGE 8

3
4 •
5 • Apple Lolly cauaunications driver
6 •
7 ' By
8 • Rich llilliaas
9 • August 1983

10 • November 5 - j.r. huston
11 •
12 ttttttt•tttttttttttttttttttttttttttttttt

13 •
14 • Command codes
15 •
16 • Default cauaand char is ctrl-A (•A)
17 •
18 •
19 •
20 •
21 •
22 •
23 •
24 •
25 •
26 •
27 •
28 •
29 •
30 •
31 •
32 •

•Anna: Set baud rate to nn
•AnnD: Set data format bits to nn
•AJ: Enable videc echo
•AK: Disable CRLF
•AL: Enable CRLF
•AnnN: Disable videc echo ' set printer width
•AnnP: Set parity bits to nn
•AQ Quit tenainal 110de
•AR Reset the H:IA, IMfO PRfO
•AS Send a 233 ms break character
•Kr Enter terminal mode
•AZ: Zap control commands
•Ax: Set command char to •x
•AnneR:Set printer width {CR = carriage return)

33 • Mew c:ouands added in rev 1 E = enable D • Disable

•H; EID Coluan overflow
34 •
35 •
36 •
37 •
38 •
39 •
40 •

•AL E/D Linefeed same as L ' K
•AM EID Mask inC011in9 linefeeds
•AX EID Xon Xoff handshaking
•AF E/D Find keyboard

41 tttttttttUUUUUttttttUUttttttttttt

42 serslot equ $Cl00
43 comslot equ $C200
44 msb ON
45 cmdcur equ '?' ;cursor while in command mode
46 termcur equ .. ;cursor while in terminal mode
47 msb OFF
48 lfeed equ $8A ;Linefeed
49 xon equ $91 ; XOM character
50 xoff equ $93 ;XOFF character
51 sermode equ $388 ;D7=1 if in command D6=1 if terminal
52 astat equ $438 ; Acia status frOlll int 4F9 ' 4FA
53 pW<lth equ $488 ;Printer width 579 ' 57A
54 extint equ $538 ;extint ' typhed enable 5F9 ' 5FA
55 extint2 equ $5F9
56 typhed equ $5FA
57 oldcur equ $679 Saves cursor while in command
58 oldcur2 equ $67A Saves cursor while in ter11inal mode
59 eschar equ $638 current escape character 6F9 ' 6FA
60 flags equ $688 D7 = Videc echo D6 = CRLF 779 ' 77A

04 SERIAL Serial ' Communications equates 20-0CT-86 06:41 PAGE 9 05 SER Serial output port routine 20-0CT-86 06:41 PAGE 10

CIOO: 0738 61 col equ $738 ;Current printer column 7F9 ' 7FA C!OO: 3 •org serslot
CIOO: 077E 62 number equ $77E ;Number accumulated in command CIOO :2C 89 Cl 4 bit serrts ; Set v to indicate initial entry
CIOO: 04FC 63 aciabuf equ $4FC ;owner of serial buffer Cl03 :70 OC Cl11 5 bvs entrl ; Always taken
CIOO: 057C 64 twser equ me ; Storaoe pointer for serial buffer C105 :38 6 sec ; Input entry point
CIOO: o5rc 65 twkey equ $5FC ; Storage pointer for type ahead buffer CI06 :90 7 dfb $90 ;HCC opcode
CIOO: 067C 66 trser equ $67C ;Retrieve pointer for serial buffer C!07:18 8 clc
CIOO: 06FF 67 trkey equ $6FF ;Retrieve buffer for type ahead buffer CI08 :B8 9 clv ;V = O since not initial entry
ClOO: 0800 68 thbuf equ $800 ;Buffer in alt raa space Cl09:50 06 cm 10 bvc entrl ; Al ways taken
CIOO: 06F8 69 temp equ $6F8 ;Temp storage
CIOO: OSFE 70 charbuf equ $5FE ; 5FE, 67E are one byte character buffers CIOB:Ol 12 dfb $01 ;pascal signiture byte
CIOO: BFF8 71 sdata equ $BFF8 ; +$N0+$90 is output port CIOC:31 13 dfb $31 ;device signiture
CIOO: BIT9 72 sstat equ $BFF9 ; l!CIA status register CIOD:9E 14 dfb >plinit
CIOO: BITA 73 scomd equ $BFFA ;l!CIA command register CIOE:AB IS dfb >pl read
CIOO: BITB 74 sent! equ $BFFB ;l!CIA control register CIOF:B4 16 dfb >pl write
CIOO: 42 include ser ;Printer port @ $Cl00 Cl10:BB 17 dfb >plstatus

C11l:DA 19 entrl phx ; Save the reg
C112:A2 Cl 20 ldx f<serslot ;X =en
Cl14 :4C IC C2 21 jJlll setup : Set mslot, etc
Cl17 :90 03 enc 22 serport bee serisout ;Only output allowed
Cl19:4C ES C7 23 jJlll SWUllll ; Reset the hooks
C11C:OA 24 serisout asl A ;A= flaQS

Cl1D:7A 2S ply ;Get char
Cl1E:SA 26 phy
Cl1F:BD BB 04 27 lda pwdth,x ;Foniattino enabled?
C122 :FO 42 Cl66 28 beq prnow
Cl24 :AS 24 29 lda ch ;Get current horiz position
Cl26:BO IC Cl44 30 bes servid ; Branch if video echo
C!28 :DD BB 04 31 cap pwdth,x ; If CH >= PllIDTH, then CH • COL
Cl2B:90 03 C!30 32 bee chok
C12D:BD 38 07 33 Ida col,x
Cl30 :DD 38 07 34 chok cmp col,x ;Must be > col for valid tab
C133 :BO OB Cl40 3S bes fix ch ; Branch if ok
C13S :C9 11 36 cap 1$11 ;8 or 16?
C137 :BO 11 C14A 37 bes prnt ; If > forget it
C!39:09 FO 38 ora f$FO ; Find next comma cheaply
Cl3B:3D 38 07 39 and col,x ;Don't blame me it's Diclt's triclt
Cl3E :6S 24 40 adc ch
CHO :BS 24 41 fixch sta ch ;Save the new position
Cl42 :80 06 Cl4A 42 bra prnt
C!44 :CS 21 43 servid cap wndwdth ; If ch>= wndwdth go back to start of line
Cl46 :90 02 Cl4A 44 blt prnt
Cl48:64 24 4S stz ch ; Go back to left edge

CHA: 47 • lie have a char to print
Cl4A:7A 48 prnt ply
Cl4B:SA 49 phy
Cl4C:BD 38 07 so lda col,x ;Have we exceeded width?
Cl4F:DD BS 04 Sl cap pwdth,x
CIS2 :BO 08 ClSC S2 bge too far
CIS4 :CS 24 S3 cmp ch ; Are we tabbing?
CIS6:BO OE Cl66 S4 bge pr now
C!S8 :A9 40 SS lda 1$40 ;Space • 2
CISA:80 02 CISE 56 bra tab
Cl5C:A9 IA S7 toofar lda 1$1A ;CR • 2
Cl5E:CO 80 SS tab cpy 1$80 ;C = High bit

I
.i::..
0
U>

.c:. OS SER Serial output port routine 20-0CT-86 06:41 PAGE 11 OS SER Serial output port routine 20-0CT-86 06:41 PAGE 12 0 .c:.
Cl60:6A S9 ror A ; Shift it into char CIBB:SA llJ plstatus phy
Cl61 :20 9B Cl 60 jsr qoserJ ;out it qoes CIBC:48 114 pha
Cl64:80 E4 Cl4A 61 bra prnt CIB0 :4A m lsr A ;C = 0 output, 1 input
Cl66:98 62 prnow tya CIBE:DO IS ClDS 116 bne plerr ; Branch if bad call
Cl67:20 SA Cl 63 jsr serout ;Print the actual char CICO :08 117 php
Cl6A:8D 88 04 64 lda pwdth,x ;Formattinq enabled CIC! :20 03 C7 118 jsr swqetst ; Get stat us in A
Cl6D:FO 17 Cl86 6S beq done CIC4 :28 119 plp
Cl6F:JC 88 06 66 bit flaqs,x ; In video echo? CICS:90 OS CICC 120 bee plstwr
Cl72 :JO 12 Cl86 67 bmi done ClC7 :29 28 121 and 1$28 ;Test DCD = 0 ' rcvr full
Cl 74 :BO 38 07 68 lda col,x ;Check if within 8 chars of riqht edqe ClC9:0A 122 asl A ;$08 -> $10
Cl 11 :FD B8 04 69 sbc pwdth,x ; So BASIC can format output ClCA:SO 02 ClCE 123 bra plstrd
Cl7A:C9 F8 10 cmp f$F8 ClC:C:29 30 124 plstwr and 1$30 ;Test DCD = 0 ' Xllit empty
Cl7C:90 04 Cl82 71 bee set ch ; If not within 8, we' re done ClCE:C9 10 12S plstrd Clip 1$10 ; Is it what we want?
Cl7E:l8 72 clc ClDO:FO DD ClAF 126 beq plread2 ;C = I if equal
Cl 7F:6S 21 73 adc wndwdth ClD2:18 127 clc ;Not ready
Cl8l:AC 74 dfb $AC ;Dummy LOY to skip next two bytes ClD3:80 DA ClAF 128 bra plread2
Cl82:A9 00 7S setch lda 10 ;Keep cursor at O if video off ClDS:A2 40 129 plerr ldx 1$40 ;Bad call
Cl84 :SS 24 76 sta ch ClD7 : 68 130 pla
Cl86 : 68 11 done pla ;Restore reqs Cl08 :7A 131 ply
Cl87:7A 78 ply ClD9:18 132 clc
Cl88 :FA 79 plx ClDA:60 133 rts
Cl89:60 80 serrts rts

ClDB: m MSB ON
ClDB: ClDB 136 utsmsq equ •
ClDB:DS CE Cl C2 137 asc 'UNABLE TO START FRCI! MEMORY CARD'

Cl8A: Cl8A 82 serout equ • ; serial output ClFB:OO 138 dfb 0
Cl8A:20 A9 C7 83 jsr swcmd ; Check if command ClFC: 139 MSB OFF
Cl80:90 FA Cl89 84 bee serrts ; All done if it is
Cl8F: Cl8F es serout2 equ • ClFC: 0004 141 ds comslot-•, $00
Cl8F:JC 88 06 86 bit flaqs,x ;N• l iff video on C200: 43 include ca;m ;Communications port @ $C200
Cl92:10 07 Cl9B 87 bpl qoserJ
Cl94 :C9 91 88 Clip fxon ;Don't echo •o
Cl96:FO 03 Cl9B 89 beq qoserJ
Cl98:20 FO FD 90 jsr coutl ;Echo it
Cl9B:4C CD C7 91 qoserJ jmp swserJ ; Go to seroutJ

Cl9E: 93 • Pascal support stuff
Cl9E:SA 94 plinit phy
Cl9F:48 9S pha
CIAO :20 B6 C2 96 jsr default ; set defaults, enable acia
ClA3:9E BS 06 97 stz flaqs,x
ClA6:80 07 ClAF 98 bra plread2 ;all done ...

ClAS:SA 100 plread phy
ClA9:20 09 C7 101 jsr swread ; read data from serial port (or buffer)
ClAC:90 FA ClA8 102 bee plread ; Branch if data not ready
ClAE:90· 103 dfb $90 ; BCC to skip pla
ClAF:68 104 plread2 pla
ClB0:7A !OS ply
ClBl :A2 00 106 ldx 10
ClB3:60 107 rts

ClB4 SA 109 plwri te phy
ClBS 48 110 pha
ClB6 20 SA Cl lll jsr serout ;Go output character
ClB9 80 F4 ClAF 112 bra plread2

06 CCJV! Communications port routine 20-0CT-S6 06:41 PAGE 13 06 CCJV! Communications port routine 20-0CT-S6 06:41 PAGE 14

C200 :2C S9 Cl 3 bit serrts ; Set V to indicate initial entry C2SE: C2SE 61 testkbd equ
C203 :70 14 C2!9 4 bvs entr C2SE:6S 62 pla ;Get current char
C20S :JS S sin sec ;Input entry point C2SF:20 70 CC 63 jsr update ;Update cursor ' check keyboard
C206:90 6 dfb $90 ;BCC opcode to skip next byte C262:10 lB C27F 64 bpi serin ; N=O if no new key
C207: IS 7 sout clc ;output entry point C264 :20 A9 C7 6S jsr swcmd ; Test for command
C20S :BS s clv ;Mark not initial entry C267:BO EB C2S4 66 bes noesc ; Branch if not
C209:SO OE C219 9 bvc entr ;Branch around pascal entry stuff C269:29 SF 67 and f$Sf ;upshift for following tests

C26B:C9 Sl 6B cmp f'O' ;Quit?
C20B:Ol 11 dfb $01 ;pascal signiture byte C26D:FO 04 C273 69 beq exitX
C20C:31 12 dfb $31 ;device signiture C26F:C9 S2 70 cmp f'R' ;Reset?

C20D:ll lJ dfb >p2init C271 :DO 09 C27C 71 bne term! ;Go check serial
C20E:l3 14 dfb >p2read C273 :A9 9B 72 exitX lda f$9B ;return a CTRL-X

C20F:lS IS dfb >p2write C27S :7A 73 exit! ply
C210 :17 16 dfb >p2status C276:FA 74 pix

C277:60 7S rts
C211: IS • Pascal support stuff C27S:lS 76 gorenote clc ; Into remote mode

C279:20 A3 C7 77 goterm jsr swsttm ; Into terminal mode
C211:SO BB Cl9E 20 p2init bra plinit C27C: C27C 7S term! equ •
C213:SO 93 CIAS 21 p2read bra p!read C27C:20 4C CC 79 jsr showcur ;Get current char on screen
C21S :SO 9D CIB4 22 p2write bra pl write C27F:4S BO serin pha
C217 :SO A2 CIBB 23 p2status bra plstatus C2SO :20 D9 C7 Bl sinokbd jsr swread ; Is it ready?

C2S3 :BO 09 C2SE B2 bes sidata ; Branch if we got data
C219:DA 2S entr phx C2SS :BD BB 06 SJ lda flags,x ; Is keyboard enabled?
C21A:A2 C2 26 ldx f<comslot ;X = <CNOO C2SS :29 10 B4 and mo
C21C: C21C 27 setup equ • C2SA:FO D2 C2SE BS beq testkbd ; Branch if enabled
C21C:SA 2B phy C2SC:SO F2 C2SO B6 bra sinokbd ;Go test acia again
C21D:4B 29 pha C2SE:AS B7 sidata tay ;Save new input in y for now
C21E:SE rs 07 30 stx ms lot C28F:6S BB pla
C221:SO 22 C24S 31 bvc sudone ; First call? C290:SA B9 phy ;Save new char on stack
C223 :AS 36 32 lda cswl ; If both hooks CNOO setup defaults C291 :20 BB CJ 90 jsr starch ; Fix the screen
C22S:4S 38 33 eor kswl C294:6B 91 pla ;Get the new data
C227 :FO 06 C22F 34 beq sudodef C29S :BC 3B 06 92 ldy eschar,x ; If 0, don't modify char
C229:AS 37 JS lda cswh ; If both hooks CN then don't do def C29S :FO 12 C2AC 93 beq sinomod
C22B:CS 39 36 cmp kswh ; since it has already been done C29A:09 80 94 era 1$80 ; Apple loves the high bit
C22D :FO 03 C232 37 beq sunodef C29C:C9 91 9S cmp fxon
C22F :20 B6 C2 3B sudodef jsr default ; Set up defaults C29E:FO DC C27C 96 beq term! ; Ignore •o
C232 :BA 39 sunodef txa C2AO:C9 IT 97 cmp f$FF ; Ignore FFs
C233:4S 39 40 eor kswh ; Input call? C2A2 :FO DB C27C 9B beq term!
C23S:OS 38 41 era kswl C2A4 :C9 92 99 cmp · 1$92 ; "R for remote?
C237 :DO 07 C240 42 bne suout ;Must be CnOO C2A6:FO DO C27B 100 beq gorenote
C239:A9 OS 43 Ida l>sin ;Fix the input hook C2AB :C9 94 101 cmp 1$94 ; •T for terminal mode?
C23B :BS 3B 44 sta kswl C2AA:FO CD C279 102 beq goterm
C23D :38 4S sec ;C = 1 for input call C2AC:3C BB 03 103 sinomod bit sermode,x ; In terminal mode?
C23E :80 OS C24S 46 bra sudone C2AF:SO C4 C27S 104 bvc exit! ; Return to user if not A = char
C240 :A9 07 47 suout Ida f>sout ; Fix output hook C2Bl :20 ED FD !OS jsr cout ;Onto the screen with it
C242 :BS 36 48 sta cswl ;Note C might not be 0 C2B4 :80 C6 C27C 106 bra term!
C244 :IS 49 clc ;C=O for output C2B6: C2B6 107 default equ • ; Set up the defaults
C24S :8D 8B 06 SO sudone lda flaqs,x ;Check if serial or comm port C2B6 :20 AO er !OB jsr moveirq ;make sure irq vectors ok
C248 :89 01 Sl bit fl ; Leave flags in a for serport C2B9:8C 29 C2 109 ldy defidx-$Cl, x ; Index into alt screen. Table in command
C24A:DO 03 C24r S2 bne commport C2BC:20 7C CJ llO defloop jsr get alt ;Get default from alt screen
C24C:4C 17 Cl SJ comout jmp serport C28r:48 lll pha
C24r:90 r8 C24C S4 commport bee comout ;output? C2CO :88 112 dey
C2S!:68 SS pla ;Get the char C2Cl :30 04 C2C7 113 bmi def ff : Done if minus
C2S2:80 28 C27C S6 bra term! Input C2C3 :CO 03 ll4 cpy 13
C2S4 :JC 88 03 S7 noesc bit sermode,x In terminal mode? C2CS :DO rs C2BC llS bne defloop ;Or if 2
C2S7:SO IC C27S SB bvc exit! If not, return key C2C7: 20 AO er ll6 defff jsr moveirq ; Jam irq vector into LC
C2S9:20 BF Cl S9 jsr serout2 out it goes C2CA:6S ll7 pla ;Command, control & flags on stack
C2SC:BO IE C27C 60 bra terml C2CB :BC 2B C2 118 ldy devno,x

""" 0
01

.t>. 06 CCMI! Communi cat ions port routine
0

20-0CT-B6 06:41 PAGE 15 07 C3SPACE. Communications port r outine 20-0CT- 86 06:41 PAGE 16

0-
C2CE:99 FB BF 119 sta scntl,y ; Set command reg C300: 2 ..

C2Dl :6B 120 pla C300: 3 •

C2D2:99 FA BF 121 sta scomd,y· C300: 4 ' THIS IS THE $C3XX Rel! SPACE:

C2D5:68 122 pla C300: 5 •

C2D6:9D BB 06 123 sta flags,x ; And the flags C300: 6 u

C2D9:29 01 124 and II ;A= $01 (•A) if COllll mode C300 :48 7 C3ENTRY PHA ;save reqs

C2DB:DO 02 C2DF 125 bne def com C301 :DA B PBX

C2DD:A9 09 126 Ida 19
C2DF:9D 38 06 127 defcom sta eschar, x

; •1 for serial port C302 :5A 9 PHY
C303 :80 12 C317 10 BRA BASIC IN IT ;and init video firmware

C2E2 :6B 128 pla ;Get printer width C305 :38 11 C3KEYIN SEC ; Pascal 1.1 ID byte

C2E3 :9D BB 04 129 sta pwdth,x
C2E6: 9E BS 03 130 stz sermode,x

C306:90 12 DFB $90 ; BCC OPCODE (NEVER TAKEN)
C307:18 13 C3COOT1 CLC ;Pascal 1.1 ID byte

C2E9:60 131 rts C30B :BO IA C324 14 BRA BASICENT ;=>go print/read char

C2EA:03 07 132 defidx dfb 3, 7 C30A:EA 15 NOP

C2EC: OOCl 133 sltdmy equ <serslot ;Make table for hardware access C30B: 16 •

C2EC: C22B 134 devno equ •-sltdmy C30B: 17 ' PASCAL 1.1 FillMWARE PROTOCOL TABLE:

C2EC:AO BO 135 . dfb $AO,$BO C30B: 18 •
C30B:Ol 19 DFB $01 ;GENERIC SIGNATURE BYTE

C2EE: 0012 137 ds $C300-', $00 C30C:88 20 DFB $88 ; DEVICE SIGNATURE BYTE

C300: 44 include c3space ; BO column card ·@ $C300 C30D: 21 •
C30D:2C 22 DFB >JP IN IT ; PASCAL !NIT
C30E:2F 23 DFB >JP READ ; PASCAL READ
C30F :32 24 DFB >JP WRITE ;PASCAL WRITE
C310:35 25 DFB >JP STAT ; PASCAL STATUS
C311: 26 ..

C311: 27 •
C311: 2B • 128K SUPPORT ROUTINE ENTRIES:
C311: 29 •
C311 :4C AF C7 30 JMP SWAUX ;MEMORY MOVE ACROSS BANKS
C314 :4C B5 C7 31 JMP SliXFER ; TRANSFER ACROSS BANKS
C317: 32 "

C317: 33 •
C317: 34 ••••••••••••••••••••••••••• •• •••••••••••

C317: 35 • BASIC 1/0 ENTRY POINT:
C317: 36 ..

C317: 37 •
C311:20 20 CE 38 BASICINIT JSR HOOKUP ;COPYROM if needed, sethooks
C31A:20 BE CD 39 JSR SET BO ; setup 80 . columns
CJ10:20 5B re 40 JSR Hel!E ; clear screen
C320 :7A 41 PLY
C32l:FA 42 PLX ; restore X
C322:68 43 PLA ; restore char
C323: 18 44 CLC ;output a character
C324: 45 •
C324 :BO 03 C329 46 BASICENT BCS BINPUT ;=>carry· me to input
C326: 4C F6 FD 47 BPRINT JMP COOTZ · ; print a character.
C329:4C lB FD 48 BINPUT JMP KE YIN ; get a keystroke
C32C: 49 •
C32C:4C 41 CF 50 JPINIT JMP PINIT ;pascal init
C32F:4C 35 CF 51 JPREAD JMP PASREAD ;pascal read
C332:4C C2 CE 52 JPWRITE JMP PWRITE ;pascal write
C335: 4C Bl° CE 53 JPSTAT JMP PSTATUS ;pascal status call
C338: 54 •
C338: 55 • COPYRCl! is called when the video firmware is
C338: 56 • initialized . If the language card is switched
C338: 57 • in for reading, it copies the FB ROM to the
C338: 58 • lanquage card and restores the state of the
C338 : 5 9 • language card.

07 C3SPACE Communications port routine 20-0CT-86 06:41 PAGE 17 07 C3SPACE Communications port routine 20-0CT-86 06 :41 PAGE 18

C338: 60 • C384 :80 00 CO 118 STA CLR80COL no 80STORE to qet paqe 1
C338 :A9 06 61 COPYRCJ! LOA tGOOOF8 ;qet the ID byte C387 :SD 03 CO 119 STA RDCARDRAM pop in the other half of RAM
C33A: 62 • C38A:B9 7S 04 120 LOA $478, y read the desired byte
C33A: 63 • Compare ID bytes to whatever is readable, If it C38D:2S 121 PLP and restore memory
C33A: 64 • matches, all is ok·. If not, need to copy. C3SE:BO 03 C393 122 BCS GETALTl
C33A: 65 • C390:SD 02 CO 123 STA ROOINRAM
C33A:CD B3 FB 66 CMP F8VERS!Cli ;does it match? C393 :10 03 C39S 124 GETALTI BPL GETALT2
C33D :FO 3C C378 67 BEQ RCJ!OK C395 :SD 01 CO 125 STA SETSOCOL
C33F :20 60 CJ 6S JSR SETROll ;read RC>!, write RAM, save ·state C39S :60 126 GETALT2 RTS
c342 :A9 rs 69 LOA ms ; from FSOO-FFIT C399: 127 •
C344:S5 37 70 STA CSHH C399:09 so 128 UPSHIITO ORA t$80 ; set hiqh bit for execs
C346:64 36 71 STZ CSHL C39B:C9 FB 129 UPSHIIT CMP t$FB
C34S :B2 36 72 COPYRCJ!2 LOA (CSHL) ;qet a byte C39D:BO 06 C3A5 130 BCS X.UPSHIFT
C34A: 92 36 73 STA (CSHL) ; and save a byte C39F:C9 El 131 CMP t$El
C34C:E6 36 74 INC CSHL C3Al:90 02 C3A5 132 BCC X.UPSHIFT
C34E:DO rs C348 75 BNE COPYRCJ!2 C3A3:29 OF 133 AND t$DF
C350:E6 37 76 INC CSHH CJA5 :60 134 X.UPSHIFT RTS
C352 :DO F4 C34S 77 BNE COPYRCJ!2 ; fall into RESETLC C3A6: 135 •
C354: 78 • C3A6: 136 ' GETCOUT performs COU'r for GETLN. It disables the.
C354: 79 • RESETLC resets the lanquaqe card to the state C3A6: 137 • echoinq of control characters by clearinq the
C354: 80 • determined by SETROll. It always leaves the card C3A6: 13S • M.CTL .1ode bit, prints the char, then restores
C354: SI • write enabled. C3A6: 139 ' M.CTL. NOESC is used by the RDKEY routine· to
C354: 82 • C3A6 :. 140 • disable escape sequences, .
C354 :DA SJ RESETLC PHX ;save X C3A6: 141 •
C355 :AE 78 04 84 LOX RCJ!STATE ; qet the state C3A6:4S 142 GETCOUT PHA ; save char to print
C35S :3C SI CO 85 BIT RCJ!IN,X ; set bank ' RCJ!/RAM read C3A7:A9 OS 143 LOA tM.CTL ;disable control chars
C35B:3C 81 CO 86 BIT RCJ!IN,X ; set write enable C3A9:1C FB 04 144 TRB VMODE ;by clearinq M.CTL
C35E:FA 87 PLX ;restore X C3AC:6S 145 PLA ; restore character
C35F: 60 BS RTS C3AD:20 ED FD 146 JSR COOT ;and print it
C360: 89 • C3BO :4C 44 FD 147 JMP NOESCAPE ;enable control chars
C360: 90 • SETROll switches in the ROM for readinq, the RAM C3B3: 148 •
C360: 91 • for writinq, and it saves the state of. the C3B3: 149 • STORCH determines loads the current cursor position,
C360: 92 • lanquaqe card. It does not save the write C3B3: 150 • inverts the character, and displays it
C360: 93 • protect status of· the card. C3B3: 151 • STORCHAR inverts the character and displays it at the
C360: 94 • C3B3: 152 • position stored in Y
C360:DA 95 SETROll PHX ;save x C3B3: 153 ' STORY determines the current cursor position, and
C361 :A2 00 96 LOX to ;assume write enable, bank2, ROllRD C3B3: 154 • displays the character without invertinq it
C363 :2C 11 CO 97 BIT RDLCBNK2 ; is bank 2 switched in? CJB3: 155 ' STORE displays . the char at the position in Y
C366:30 02 C36A 9S BM! NOT! ;=>yes C3B3: 156 •
C36S :A2 08 99 LOX t$8 ; indicate bank 1 C3B3: 157 • If mouse characters are enabled (VMODE bit 0 = 0)
C36A:2C 12 CO 100 NOT! BIT RDLCRAM ; is LC RAM readable? C3B3: 158 • then mouse characters ($40-$5F) are displayed when
C36D:IO 02 C371 101 BPL NOREAD ;=>no C3B3: 159 • the alternate character set is switched in. Nonnally
C36F:E8 102 INX ; indicate RAM read C3B3: 160 • values $40-$5F are shifted to $0-$1F· before display.
C370 :EB 103 INX C3B3: 161 •
C371 :2C 81 CO 104 NOREAD BIT $C081 ;ROM read C3B3: 162 • Calls to GETCUR trash Y
C374 :2C 81 CO 105 BIT $COS1 ;RAM write C3B3: 163 •
C377 :SE 78 04 106 STX RCl!STATE ; save state C3B3: 20 90 CC 164 STORY JSR GETCUR ;qet newest cursor into Y
C37A:FA 107 PLX ; restore X C3B6:SO 09 C3Cl 165 BRA STORE
C37B:60 !OS RCl!OK RTS C3B8: 166 •
C37C: 109 • C3B8:20 90 CC 167 STORCH JSR GETCUR ; first, qet cursor position
C37C: 110 • GETALT reads a byte from aux memory screenholes, C3BB.:24 32 168 BIT INVFLG ; norm.al or inverse?
C37C: Ill • Y is the index to the byte (0-7) indexed off of C3BD:30 02 C3Cl 169 BM! STORE ;=>nonnal, store it
C37C: 112 • address $478. C3BF:29 7F 170 AND t$7F ; inverse it
C37C: 113 • C3Cl :5A 171 STORE PHY ; save real Y
C37C :AD 13 CO 114 GETALT LOA RDRAMRD ; save state of aux memory C3C2:09 00 172 ORA to ; does char have hiqh bit set?
C37F:OA 115 ASL A C3C4 :30 15 C3DB 173 BM! STORE! ;=>yes, don't do mouse check
C380 :AD 18 CO 116 LOA RDBOCOL ; and of the BO STORE switch C3C6:4S 174 PHA ;save char
C383 :08 117 PHP C3C7 :AD FB 04 175 LOA VMODE ; is mouse. bit set?

J>,.
0

.t>. 07 C3SPACE Communications port routine 20-0C'l-86 06:41 PAGE 19 08 EOUATES2 slinky equates 20-0CT-86 06 :41 PAGE 20
0
CX>

C3CA:6A 176 ROR A C400: 2 ... ,

C3CB:68 177 PI.A ; restore char C400: 3 • slinky equates
C3CC:90 OD C3DB 178 BCC STORE! :=>no, don't do mouse shift C400: 4 ..
C3CE:2C lE CO 179 BIT ALTCHARSET : no shift if][char set C400: 0101 S revnua equ $101 ;revision 1.0.1
C3Dl:l0 08 C3DB 180 BPL STORE! :=>it is! C400: 0011 6 pcrevnum equ $11 ; smartport rev 1. 1
C3D3 :49 40 181 EOR 1$40 ;$40-SSF=>O-Slf
C3DS :89 60 182 BIT 1$60 C400: 8 • prodos equates
C307 :FO 02 C3DB 183 BEQ STORE!
C3D9:49 40 184 EOR 1$40 C400: 0042 10 cmmand equ $42 ; command to be executed
C3DB :2C lF CO 185 STORE! BIT RDBOVID : 80 columns? C400: 0043 11 unit equ $43 ;0<6-4> = slot
C3DE:l0 19 C3F9 186 BPL STORES :=>no,· store char C400: 0044 12 buffer equ $44 ;pointer to Sl2 byte data buffer
C3EO :48 187 PBA ;save (shifted) char C400: 0046 13 block equ $46 : block number
C3El :BO 01 CO 188 STA SETBOCOL ;hit 80 store
C3E4 :98 189 TYA ;get proper Y C400: lS • protocol converter equates
C3ES :4S 20 190 EOR llNDLFT C•l if char in main ram
C3E7:4A 191 LSR A C400: 0043 17 ppant equ $43 ;parameter count
C3E8 :BO 04 C3EE 192 BCS STORE2 ; =>yes, main RAM C400: 0044 18 punit equ $44 ;unit number
C3EA:AD SS CO 193 LOA TXTPAGE2 ;else flip in aux RN! C400: 0045 19 pbuff _ equ $4S ; two byte buffer pointer
C3ED:C8 194 INY ;do this for odd left, aux bytes C400: 0047 20 pstat equ $47 ;status I control code
C3EE:98 19S STORE2 TYA ;divide pos'n by 2 C400: 0047 21 pblock equ $47 : block number
C3EF:4A 196 LSR A C400: 0047 22 pcount equ $47 ;byte count
C3FO:A8 197 TAY C400: 0049 23 paddr equ $49 ; address for read
C3Fl:68 198 PLA :oet (shifted) char C400: 004A 24 tenpptr equ $4A ;pointer to params-must be last 2 zp byte
C3F2:91 28 199 STORE3 STA (BASL), Y ;stuff it C400: OOOA 2S zused equ tempptr-cmmand+2 ;zero page bytes used
C3F4: 2C S4 CO 200 BIT TXTPAGEl ;else restore paqel
C3F7:7A 201 STORE4 PLY ; restore real Y C400: 27 • prodos commands
C3F8:60 202 RTS ;und exit
C3F9: 203 • C400: 0000 29 prostat equ 0 : status command
C3F9:91 28 204 STORES STA (BASL), Y ;do 40 column store C400: 0001 30 proread equ 1 ; read command
C3FB:7A 20S PLY ;restore Y C400: 0002 31 prowrit equ 2 ;write 001111and
C3FC:60 206 RTS ;and exit C400: 0003 32 profoI11 equ 3 ; fomat command
C3FD: 0003 207 OS sc4oo-•,soo
C400: 4S include equates2 ;Equates for PC and Slinky C400: 34 • DOS equates

C400: 0048 36 iobpl equ $48 ;pointer to IOB
C400: 0049 37 iobph equ $49
C400: 0001 38 ibslot equ 1 ;slot • 16
C400: 0002 39 ibdrvn equ 2 ;drive 1 or 2
C400: 0004 40 ibtrk equ 4 ;track number
C400: ooos 41 ibsect equ s : sector number
C400: 0008 42 ibbufp equ 8 ; buffer pointer
C400: oooc 43 ibcmd equ 12 ;command
C400: 0000 44 ibstat equ 13 ; status
C400: 0080 4S doserr equ $80 ; DOS l/0 error
C400: 9DlE 46 dosinit equ $9DlE ; DOS init vector use addr- 1
C400: A6C3 47 dossyn equ $A6C4- l ; DOS syntax error
C400: BDOO 48 rwts equ SBDOO ; RiiTS entry point

C400: SO • error codes

C400: 0001 S2 badcmd equ $01 ;bad 0011111and
C400: 0004 S3 badpcnt equ $04 ; bad parameter count
C400: 0011 S4 badunit equ $11 ; bad unit number
C400: 0021 SS badctl equ $21 ;bad control I status code
C400: 0027 S6 ioerr equ $27 ;other I/0 error
C400 : 0028 S7 nderr equ $28 ; no device error
C400: 0020 SB badblk equ $20 ;bad block or address

08 EOUATES2 slinky equates 20-0CT-86 06 :41 PAGE 21 09 SLINKY slinky entry points 20-0CT-86 06:41 PAGE 22

C400: 60 • prodos boot equates C400: 2 u

C400: 3 • slinky boot code
C400: 0002 62 bootjmp equ 2 ;11ake jmp to entry C400: 4 ..
C400 : 0000 63 bootblk equ 0 ; reads block 0
C400 : 0800 64 bootbuf equ $800 ; into $800 C400 :C9 20 6 Clip 1$20 ; Boot entry point
C400 : FABA 65 autoscan equ $FABA ; re-entry point to auto boot C402 :C9 00 7 cap l$00 ;Signature byte stuff
C400: FFS9 66 monitor equ $IT59 ;qo to 110nitor if boot fails C404 :C9 03 8 Clip 1$03

C406:C9 00 9 cmp 10
C400: 68 • scratch area equates C408 :BO 04 C40E 10 bes boot4 ;Always taken

C40A:AO OS 11 ldy IS ;Diagnostics entry point
C400: 0478 70 sizetenp equ $478 ; holds I blocks C40C:DO S4 C462 12 bne dos24
C400: 04F8 71 error equ $4F8 ;error flag C40E: 13 • Here is the boot code
C400: OS78 72 xval equ $S78 ; value to be returned in X C40E: 14 • Reads in block 0 into $800 and executes at $801
C400 : OSF8 73 yval equ $SF8 ; value to be returned in Y C40E: C40E IS boot4 equ •
C400: 0678 74 sl.lcstate equ $678 ; language card state C40E:78 16 sei ;No interrupts if booting
C400: 0778 7S sl.devno equ $778 ;slot • 16 ($n0) + $88 C40F:AS 39 17 lda kswh ;Save !NI
C400: 07F8 76 sl.mslot equ $7F8 ;$CO + slot ($Cn)

C411: 19 ****'***'*'*''**'****uuututuuuuuuuuut
C400: 78 • slot ram equates C411: 20 • the following two bytes must be $90 and $4B in locations $C411 and

cm: 21 • and $C412 respectively. the bee ($90) is never taken by the
C400: 0388 80 sl.scrnl equ $478-$CO cm: 22 • slinky code and the $4B is used to duplicate the aouse entry
C400: 0438 Bl sl.scrn2 equ $4FB-$CO cm: 23 • point as found in slot 7. this •fix' enables some programs
C400 : 04B8 82 sl.scrn3 equ $S78- $CO C411 : 24 • to still work correctly . (tim, you owe me a beer for this one!)
C400: 0538 83 sl.scrn4 equ $SF8-$CO C411: 25 tUUUttttUUUtUtUUUUUUUUUUUUUUt

C400: OSB8 84 sl.scrn5 equ $678-$CO
C400: 0638 8S sl.scrn6 equ $6F8-$CO C411 :90 48 27 dfb $90,$48 ; bee is never taken
C400: 06B8 86 sl.scrn7 equ $778-$CO
C400: 0738 87 sl.scrn8 equ $7FB-$CO C413:48 29 pha
C400: 0388 88 numbanks equ sl.scrnl ; number of 64K banks on card C414 :20 89 FE 30 jsr setkbd ; Reset the hooks
C400: 0688 89 powerup equ sl.scrn7 ; powerup byte C417:20 93 FE 31 jsr setvid
C400: 90 ;power2 equ sl.scrn8 C41A:68 32 pla

C41B:20 4C C7 33 jsr slboot ; Go get boot block
C400: 92 • hardware equates, must be in SBFOO to avoid double access C41E :AE 01 08 34 ldx bootbuf+l

C421 :FO OS C428 3S beq btok4 ;boot not okay
C400: BITB 94 addrl equ $BFF8 ; address pointer C423 :A2 40 36 ldx 14'$10 ;X=nO
C400: BFF9 9S addrm equ $BFF9 ; auto incs after every data access C42S :4C 01 08 37 jmp bootbuf+l
C400: BFFA 96 addrh equ $BFFA
C400: BFFB 97 data equ SBFFB ;data pointed to C42B: 39 • discontinue boot sequence if not power on reset or forced cold start

C400: 99 • other interface equates C428 :AS 00 41 btok4 lda loco
C42A:DO OD C439 42 bne btok4. I

C400: BFOO 101 proflag equ $BFOO ;O • Pascal, $4C = ProDOS, other = OOS C42C:AS 01 43 lda loci
C400: OOAA 102 nameflg equ $AA ; value unused in any catalog C42E:C9 C4 44 cmp 14+$CO
C400: oorc 103 sizeflg equ src ; block size flag C430 :DO 07 C439 4S bne btok4 . I
C400: OOFD 104 zers equ $FD ; catalog skip flag C432 :A9 C6 46 lda 1$c6 ; should be $C6 now
C400: OOFE !OS skpfe equ $FE ; skip FE bytes in cataloq C434 :85 01 47 sta loci
C400: 0004 106 slot equ $04 ; slot I C436:6C 00 00 48 jmp (locO) ; try slot 6 instead
C400: DCOO 107 diagcode equ SDCOO ; location of diagnostic code
C400: 2000 108 diagdest equ $2000 ; location of diagnostics in ram C439:A9 17 SO btok4. I lda 123 ;qo to bottom of screen
C400: IFFF 109 diagstart equ diagdest-1 ; start location of diagnostics C438:8S 2S SI sta CV
C400: 46 include slinky ; ram card at $C400

C43D :BD DB Cl S3 btok4 .2 lda utsmso, x ;'unable to start from memory card.'
C440 :FO 06 C448 S4 beq btok4 .3 ; skip if done
C442 :20 ED FD SS jsr cout
C445 :EB S6 inx
C446 :DO rs C43D S7 bne btok4 .2

C448:4C 00 EO S9 btok4 .3 jmp basic ;drop into basic

"'" ~

.z:::,.

0

09 SLINKY

C44B:4C lC C7

slinky entry points 20-0C'r-86 06:41 PAGE 23

61 jmp xset• ou ; should be at $C44B

09 SLINKY

CHE :
C44E:
CHE:

CHE:4C 54 C4
C451: 4C 94 C4
C454 :A9 28
C456:A6 43
C458 :30 2A C484
C45A:A9 01
C45C:A4 42

slinky entry points 20- 0C'r-86 06 :41 PAGE 24

63 tU Utt U U U Utttttttt tt UU ttttttttttU U ttUtt t

64 • Entry point for prodos driver
65 ttt U U U tttttttttUtU ttUttttttt•tttttt ttttUU t

67 entry4 jmp ent4 Juap to ProOOS
68 jmp pconv4 Jump to PC
69 ent4 lda tnderr Assume wronq drive
70 ldx unit
71 bmi rats4 ;Error!!!
72 lda tbadCJld ;Assume bad couand
73 ldy Clllllland ; Get command

C45E: 75 •the 'cpy 14' below use to be a 'cmp t4'. because of this
C45E: 76 • chanqe, revnum will be 1.0. l

C45E:CO 04
C460 :BO 22 C484
C462:A2 OA
C464 :BS 41
C466:48
C467:CA
C468 :DO FA C464
C46A:98
C46B:l8
C46C:69 14

C46E:
C46E:
C46E:

C46E:20 52 C7
C47l:A2 00
C473:68
C474 :95 42
C476:E8
C477 :EO OA
C479:90 F8 C473
C47B:AE 78 05
C47E:AC F8 05
C481 :AD F8 04
C484 :C9 01
C486:09 00
C488:60

C489:A9 01
C48B:DO 02 C48F
C48D:A9 11
C48F:8D F8 04
C492:DO DO C471

78
79
80 dos24
81 zsave4
82
83
84
85
86
87

cpy t4
bqe rat s4
ldx tzused
lda cmmand-1, x
pha
dex
bne zsave4
tya
clc
adc t20

; Branch if bad comand
; Save zp DOS jumps in here

;Add 20 to command for table look up

89 t tttttfittttt t

90 • This code is common to PC and ProDOS and DOS entry points
91 uuttttttUttttttttUUttUt

93 doit4 jsr
94 done4 ldx
95 rsloop4 pla
96 sta
97 inx
98 cpx
99 blt

100 ldx
101 ldy
102 lda
103 rats4 cmp
104 ora
105 rts

107 pccmd4 lda
108 bne
109 pcbad4 lda
110 pcerr4 sta
111 bne

slxeq
to

cmand,x

tzused
rsloop4
xval
yval
error
fl
to

tbadcmd
pcerr4
tbadunit
error
done4

;Go do oommand
;Restore zp

; Set X and Y to whatever

llas there an error?
C=lifnotO
Set n, z flaqs

; Bad command

; Bad protocol unit
; Save the error code

09 SLINKY slinky entry points 20-0CT-86 06:41 PAGE 25 U~ SLlNKI slinky entry points 20-0CT-86 06:41 PAGE 26

C4Dl:
C4Dl:
C4Dl:

156 *'
157 • DOS entry point stuff
158 tUUUUUUttUUUUUUUUUUUUUUUUUt

C494:
C494 :
C494 :

113 **"*********
114 • Protocol converter entry point
115 tttttttttUttUUUtt•tttttt•ttUUUUUttttttUt

C494:68 117 pconv4 pla ;Pull the return address C401:84 48 160 dosent4 sty iobpl ; Store pointer to JOB

C495 :AS 118 tay C4D3 :85 49 161 sta iobph

C496:C9 FD 119 cmp 1$FD ;C = 1 if carry in t3 C4D5 :AO 01 162 ldy libslot ;Get slot

C498:68 120 pla ; Hiqh byte of return address C407 :Bl 48 163 lda (iobpl) ,y

C499 :AA 121 tax C4D9:C9 40 164 cap 14'$10 ;Is it us?

C49A:69 00 122 adc 10 C4DB:FO 03 C4EO 165 beq dosslt4

C49C:48 123 pha C4DD:4C 04 BO 166 jmp rwtst4 ;Back to rwts

C49D:98 124 tya C4EO :AO 04 167 dosslt4 ldy 14 ; Command for DOS

C49E:69 03 125 adc 13 ;C = 0 from previous add C4E2 :20 62 C4 168 jsr dos24 ;Go do it and come back

C4A0:48 126 pha ;Return address t 3 now pushed C4E5 :FO 02 C4E9 169 beq dosok4 ;A = Error code

C4Al:A5 4B 127 lda tempptrtl ; Save zero page C4E7 :A9 80 170 lda ldoserr ; DOS io error code

C4A3 :48 128 pha C4E9:AO OD 171 dosok4 ldy libstat

C4A4 :86 4B 129 stx tempptrtl C4EB:91 48 172 sta (iobpl) ,y ;Put error code in status

C4A6:A2 09 130 ldx lzused-1 C4ED:60 173 rts

C4A8 :B5 41 131 pcsvzp4 lda cmmand-1,x ; Save rest of zp
C4AA:48 132 pha C4EE: oooc 175 ds $C4FA-' ,0 ;pad with 0' s

C4AB:CA 133 dex
C4l\C:DO FA C4A8 134 bne pcsvzp4 C4FA:ll 177 dfb pcrevnum ; Smartport revision number

C4AE:84 4A 135 sty tempptr C4FB:Ol 178 dfb $01 ;Hark ram card

C4BO:AO 03 136 ldy 13 ;Get (tempptr) t 3, +2, tl C4FC:OO 00 179 dw 0 ;Humber of blocks = 0 for status call

C4B2:99 41 00 137 pcqtp4 sta cmmand-1,y ; First store don't care C4FE:4F 180 dfb $4F

C4B5 :Bl 4A 138 pcskp4 lda (tempptr), y C4FF:4E 181 dfb >entry4

C4B7 :88 139 dey C500: 47 include misc ;Miscellaneous junk

C4B8 :DO FB C4B2 140 bne pcqtp4 C500: 008E 1 ds $C58E-• ,0

C4BA:AA 141 tax ; x = user canmand
C4BB: 142 ; Command = ptr to parm list. y = 0
C4BB :AO OB 143 ldy 18 ;Max I of param bytes
C4BD:Bl 42 144 pcparms4 lda (cmmand) ,y ; Get the parms
C4BF: 99 43 00 145 sta cmmandtl,y ;Note last store is on top of pointer
C4C2 :88 146 dey
C4C3:10 FB C4BD 147 bpl pcparms4
C4C5:46 44 148 lsr pun it ;Unit 0 or I?
C4C7 :DO C4 C48D 149 bne pcbad4
C4C9:8A 150 txa ;A= Command
C4CA:2A 151 rol A Get unit into low bit
C4CB:C9 14 152 cmp 120 C = 1 if invalid command
C4CD:BO BA C489 153 bes pccmd4 Branch if bad command
C4CF:90 90 C46E 154 bee doit4 Always taken

J:>,

~ 10 MISC
-'
I\)

CSBE:
CSBE:
CSBE:

C5BE:A2 OJ
C590:AO 00
C592:B6 JC
C594 :BA
C595:0A
C596:24 JC
C59B:FO 10 CSAA
C59A:05 JC
C59C:49 FF
C59E:29 7E
CSAO :BO OB CSAA
CSA2:4A
CSAJ:DO FB CSAO
CSAS: 9B
C5A6:9D 56 OJ
C5A9.:CB
CSAA:EB
CSAB:lO ES C592
C5AD:A9 OB
CSAF:BS 27
CS Bl :AO 7F
C5BJ:60

C5B4:
C5B4:
C5B4:

C5B4 :B9 00 02
C587 :CB
CSBB : 4C 99 CJ

C5BB:
C5BB:
C5BB:

C5BB:
C5BB:Cl ro ro EC
C5C4:

C5C4:
C5C4:
C5C4:

C5C4: 20 DO FB
C5C7 :20 5J F9
CSCA:BS JA
C5CC:B4 JB
C5CE: 60

C5CF:
C5CF:
C5CF:

C5CF:5A

slinky entry points 20-0C·T-B6 06:41 PAGE 27

tuu••Htttttut•tuuuutt••*******************
• maktbl - makes a deniblizing table for the disk II boot ..

7 MAKTBL LDX f$0J
8 LOY to
9 TBLLOOP STX BOOTTMP

10 TXA
11 ASL A
12 BIT BOOTTMP
lJ BEQ NOPATRN
14 ORA BOOTTMP
15 EOR f$FF
16 AND f$7E
17 TBLLOOP2 BCS NOPATRN
lB LSR A
19 BNE TBLLOOP2
20 TYA
21 STA DNIBL,X
22 !NY
2J NOPATRN INX
24 BPL TBLLOOP
25 LOA f$0B
26 STA $27
27 LOY f$7F
28 RTS

30 ••
Jl • getup - get char from input buffer, iny and upshift it

32 ********************•·····························
J4 getup
35
36

lda in, y
iny
jmp upshiftO

; get character

38 u

39 • this is who we is .in 9 letters
40 .. .

u ~

D~~ ~

" ~

ON
'Apple
OFF

/le'

46 ****''*******'******'****"
47 • showinst - disassemble an instruction and adjust the PC
48

50 showinst jsr
51 jsr
52 sta
5J sty
54 rts

instdsp
pcadj
pcl
pch

56

57 • xrnbasic - basic call to the mouse
58

60 xrnbasic phy

10 MISC

C5DO :BO lC C5EE
C5D2 :AO C7
C5D4 :C4 39
C5D6:DO 04 CSDC
C5D8 :A4 38
C5DA:FO 12 C5EE
C5DC:DA
C5DD:48
C5DE:29 7F
C5EO :C9 02
C5E2 :BO 06 CSEA
C5E4 :20 lC C7
C5E7 :20 JA C7
C5EA:68
C5EB:FA
C5EC:7A
C5ED:60
C5EE:4C 90 C7

slinky entry points

61 bes
62 ldy
6J cpy
64 bne
65 ldy
66 beq
67 xrnbout phx
68 pha
69 and
70 cmp
71 bge
72 jsr
73 jsr
74 mbbad pla
75 plx
76 ply
77 rts
78 gobas icin jmp

qobasicin
t<mbasic
kswh
xrnbout
kswl
qobasicin

f$7F
12
mbbad
xsetmou
xmhome

swbasicin

CSFl
C5F5
c5r5

0004 80 ds $C5F5-',0
4B include boot

OOOB 1 ds $C600-', 0

20-0CT-86 06:41 PAGE 28

; input?
; input from $C400?

;save X too

;we don't care about hiqh bit

;only 0, 1 valid

;qo to input routine

;more disk stuff
;Disk II boot @$C600
;Disk II in slot 6

11 BOOT Disk II boot code 20-0CT-86 06:41 PAGE 29 11 BOOT Disk II boot code ZU-OCT-86 06 :41 PAGE 30

C600: 4 .. C65E: 62 • cause volcanos to errupt, the qround •
C600: 5 • C65E: 63 • to shake, and ProIXJS not to boot! •
C600: 6 • Disk II boot stuff C65E: 64 * • ' • * • * * * * ' • * * * ' * ••••
C600: 7 • jumps to slot 5 if boot fails C65E:BD 8C CO 65 RDHDl LDA $COBC,X

C600 : B • C661 :10 FB C65E 66 BPL RDHDl

C600: 9 ". C663 :49 D5 67 !SMRKl EOR 1$D5

C600 :A2 20 10 LDX 1$20 C665 :DO ro C657 6B BNE RETRY

C602 :AO 00 11 LDY 1$00 C667:BD BC CO 69 RDHD2 LDA $COBC,X

C604 :64 03 12 STZ $03 C66A:10 FB C667 70 BPL RDHD2

C606:64 3C 13 STZ $3C C66C:C9 AA 71 CMP l$AA

C60B :A9 60 14 LDA 1$60 C66E:DO F3 C663 72 BNE ISMRKl

C60A:AA 15 TAX C670:EA 73 NOP

C60B :B6 2B 16 DRV2ENT STX SLOTZ C671 : BD BC CO 74 RDHD3 LOA $C08C,X

C60D:B5 4F 17 STA BOOTDEV C674:10 FB C671 75 BPL RDHD3

C60F:5A lB PHY ;Y=l IF DRIVE 2 BOOT, ELSE Y=O C676:C9 96 76 CMP 1$96

C610 :BD BE CO 19 LOA $COBE,X c678 :ro 09 C6B3 77 BEQ RD SECT

C613 :BD 8C CO 20 LDA $C08C,X C67A:2B 78 PLP

C616:7A 21 PLY C67B:90 C2 C63F 79 BCC RDADR

C617 :B9 EA CO 22 LOA $COEA, Y ; SELECT DRIVE 1 OR 2 C67D:49 AD 80 EOR 1$AD

C61A:BD 89 CO 23 LOA $C089, X C67F:FO 25 C6A6 Bl BEQ RDATA

C61D :AO 50 24 LOY 1$50 C6Bl :DO BC C63F 82 BNE RDADR

C61F :BD BO CO 25 SEEKZERO LOA $COBO,X C6B3 :AO 03 B3 RDSECT LOY 1$03

C622: 9B 26 TYA C6B5 :B5 40 B4 RDSECl STA $40

C623:29 03 27 AND 1$03 C6B7 :BD BC CO B5 RDSEC2 LOA $COBC,X

C625 :OA 2B ASL A C6BA:10 FB C6B7 B6 BPL RDSEC2

C626:0S 2B 29 ORA SLOTZ C6BC:2A B7 ROL A

C62B :AA 30 TAX C6BD:BS 3C BB STA BOOTTMP

C629 :BD Bl CO 31 LOA $COB1,X C6BF:BD BC CO B9 RDSEC3 LOA $C08C,X

C62C:A9 S6 32 LOA 1$S6 C692 :10 FB C6BF 90 BPL RDSEC3

C62E :20 AB re 33 JSR WAIT C694 :2S 3C 91 AND BOOTTMP

C631 :BB 34 DEY C696 :BB 92 DEY

C632: 10 EB C61F 35 BPL SEEKZERO C697:DO EC C6BS 93 BNE RDSECl

C634 :BS 26 36 STA $26 C699 :2B 94 PLP

C636:B5 3D 37 STA $30 C69A:CS 30 9S CMP $30

C63B :B5 41 3B STA $41 C69C:DO Al C63F 96 BNE RDADR

C63A:20 BE CS 39 jsr maktbl C69E :AS 40 97 LOA $40

C63D:64 03 40 EXTENT! STZ $03 C6AO :CS 41 9B CMP $41

C63F:1B 41 RDADR CLC C6A2 :DO 9B C63F 99 BADRDl BNE RDADR

C640 :OB 42 PHP C6A4 :BO 9C C642 100 BCS RDDHDR

C641 :2B 43 RETRY! PLP C6A6:AO S6 101 RDATA LDY 1$S6

C642 :A6 2B 44 RDDHDR LOX SLOTZ RESTORE X TO $ 60 C6A8 :B4 3C 102 RDATO STY BOOTTMP

C644 :C6 03 4S DEC $03 UPDATE RETRY COUNT C6AA:BC BC CO 103 RDATI LDY $COBC,X

C646 :DO OE C6S6 46 BNE RDHDO BRANCH IF NOT OUT or RETRIES C6AD:10 FB C6AA 104 BPL ROAT!

C64B :BD BB CO 47 FUGIT LDA $COBB,X SHUT OFF DISK AND QUIT! C6AF :S9 D6 02 !OS EOR DNIBL- $BO, Y

C64B :AS 01 4B lda locl auto boot form slot 6? C6B2 :A4 3C 106 LOY BOOTTMP

C64D :C9 C6 49 cmp 1$c6 C6B4 :BB 107 DEY

C64F:DO A4 C5FS so bne boot fail C6BS: 99 00 03 !OB STA NBUFl, Y

C6Sl :4C 00 CS Sl jmp $cSOO ;maybe slot S will talk to us C6BB :DO EE C6AB 109 BNE RDATO
C6BA:B4 3C 110 RDAT2 STY BOOTTMP

C6S4: 0002 53 ds $C6S6-', 0 ; Keep aliqnment C6BC :BC BC CO 111 RDAT3 LDY $COBC,X

C6S6:0B 54 RDBDO PHP C6BF : IO FB C6BC 112 BPL RDAT3

C6S7 :BB SS RETRY DEY C6Cl:S9 06 02 113 EOR DNIBL-$BO, Y

C65B :DO 04 C65E 56 BNE RDHDI C6C4 :M 3C 114 LDY BOOTTMP

C6SA:FO ES C641 57 BEQ RETRY! C6C6 : 91 26 115 STA ($26) ' y

C6SC:BO DF C63D SB EXTENT BRA EXTENT! ; Blows up if this is moved too C6CB :CB 116 !NY

C65E: 59 •• * ••• * ••••••••••••• ' C6C9 :DO EF C6BA 117 BNE RDAT2

C6SE: 60 • The followinq code is sacred in it's • C6CB: BC BC CO 118 RDAT4 LDY $C08C,X

C65E: 61 • present form. To change it would C6CE:IO FB C6CB 119 BPL RDAT4

l>-
~

"'

b 11 BOOT Disk II boot code 20-0CT-86 06 :41 PAGE 31
~

b
C6D0:59 D6 02 120 EOR DNIBL-$80, Y
C6D3 ;DO CD C6A2 121 BADREAD BNE BADRDl
C6D5 :AO 00 122 LDY 1$00
C6D7 :A2 56 123 DENIBL LDX 1$56
C6D9:CA 124 DEN!Bl DEX
C6DA:30 fB C6D7 125 BM! DENIBL
C6DC:Bl 26 126 LDA ($26) 'y
C6DE :5E 00 03 127 LSR NBUFI,X
C6El :2A 128 ROL A
C6E2:5E 00 03 129 LSR NBUFl,X
C6E5:2A 130 ROL A
C6E6:91 26 131 STA ($26) ' y
C6E8 :CS 132 !NY
C6E9:DO EE C6D9 133 BNE DEN!Bl
C6EB: 134 ••••• t •••• * ••••• *
C6EB: 135 • Code beyond this point is not •
C6EB: 136 • sacred . •• It may be perverted •
C6EB: 137 • in any manner by any pervert. •
C6EB: 138 · ••••••••••••• * •• *
C6EB :E6 27 139 INC $27
C6ED :E6 3D 140 INC $3D
C6EF:A5 3D 141 LDA $3D
C6Fl :CD 00 08 142 CMP $0800
C6F4 :A6 4F 143 LDX BOOTDEV
C6F6;90 DB C6D3 144 BCC BAD READ
C6F8 :4C 01 08 145 JMP $0801
C6FB: 0005 146 DS $C700-' , 0 ; Last byte must be O
C700 : 49 include mouse ; Equates for the mouse .

12 MOUSE

C700
C700
C700
C700
C700
C700
C700
C700
C700

C700
C700
C700
C700
C700

C700;
C700:
C700;
C700:
C700:
C700:
C700:
C700:
C700:
C700:
C700;
C700 ;
C700 :
C700 :
C700 :
C700:
C700:
C700 :
C700:
C700:
C700!
C700:
C700:
C700:
C700:
C700;
C700;
C700:
C700:
C700:
C700;
C700:
C700;
C700;
C700:
C700;
C700:
C700 ;

Mouse firmware 20-0CT-86 06:41 PAGE 32

2 msb ON
3

4 •
5 • Mouse firmware for the Chels
6 •
7 • by Rich Williams
8 • July, 1983
9 •

10

12
13 •
14 • Equates
15 •
16 u

18 • Input bounds are in scratch area
0478 19 moutemp equ $478 ;Temporary storage
0478 20 minl equ $478
04F8 21 maxl equ $4F8
0578 22 minh equ $578
05F8 23 maxh equ $5F8

24 • Mouse bounds in slot 5 screen area
047D 25 minxl equ $47D
04FD 26 .minyl equ $4FD
057D 27 minxh equ $57D
05FD 28 minyh equ $5FD
067D 29 maxxl equ. $67D
06FD 30 maxyl equ $6FD
077D 31 maxxh equ $770
07FD 32 maxyh equ $7FD

33 • Mouse holes in slot 7 screen area
047F 34 mouxl equ $47F ;X position low byte
04FF 35 mouyL equ $4FF ;Y position low byte
057F 36 mouxh equ $57F ;X positi on high byte
05FF 37 mouyh equ $5FF ;Y position high byte
0 67F 38 mouarm equ $ 67F ; Arm interrupts from movement or button
077F 39 moustat equ $77F ;Mouse status ·

40 • Moustat provides · the following
41 • D7= Button pressed
42 • D6= Stat us of button on last read
43 • D5= Moved since last read
44 • D4= Reserved
45 • D3= Interrupt from VBL
46 • D2= Interrupt from button
47 • Dl = Interrupt from movement
48 • DO= Reserved

07FF 49 moumode equ $7FF ;Mouse mode ·
50 • D7 = 1 if user wants control of mouse interrupts
51 • D6-D4= Unused
52 • D3= VBL active
53 • D2= VBL interrupt on button
54 • Dl = VBL interrupt on movement
55 • DO= Mouse active

12 MOUSE Mouse f irmware 20-0CT-86 06: 41 PAGE 33 I 13 HCODE.X Mouse firmware 20-0CT-86 06:41 PAGE 34

C700: 0020 S6 movarm equ $20 C700: ·2 ,

C700: oooc S7 vblmode equ $0C C700: 3 •
C700: 0004 S8 butmode equ $04
C700: 0002 S9 movmode equ $02

;D2 mask I C700 : 4 • Entry points for mouse firmware
;·DI mask C700 ; s •

C700 : 6 , u ,

C700 :SO OS C707 7 mbasic bra outent
C702 :A2 03 8 pnull ldx 13

C700: 61 • Hardware addresses C704: 60 9 r t s . ;Mull for pascal ent ry
C700: COIS 62 mouxint equ $COIS ;D7 • x i nterrupt C70S :38 10 inent sec ;S iqnature bytes
C700: C017 63 mouyint equ $C017 ; D7 = y i nterrupt C706 : 90 11 dfb .$90
C700: C019 64 vblint equ $COJ9 ; D7 = vbl i nterrupt C707: IS 12 outent clc
C700: C078 6S ioudsbl equ $C07S ; Disable iou access C708 :4C CF CS 13 jmp xmbasic ; Go do basic entry
C700: C019 66 iouenbl equ $C079 ; Enable iou access C70B :OI 14 dfb $01 . ;Hore siqnature stuff
C700: C04S 67 mouclr equ $C04S ; Clear mouse interrupt C70C :20 IS dfb $20
C700: COSS 68 iou equ $COSS ; IOU interrupt switches C70D:02 16 dfb >pnull
C700: COSS 69 moudsbl · equ $COSS ;Disable mouse interrupts C70E:02 17 dfb >pnull
·c100: · COS9 70 mouenbl equ $COS9 ; Enable mouse interrupts C70F:02 IS dfb >pnull
C700: C063 71 moubut equ $C063 ; D7 =·House button C710 :02 19 .dfb >pnull
C700: C066 72 mouxl equ $C066 ;D7 =XI C711 :OO 20 dfb $0
C700: C067 73 mouyl equ $C067 ;D7 • YI C712:1C 21 dfb >xsetmou ;SE™OUSE
C700: C070 74 vblclr equ $C070 ;Clear VBL interrupt C713:22 22 dfb >xmtstint ; SERVD!OOSE
C700: 7S • C714:28 23 dfb >xmread ; READl«JUSE
C700 : 76 • Other addresses C71S :2E 24 dfb >xmclear ;CLEARHOOSE
C700 : 77 • C716:1A 2S dfb >noerror ; POSMOOSE
C700: 0200 7S i nbuf equ $20 0
C700 : 0214 79 binl equ inbuf+20

; Input buffer I C717:34 26 dfb >xmclamp ;CLAMPHOOSE
;Temp for binary conversion C71S :3A 27 .dfb >xmhome ;HOOMOUSE

C700: 0215 80 binh equ inbuf+21 C719:40 2S dfb >initmouse ;JNITl«JUSE
C700: so include mcode .x C71A: 29 ; dfb >pnull

C71A: 30 ; dfb >qoxmint

C71A:1S 32 noerror clc
C71B:60 33 rts

C71C: SD 28 CO 3S xsetmou sta ra11bank
C71F:4C C2 C6 36 jmp sw.setmou ; do the real t hinq

C722 :SD 2S CO 38 xmtstint sta ra11bank
C72S:4C CO C6 39 jmp sw. mt stint ; do the real thinq

C728 :SD 2S CO 41 xmread sta ra11bank
C72B :4C DS C6 42 jmp sw.mread ;do the real thinq

C72E :SD 2S CO 44 xmclear sta ra11bank
C731 :4C E3 C6 4S jmp .sw. mclear ;do the real thinq

C734 :SD 28 CO 47 xmclamp sta ra11bank
C737 :4C EE C6 48 jmp sw.mclamp ; do the real thinq

C73A:8D 2S CO SO xmhome sta ra11bank
C73D :4C F9 C6 Sl jmp sw.mha11e ; do the real thinq

C740 : SD 28 CO S3 ini tmouse st a ra11bank
C743 :4C 04 C7 S4 jmp sw.in i tmouse ; do the real t hinq

C74 6: 8D 28 CO S6 st a r a11bank
C749 :4C 9A CF S7 jmp m.oveirq ; from other side

C74C:SD 2S CO S9 slboot sta ra11bank

J:>.
~

01

b lJ MCODE.X
~

Mouse firmware 2o~OC'l'-86 06 : 41 PAGE J5 14 SllI'!CHER Mouse firmware 20-0C'l'-86 06:41 PAGE J6

°' C74F:4C 84 C6 60 jmp swsl.bt ;other side C780: 0000 2 ds $C780-',0
C780: 3 ..

C752:8D 28 CO 62 slxeq sta ranbank C780: 4 •

C75S :DA 6J phx C780: S • Code for switching between banks
C7S6:20 16 C8 64 jsr getlc C780: 6 • This code appears in both banks of the rom

C759:5A 65 phy C780: 1 •

C75A:8C 78 06 66 sty sl. lcstate C780: 8 ututtttuuuuuuuuuuuuuuut

C7SD:20 00 08 67 jsr execute C780 :80 28 CO 9 swrti sta rombank ; RT! to the other bank

C760 :4C OE C8 68 jmp fixlc C78J :40 10 rti
C784 :80 28 CO 11 swrts sta ranbank ; RTS to the other bank

C763: 0010 10 ds $c780-•, $00 C787:60 12 swrtsop rts
C780: Sl include switcher ;Bank switcher @ $C780 C788:8D 28 CO lJ swreset sta ranbank ; Reset routine

C78B:4C 62 FA 14 jap reset
C78E:8D 28 CO lS sta ranbank ; Interrupt routine
C791 :2C 87 C7 16 bit swrtsop ; Set v = I for other. bank
C794 :4C 04 C8 17 jmp irqent
C797:8D 28 CO 18 swpcnv sta rombank : Protocol converter
C79A:4C Fl C7 19 jmp swsthkJ ; Jump to sethooks from other side
C790:8D 28 CO 20 swbasicin sta ranbank ;Mouse BASIC routines
C7A0:4C F6 C7 21 jmp swzzqtJ ;Jump to zzquit from other side
C7A3 :80 28 CO 22 swsttm sta ranbank ; Set terminal aode
C7A6:4C Fl C7 2J jmp swsttaJ
C7A9:8D 28 CO 24 swcmd sta raabank ; Serial port comand processor
C7AC:4C 06 C8 2S jmp sWClldJ
C7AF:8D 28 CO 26 swaux sta raabank ;Moveaux
C782 :4C 4E CJ 27 jmp moveaux
C7BS :80 28 CO 28 swxfer sta rombank
C788 :4C 97 CJ 29 jmp xfer
C7BB:8D 28 CO JO swmint sta rombank ;Mouse interrupt handler
C7BE:4C 00 Cl Jl jmp aouseint
C7Cl : 80 28 CO J2 banger Sta rem bank
C7C4:4C BE 04 JJ jmp diags
C1C1 :80 28 CO J4 swatalk sta raabank ; Juap to appletalk
C7CA: 4C 80 CS JS jmp a talk
C7CD:8D 28 CO J6 swserJ sta raabank ; Juap to seroutJ
C7DO: 4C 4F C2 J7 jmp seroutJ
C703 :BO 28 CO J8 swqetst sta ranbank ; Jump to getstat
C706: 4C AC C2 J9 jmp get stat
C7D9:BD 28 CO 40 swread sta rombank ; Juap to xrdser
C7DC:4C C3 C2 41 jmp xrdser
C7DF:8D 28 CO 42 swqetb Sta ronbank ; Juap to getbuf
C1E2:4C F1 C2 4J jmp getbuf
C7ES:8D 28 CO 44 swzznm sta rombank
C1E8 : 4C CS 04 4S jmp zznm
C7EB:8D 28 CO 46 swxfgo sta rombank ; Jump to users xfer dest
C7EE:6C ED OJ 47 jmp ($JED)
C7Fl :20 2J CE 48 swsthkJ jsr set hooks
C7F4 :80 BE C784 49 bra swrts
C7F6:20 40 CE SO swzzqtJ jsr zzquit
C7F9:80 89 C784 Sl bra swrts

C7FB:D6 SJ dfb $06 ; should be at $C7FB

C1FC OOOJ SS ds $C1IT-', 0
C7FF 00 S6 dfb 0 ; llppletalk version number
C800 S2 include irqbuf ; Interrupt stuff @$C800

1' !K\IHUI" oena1 • AeyDoard bufferinq 20-0CT-86 06:41 PAGE 38
15 IRQBUF Serial ' Keyboard bufferinq 20-0CT-86 06:41 PAGE 37

C844:90 JC C882 61 BCC IRQLCOK ; + Branch if it was. LC unchanqed!
C800: 3 •H••uuuuuuuuuuuuuuuuu•

C846:6B 62 PLA ;Restore states recorded so far
CBOO: 4 •

C847:1B 63 CLC ;Reset break/interrupt handler
CBOO: 5 • NEWIRQ - The main {only) IRQ handlinq routines CB48 :2C 12 CO 64 IRQ5 BIT RDLCRAH ;DETERMINE IF LANGUAGE CARD ACTIVE
CBOO: 6 • IRQENT - Entry point fran alternate ran bank C84B:BO 03 CB50 65 bra passkipl ; Skip around pascal 1.0 stuff
CBOO: 7 •

C84D: 0000 66 ds $CB40-*, $00
CBOO: B •

C84D:4C AB Cl 67 jmp plread
CBOO: 9 • This routine saves the memory state of the machine, CB50: CB50 68 passkipl equ • CBOO: 10 • checks for an internal interrupt, and then calls the user's CB50:!0 OC C85E 69 BPL IR07
CBOO: II • interrupt handler at $3FE. CB52:09 OC 70 ORA f$C ; SET TllO BITS SO RESTORED
CBOO: 12 • The memory state is encoded as follows: CB54 :2C II CO 71 BIT RDLCBNK2 ; LANGUAGE CARD IS llRITE ENABLED
CBOO: 13 • 07 = I if Alernate zero paqe I stack CB57:10 02 C85B 72 BPL IR06 ; BRANCH IF NOT PAGE 2 OF $0000
CBOO: 14 • 06 = I if BO store and paqe 2 C859:49 06 13 EOR 1$6 ;ENABLE READ FOR PAGE 2 ON EXIT
CBOO: 15 • 05 = I if Read aux CB5B:BD Bl CO 14 IRQ6 STA RCMIN
CBOO: 16 • 04 = I if Write Aux CB5E:2C 16 CO 75 IRQ7 BIT RDALTZP ;LAST ... AND VERY IMPORTANT!
CBOO: 11 • 03 = I if L.C. enabled CB61:10 OD C870 76 BPL !ROB ; UNLESS IT IS NOT ENABLED
CBOO: IB • 02 = I if L.C. and $0000 bank I CB63:BA 11 TSX ; SAVE CURRENT STACK POINTER
CBOO: 19 • DI = I if L.C. and $0000 bank 2 CB64 :BE 01 01 1B STX $101 ; AT BCJrTQI OF STACK
CBOO: 20 • DO = I if Alternate rom bank C867:AE 00 01 79 LOX $100 ;GET MAIN STACK POINTER
CBOO: 21 • CB6A:9A BO TXS
CBOO: 22 • New chanqes in the interrupt handler are marked with a + C86B:BD 08 CO Bl STA SETSTDZP
CBOO: 23 • CB6E:09 BO B2 ORA 1$BO
CBOO: 24 u

CB70 :BO 35 C8A7 BJ IRQ8 BCS GOBREAK
CBOO :4C 9E Cl 25 jmp plinit ;Pascal 1.0 Initialization C812 :4B B4 PHA
CB03: CB03 26 NEWIRO EOU • ;+ CB73 :A9 CB B5 LOA f<IRQOONE
CB03 :BB 27 CLV ; + V=O for main bank C875 :4B B6 PHA
CB04: CB04 28 IROENT EOU • ; + Entry pt from other bank assumes V=l CB76:A9 7F B1 LOA l>IROOONE ; SAVE RETURN !RO ADDR
CB04:4B 29 PBA ;+ Save A on stack, not $45 • CB7B :4B BB PHA
CB05 :DA 30 PBX ;+ X too C879:A9 04 B9 LOA 14 ; SO llBEN INTERRUPT DOES RT!
CB06:BA 31 TSX ;+ Save stack pointer CB7B:4B 90 PHA ; IT RETURNS TO IRQIXJNE.
CB07 :6B 32 PLA ;+ Skip past X C87C:6C FE 03 91 JMP {$3FE) ; PROCESS EXTERNAi INTERRUPT
CBOB :6B 33 PLA ;+ And A
CB09:68 34 PLA ;+ Here is the status Oh boy!
CBOA:9A 35 TXS ;+ Fix the stack pointer CB7F: 93 • The user's RT! returns here
CBOB:5A 36 PHY ;Save Y too CB1F: 94 ' BEWARE
CBOC :AE 66 CO 31 LOX MOUXI ;Get mouse info CB7F: 95 • The rom must be reenabled with a LOA ranin
CBOF:AC 67 CO 3B LOY MOUYI ; As soon as we can C87F: 96 • This way if the LC was write protected, it still is
CB12:DB 39 CLO ;+ No decimal mode please C87F: 97 • if it was write enabled, it still is
CB!3 :29 10 40 AND f$10 ; + Test break bit CB7F: 98 • if it was beinq write enabled (2 ldas), it still will be
CB15 :C9 10 41 CMP f$10 ; + C= I if break, V unchanqed CB7F: 99 • The restore loop uses an INC because sane of the switches are read
C817 :AD IB CO 42 LOA RD80COL ;TEST FOR 80-STORE WITH C87F: 100 • and some are write. It must be an INC abs, x sinoe both the 6502 and
CBIA:2D IC CO 43 AND RDPAGE2 ; PAGE 2 TEXT. C87F: 101 • the 65C02 do two reads before the write {for different reasons).
CBID:29 80 44 AND 1$80 ; MAKE IT ZERO OR $80 CB7F:AD Bl CO 102 IRQOONE LOA RCMIN ; + Did some clown bank out the rom?
CBIF:FO 05 C826 45 BEQ IR02 CBB2:6B 103 IRQLCOK PLA ;Recover machine state
CB21:8D 54 CO 46 STA TXTPAGEI CBB3:10 07 C88C 104 BPL IRQDNl ; Branch if main zp was active
CB24 :A9 40 47 LOA 1$40 ; SET PAGE 2 RESET BIT. C885 :BO 09 CO 105 STA SETA!TZP
CB26:50 02 C82A 48 IR02 BVC IRQ21 ; + llhich Rombank? CBBB:AE 01 01 106 LOX $101 ;Restore alternate stack pointer
CB2B:09 01 49 ORA IOI ; + Mark other bank CBBB:9A 107 TXS
C82A:2C 13 CO 50 IRQ21 BIT RO RAM RD C88C:AO 06 108 IRQONI LOY 1$06 + Y = index into table of switches
C82D:IO 05 CB34 51 BPL IRQ3 ; BRANCH IF MAIN RAM READ C88E:IO 06 C896 109 IRODN2 BPL IRQDN3 + Branch if no chanqe
C82F: BO 02 CO 52 STA ROMAIN RAM ;ELSE, SWITCH IT IN CB90:BE 86 CF llO LOX IRQTBLE, Y + Get soft switch address
C832 :09 20 53 ORA 1$20 ; AND RECORD THE EVENT! CB93 :FE 00 CO lll INC $COOO,X + Bit the switch. No paqe cross!!!
C834: 2C 14 CO 54 IRQ3 BIT RDRAMWRT ;DO THE SAME FOR RAM WRITE. C896:88 112 IRQON3 DEY
C837:10 05 C83E 55 BPL IRQ4 CB97:30 03 C89C 113 BM! IRQON4 + Branch if all done
C839:BO 04 CO 56 STA WRMAINRAM CB99:0A ll4 ASL A Get next bit to check
CB3C:09 10 57 ORA f$10 C89A:OO F2 CBBE 115 BNE IRQON2 + Fall throuqh if all done
CB3E:BO 08 CB48 58 IR04 BCS IRQ5 ; Branch if break C89C:OA ll6 IRQON4 ASL A + C = I if other rom bank
C840:4B 59 PBA ;Save machine states so far ••• CB90:0A 111 ASL A
CB41:20 BB C1 60 JSR SltHNT ; + Go Test Mouse & ACIA

.e:.

......

::. 15 IRQBUF Serial ' Keyboard bufferi nq 20-0CT-B6 06:41 PAGE 39 15 IRQBUF Keyboard bufferinq 20-0CT-B6 06:41 PAGE 40
~

CX> CB9E:7A llB PLY
.

CBCC: 162 • The followinq routine is for readinq key-

CB9F:FA 119 PLX ;RESTORE ALL REGISTERS CBCC: 163 • board from buffers or directly.

C8A0:6B 120 PLA CBCC: 164 • Type-ahead bufferinq only occurs for non auto-

CBAI :BO 01 CBA4 121 BCS IRQDN5 ; + lihich rem bank? CBCC: 165 • repeat keypresses. llhen a key is pressed for

CBA3 :40 122 RT! ;DO THE REAL RT!! CBCC: 166 • auto-repeat the buffer is first emptied, then the

CBA4 : 4C BO C7 123 JRQDN5 JMP SliRTI ; + Go back to the other bank CBCC: 167 • repeated characters are returned.
CBCC: 16B • The minus flaq is used to indicate if a keystroke
CBCC: 169 • is beinq returned.
CBCC: 170 •

CBA7 : 125 ..

CBA7: 126 • CBCC :AD 00 CO 172 XRKBDI LOA KBD ;test keyboard directly

CBA7: 127 • GOBREAK- If a braek instruction has occurred, we check CBCT:IO 04 CBD5 173 BPL XRDKBD ; loop if buffered since test.

CBA7: 12B • if the BRK happened in the alternate rem bank . If it has, CBDI :BO 10 CO 174 STA KBDSTRB : Clear keyboard strobe.

CBA7: 129 • sane fool aay have hit the rem switch by accident and the PC is C804 :60 175 XNOKEY RTS ;Minus flaq indicates valid character

CBA7: 130 • decremented by two, the aain roa is switched in and we resu11e
CBA7 : 131 • where we think he wanted to qo C805 :20 E6 CB 177 XRDKBD JSR XBITKBD ; is keyboard input ready?

CBA7 : 132 • CBDB:IO FA CBD4 17B BPL XNOKEY ;Branch if not.

CBA7 : 133 ***'* CBDA:90 FO CBCC 179 Bee XRKBDI ; Branch if direct KBD input.

CBA7: CBA7 134 GOBREAK EQU • CBDC:5A IBO PHY ;Save Y

CBA7 :30 20 CBC9 135 BM! GBBRK ;Give up if alt zp CBDD:AO BO !Bl LOY 1$80 ;Y•$BO for keyboard buffer

CBA9:B9 09 136 BIT 19 : Fran alt ran and no lanq card? CBDF:20 or C7 IB2 JSR SNGETB ;Get data from buffer

CBAB:FO IC CBC9 137 BEQ GBBRK ; If not then break CBE2:7A IB3 PLY

CBAD:29 FE 13B AND 1$FE ; Force main ra1 C8E3 :09 00 IB4 ORA 10 : Set ainus flaq

CBAF:4B 139 PBA ;Save state C8E5:60 !BS RTS

CBBO:BA 140 TSX ; Save stack pointer
CBBI :6B 141 PLA ;Skip State CBE6:2C FA 05 IB7 XBITKBD BIT TYPHED ;This routine replaces "BIT KBD"

CBB2 :6B 142 PLA ;Skip Y CBE9:10 10 CBFB !BB BPL XBKB2 ; instructions so as to function with

CBB3 :6B 143 PLA ;Skip X CBEB: IB9 : type-ahead

CBB4 :6B 144 PLA ;Skip A CBEB:3B 190 SEC ;anticipate data in buffer is ready

CBB5:6B 145 PLA ;Skip P CBEC:OB 191 PHP ; save carry and minus flaqs

CBB6:6B 146 PLA :> address C8ED:4B 192 PBA ; preserve accmulator

CBB7 :7A 147 PLY :< address CBEE:AD IT 06 193 LOA TRKEY

CBBB:CO Cl 14B CPY 1$Cl ; In the RCJ4? CBFI :CD FC 05 194 CllP TNKEY : is there data to be read?

CBBA: 90 OB CBC7 149 BCC GBNarROM ; Branch if not C8F4 :FO 03 CBF9 195 BEQ XBKBI ;branch if type-ahead buffer empty

CBBC :E9 02 150 SBC 12 ;PC = PC - 2 CBF6:6B 196 PLA

CBBE:BO 01 CBC! 151 BCS GBNOC CBF7 :2B 197 PLP

CBCO :BB 152 DEY ; Borrow fran hiqh byte C8F8:60 19B RTS ; Carry and minus flaq already set.

CBC! :SA 153 GBNOC PHY ;Push new address CBF9: 199 •

CBC2 :4B 154 PBA CBF9:6B 200 XBKBI PLA

CBC3:9A 155 TXS ;Fix staclt pointer C8FA:2B 201 PLP ; restore N:C and Status

CBC4: 4C 7F CB 156 JMP JRQDONE C8FB:2C 00 CO 202 XBKB2 BIT KBO ;test KBD Directly

CBC7:9A 15 7 GBNOfR(Jo! TXS ;Fix stack pointer CBFE:IB 203 CLC ; indi cate direct test

CBCB: 6B 15B PLA ;Get state back CBIT:60 204 RTS

CBC9:4C 47 FA 159 GBBRK JMP NEllBRK ;Go do the break

C900: 206 ..

C900: 207 •
C900 : 20B * PADDLE patch
C900: 209 • This routine returns the mouse position instead of
C900: 210 • the paddle if the mouse is on
C900: 211 •
C900: 212 ...

C900: C900 213 mpaddle equ •
C900 :AD FF 07 214 Ida moumode ; Is the mouse active?

C903 :C9 01 215 cmp 101 ;Only transparent mode
C905 :FO 06 C90D 216 beq pdon
C907 :AD 70 CO 217 Ida vblclr ; Fire the strobe

lS IRQBUF Keyboard bufferinq 20-0C'l-86 06:41 PAGE 41 16 MINI 6SC02 Mini assembler 20-0CT-86 06:41 PAGE 42

C90A:4C 21 FB 218 jlllJ $FB21
C90D: C900 219 pdon equ .
C90D:EO 01 220 cpx fl ;C• l if X•l
C90F:6A 221 ror A ;A=80 or 0
C910:A8 222 tay
C911 :B9 7F OS 223 lda 1ouxh,y ;Get hioh byte
C914 :FO 02 C918 224 beq pdok
C916:A9 FF 22S lda tSFF
C918:19 7F 04 226 pdok ora mouxl,y
C91B:A8 227 tay
C91C:60 228 rts
C91D: S3 include 1ini ;Mini assembler ' step routines

C91D: 3 uutuuuuuuuuuuuuuuuuut

C91D: 4 •
C91D: S • Apple /le Mini Assembler
C91D: 6 •
C91D: 1 • Got 1ne.onic, check address 1ode
C91D: 8 •
C91D: g tttUUUUUUUUUUUUUUUUUUt

C91D:20 3B CA 10 Al«llll JSR HNBL ;qet next non-blank
C920 :84 34 11 STY YSAV ;save Y
C922 :DD BA F9 12 CllP CBARl,X
C92S :DO 13 C93A 13 BHE Al«l02
C927 :20 3B CA 14 JSR HNBL ;qet next non-blank
C92A:DD B4 F9 lS CllP CBAR2,X
C92D:FO OD C93C 16 BEQ 0003
C92F:BD B4 F9 17 LOA CBAR2,X ;done yet?
C932 :FO 07 C93B 18 BEQ 0004
C934:C9 A4 19 CllP t$A4 ; if •s• then done
C936 :FO 03 C93B 20 BEQ Al«l04
C938 :A4 34 21 LOY YSAV ;restore Y
C93A:l8 22 Al«l02 CLC
C938:88 23 Al«lD4 DEY
C93C:26 44 24 Al«lD3 ROL ASL ; shift bit into foniat
C93E:EO 03 2S CPX t$03
C940 :DO OD C94F 26 BHE Al«l06
C942 :20 A7 FF 27 JSR GETllUM
C94S :AS 3F 28 LOA A2B ;qet hioh byte of address
C947:FO 01 C94A 29 BEQ Al«>DS :·>
C90:E8 30 IHX
C94A:86 3S 31 Al«lDS STX YSAVl
C94C:A2 03 32 LOX 1$03
C94E:88 33 DEY
C94F:86 30 34 Al«l06 STX AlB
C9Sl:CA 3S DEX
C9S2:10 C9 C91D 36 BPL Al«>Dl
C9S4 :60 37 RTS

C9SS: 39 •
C9SS; 40 •
C955: 41 • Calculate offset byte for relative addresses
C9SS : 42 •
C9SS :E9 81 43 REL SBC 1$81 ;calc relative address
C9S7 :4A 44 LSR A
C9S8 :DO 14 C96E 4S BHE GOERll. ;bad branch
C9SA:A4 3F 46 LOY A28
C9SC:A6 3E 47 LOX A2L
C9SE :DO 01 C961 48 BHE RELl
C960 :88 49 DEY ;point to offset
C961:CA SO RELl DEX ;displacement - 1
C962 :SA Sl TXA
C963:18 S2 CLC
C964 :ES 3A S3 SBC PCL ; subtract current PCL
C966:8S 3E S4 STA A2L ; and save as di splace11ent
C968:10 01 C96B SS BPL RE12 ;check paqe
C96A:C8 S6 INY
C96B:98 S7 REL2 ?YA ;qet paqe
C96C:ES 38 SS SBC PCB ;check paoe

I
J:>.

-<>

b 16 MINI 65C02 Mini assembler 20-0CT-86

"'
06: 41 PAGE 43 16 MINI 6SC02 Mini assembler 20-0CT-86 06:41 PAGE 44

0
C96E:DO S7 C9C7 S9 GOERR BNE HINIERR ;display error C9CA:AA 117 TAX
C970: 60 • C9CB: C9CB 118 ERR3 EQU

C970: 61 * Hove instruction to memory C9CB :20 4A F9 119 JSR PRBL2
C970: 62 • C9CE:A9 DE 120 LOA 1$DE ; • to point to error

C970 :A4 2F 63 MOVINST LOY LENGTH ;get instruction lenqth C9DO :20 ED FD 121 JSR COOT
C972 :B9 30 00 64 HOVI LOA AIB,Y ;get a byte C9D3 :20 JA FF 122 JSR BELL ; Beep cause we' re mad

C97S:91 JA 6S STA (PCL) ,Y ;and 110ve it C9D6:80 AE C986 123 BRA GET INST! ;try again

C977 :88 66 DEY C908: 124 •
C978:10 F8 C972 67 BPL HOVI C908: 12S • Read a line of input. If prefaced with • •, decode

C97A: 68 • C908: 126 • mnemonic. If •s• do monitor command. otherwise parse

C97A: 69 • Display instruction C9D8: 127 • hex address before decoding mnemonic .

C97A: 70 • C908: 128 •

C97A:20 48 F9 71 JSR PRBLNK ;print blanks to make ProDOS work C9D8 :20 C7 FF 129 DOINST JSR ZHODE ;clear mode

C97D:20 IA re 72 JSR UP ; move up 2 lines C9DB :AD 00 02 130 LOA $200 ;get first char in line

c9so :20 IA re 73 JSR UP C9DE:C9 AO 131 CHP 1$AO ; if blank,

C983: C983 74 DISLIN EQU . C9EO :FO 12 C9F4 132 BEO DOLIN ;•>qo attempt disassembly

C983 :20 C4 CS 7S JSR SBOllINST ;Display line ' get next instruction C9E2 :C9 SD 133 CHP 1$80 ; is it return?

C986: C986 76 GETINSTI EQU . ;Get the next instruction C9E4 :DO 01 C9E7 134 BNE GETII ; · >no, continue
C986:A9 Al 11 LOA 1$Al ; ! for prompt C9E6 :60 !JS RTS ;else return to Monitor

C988 :BS 33 78 STA PROMPT C9E7: 136 •
C98A:20 67 FD 79 JSR GETLNZ ;Get a line C9E7 :20 A7 FF 137 GETII JSR GETNUH ;parse hexadecimal input

C98D:80 49 C9D8 80 BRA DOINST ;Go do the instruction C9EA:C9 93 138 CHP 1$93 ; look for • ADDR: •

C98F: 81 • C9EC:DO DB C9C9 139 GOERR2 BNE ERR2 ; no •: •, display error

C98F: 82 • Compare disassembly of all known opcodes with C9EE:8A 140 TXA ; X nonzero if address entered

C98F: 83 • the one typed in until a match is found C9EF:FO 08 C9C9 141 BEO ERR2 ; no "ADDR", display error

C98F: 84 • C9Fl: 142 •

C98F:AS JD BS GETOP LOA AIH ;get opcode C9Fl :20 78 FE 143 JSR AIPCLP ;110ve address to PC

C991 :20 BE rs 86 JSR INSDS2 ; determine mnemonic index C9F4 :A9 03 144 DOLIN LOA 1$03 ; get starting opcode

C994 :AA 87 TAX ;X = index C9F6:8S 30 14S STA AlB ;and save

C99S :BO 00 FA 88 LOA HNEHR,X ; get right half of index C9F8: 20 JB CA 146 NXTCB JSR NNBL ; qet next non-blank

C998 :CS 42 89 CHP A4L ;does it match entry? C9FB:OA 147 ASL A ; validate entry

C99A:DO 21 C9BD 90 BNE NXTOP ; =>try next opcode C9FC:E9 BE 148 SBC 1$BE
C99C :BD CO F9 91 LOA HNEHL,X ;get left half of index C9FE:C9 C2 149 CHP 1$C2

CA00:90 C7 C9C9 ISO BCC ERR2 ; => flaq bad ane110nic

C99F :80 OC C9AD 93 bra plskip ; Skip past pascal stuff CA02: !SI •
C9Al: 0009 94 ds $C9AA-'. 0 : Bello I'm the pascal 1.0 entry point CA02: IS2 • Form mnemonic for later comparison

C9AA:4C B4 Cl 9S jmp pl write ; Just get ting in the way CA02: !S3 •

C9AD: C9AD 96 plskip equ • CA02:0A IS4 ASL A
CA03:0A !SS ASL A

C9AD:CS 43 98 CHP A48 ;does it match entry? CA04 :A2 04 IS6 LOX 1$04
C9AF:DO OC C9BD 99 BNE NXTOP ;=>no, try next opcode CA06:0A 1S7 NXT!tl ASL A
C9Bl :AS 44 100 LOA ASL : found opcode, check address mode CA07 :26 42 !SB ROL A4L
C9B3 :A4 2E 101 LOY FORMAT ; get addr. mode format for that opcode CA09:26 43 1S9 ROL A48
C9BS :CO 90 102 CPY 1$90 ; is it relative? CAOB:CA 160 DEX
C9B7 :FO 9C C9SS 103 BEO REL :=>yes, calc relative address CAOC:IO F8 CA06 161 BPL NXTHN
C9B9:CS 2E 104 CHP FORMAT ;does mode match? CAOE:C6 30 162 DEC AIR ; decrement mnemonic count

C9BB:FO B3 C970 !OS BEO HOV INST :=>yes, move instruction to memory CAIO:FO F4 CA06 163 BEO NXTHN
C9BD:C6 30 106 NXTOP DEC AIH ;else try next opcode CAl2:10 E4 C9F8 164 BPL NXTCH
C9BF:DO CE C98F 107 BNE GETOP ;=>go try it CA14 :A2 OS 16S LOX 1$S : index into address mode tables

C9Cl :E6 44 108 INC ASL : else try next format CA16:20 ID C9 166 JSR AHODl ;do this elsewhere

C9C3 :C6 3S 109 DEC YSAVI CA19 :AS 44 167 LOA ASL ;get format

C9CS :FO CB C98F llO BEO GE TOP : =>qo try next format CAIB:OA 168 ASL A
C9C7: 111 • CAIC:OA 169 ASL A
C9C7: 112 • Point .to the error with a caret, beep, and fall CAID:OS 3S 170 ORA YSAIJI
C9C7 : ll3 • into the mini -assembler. CAIF:C9 20 171 CHP 1$20
C9C7: 114 • CA21 :BO 06 CA29 172 BCS AHOD7
C9C7 :A4 34 llS MINIERR LOY YSAV ;get position CA23 :A6 3S 173 LOX YSAVl ;get our format
C9C9:98 ll6 ERR2 TYA CA2S :FO 02 CA29 174 BEO AHOD7

l>.
!'.)

16 MINI

CA27:09 BO
CA29:BS 44
CA2B:B4 34
CA2D:B9 00 02
CAJO:C9 BB
CA32 :FO 04 CAJS
CA34:C9 SD
CA36:DO B4 C9EC
CAJS:4C BF C9

CAJB:
CAJB:
CAJB:
CAJB:
CAJB:
CAJB: CAJB
CA3B:20 B4 CS
CA3E :C9 AO
CA40 :FO F9 CAJB
CA42:60

65C02 Mini assembler 20-0CT-B6 06:41 PAGE 4S

175 ORA 1$80
176 AMCD7 STA ASL ; update format
177 STY YSAV ;update position
178 LOA $0200, y ; qet next character
179 CMP 1$BB ;is it a";"?
lBO BEQ AMCDS ; =>yes, skip comment
lSl CMP 1$BD ; is it carriage return
1B2 BNE GOERR2
lBJ AMODB JMP GET OP ; qet next opcode

185 tuuuuuuuuuuuuuuuuuutu

1B6 •
1B7 • NNBL - Gets a non blank character for the mini assembler
1B8 •
}89 tUUUUUUUUUUUUUUUUUUUt

190 nnbl equ •
191 jsr qetup ;Get next upshifted character
192 cmp 1$AO ;Blank?
193 beq nnbl
194 rts

16 MINI 6SC02 Mini assembler 20-0CT-B6 06:41 PAGE 46

CA43: 196 ••
CA43: 197 •
CA43: 19S • Step and trace routines
CA43: 199 •
CA43: 200 ..

CA43: CA43 201 step equ •
CA43 :2C 61 CO 202 bit butnO ;Open apple = slow step
CA46:10 OB CASO 203 bpl xqnobtO
CA4S:A2 07 204 ldx 11 ; Wait about a second
CA4A:20 AB FC 20S xqwait jsr wait
CA4D:CA 206 dex
CA4E:DO FA CA4A 207 bne xqwait
CASO : 2C 62 CO 20B xqnobtO bit butnl
CASJ :30 Sl CAA6 209 bmi xbrk ; Closed apple = break
CASS :20 7S FE 210 jsr alpc ; If user specified an address, move it
CASB:lS 211 clc
CAS9:20 OD CB 212 jsr qodsp ;Disassemble one instruction
CASC:6B 213 pla ;At (PCL,H)
CASD:BS 2C 214 sta rtnl ;Mjust to user stack
CASF:6B 21S pla
CA60 :BS 20 216 sta rtnh ; Save return address
CA62:A2 08 217 ldx 1$08
CA64 :BD 04 CB 21S xqinit lda initbl-1, x ; !nit XEQ area
CA67:9S JC 219 sta xqt,x
CA69:CA 220 dex
CA6A:DO rs CA64 221 bne xqinit
CA6C:Al JA 222 lda {pcl,x)
CA6E:FO 36 CAA6 223 beq xbrk ; Special if break
CA70:A4 2F 224 ldy lenqth
CA72:C9 20 22S cmp 1$20
CA74:FO 4A CACO 226 beq xjsr ;Do JSR, RTS, JMP, JMP (), JMP (,X), RT!
CA76:C9 60 227 cmp 1$60
CA7S:FO 36 CABO 22S beq xrts
CA7A:C9 4C 229 cmp 1$4C
CA7C:FO 4A CAC8 230 beq xjmp
CA7E:C9 6C 231 cmp 1$6C
CASO :FO 47 CAC9 232 beq xjmpat
CAB2:C9 7C 23J cmp 1$1C
CA84:FO SD CAEJ 2J4 beq xjmpatx
CA86 :C9 40 2JS cmp 1$40
CABS :FO 22 CAAC 2J6 beq xrti
CABA:C9 BO 2J7 cmp 1$80 ;Make bra turn into bpl
CABC :DO 02 CA90 2J8 bne xqntbra
CABE:A9 10 2J9 lda 1$10
CA90:29 lF 240 xqntbra and 1$1F
CA92:49 14 241 eor 1$14
CA94 :C9 04 242 cmp 1$04
CA96 :FO 02 CA9A 24J beq xq2 ;Copy user inst to xeq area
CA9B :Bl 3A 244 xql lda {pcl) ,y ; Chanqe rel branch
CA9A:99 JC 00 24S xq2 sta xqt,y ; displacement to 4 for jmp to branch
CA9D :BB 246 dey ;or jump to nbranch
CA9E:l0 FB CA9B 247 bpl xql
CAAO :20 JF FF 24B jsr restore ;Restore user req contents
CAAJ :4C JC 00 249 jmp xqt ; Xeq user op from ram
CAA6:A9 64 2SO xbrk lda l>mon-1 ;Print reqisters and qo to monitor
CAAB :A2 FF 2Sl ldx l<mon-1
CAAA:BO 20 CAD9 2S2 bra rtnjmp2 ; Display reqs & qo to monitor
CAAC:lB 2SJ xrti clc

l>. 16 MINI
I\)

6SC02 Mini assembler 20-0CT-86 06 :41 PAGE 47 16 MINI 6SC02 Mini assembler 20- 0CT-86 06:41 PAGE 48

I\)
CAAD:68 2S4 pla ;Simulate rti by getting status CBOS :EA 312 initbl nop

CAAE:8S 48 2SS sta status ; from stack then doing rts CB06:EA 313 nop

CABO :68 2S6 · xrts pla ·;Pop PC .(not pc - 1) ! CB07 :4C FF CA 314 jmp nbrnch

CAB! :SS 3A 2S7 sta pcl CBOA:4C Fl CA 31S jmp branch

CAB3 : 68 2S8 pla
CAB4:8S 3B 2S9 pcinc2 sta pch ; Opdate Pc by 1 (Len = 0)
CAB6:AS 2F 260 pcinc3 lda length ; Update pc by length
CAB8:20 S6 F9 261 jsr pcadj3 CBOD: 317 ..

CABB:84 3B 262 sty pch CBOD: 318 •

CABD:l8 263 clc CBOD: 319 • GOOSP - Saves hooks, calls display routine and fixes hooks

CABE:90 11 CAD! 264 bee newpcl CBOD: 320 • C = 0 instruction display

CACO :18 26S xjsr clc CBOD : 321 • C = I register display

CACl :20 S4 F9 266 jsr pcadj2 CBOD: 322 • used by step and trace

CAC4:SA 267 phy ;Push pc onto · stack for jsr CBOD : 323 •

CACS :48 268 pha CBOD: 324 **'***'****HU•tuuuuuuuuuuut

CAC6:AO 02 269 ldy 1$02 CBOD: CBOD 32S godsp equ .
CAC8:18 270 xjmp clc CBOD:AS 36 326 lda cswl

CAC9 :Bl 3A 211 xjmpat lda (pcl) ,y CBOF:48 321 pha

CACB:AA 212 tax ;Load pc for jmp, (jmp) simulate CBIO :AS 37 328 lda cswh ; Save output hook

CACC:88 213 dey CB12 :48 329 pha

CACD :Bl 3A 274 lda (pcl) ,y CB13 :A9 FO 330 lda l>coutl

CACF:86 3B 27S stx pch CBIS :SS 36 331 sta cswl

CAD! :SS 3A 276 newpcl sta pcl CB17 :A9 FD 332 lda l<coutl

CAD3:BO F3 CN:8 211 bes xjmp CB19:8S 37 333 sta cswh

CADS:A6 2D 218 rtnjmp ldx rtnh CBIB :BO OS CB22 334 bes godreg ;Which display?

CAD7 :AS 2C 219 lda rtnl CBID:20 DO re 33S jsr instdsp

CAD9:DA 280 rtnjmp2 phx CB20 :80 03 CB25 336 bra god done

CADA:48 281 pha CB22 :20 DA FA 331 godreg jsr rgdspl

CADB:A9 27 282 lda 139 ;Move over CB2S:68 338 goddone pla

CADD:8S 24 283 sta ch CB26:8S 37 339 sta cswh

CADF :38 284 sec CB28: 68 340 pla

CAE0:4C OD CB 28S jmp godsp CB29:8S 36 341 sta cswl

CAE3:·1e 286 xjmpatx clc ;JMP (,X) CB2B:60 342 rts

CAE4:AS 3A 281 lda pcl ; Add x · to address CB2C: S4 INCLUDE SCROLLING ;More Video stuff @$CB30

CAE6 :6S 46 288 adc xreg
CAE8 :8S 3A 289 sta pcl
CAEA:90 02 CAEE 290 bee xjxnoc
CAEC:E6 3B 291 inc pch
CAEE:38 292 xjxnoc sec ;C = I for indirect jump
CAEF :80 D8 CN:9 293 bra xjmpat
CAF1: 18 294 branch cl c ;Branch taken
CAF2 :AO 01 29S ldy 1$01 ;Add len+2 to PC
CAF4:Bl 3A 296 lda (pcl) ,y
CAF6 :20 S6 F9 297 jsr pcadj3
CAF9:8S 3A 298 sta pcl
CAFB:98 299 tya
CAFC:38 300 sec
CAFD:BO BS CAB4 301 bes pcinc2
CAFF :20 4A FF 302 nbrnch jsr save ;Normal return from xeq
CB02 :38 303 sec
CB03 :BO Bl CAB6 304 bes pcinc3 ; Go update PC

CBOS : 306 ..

CBOS : 301 •
. CBOS: 308 • This i s the table that is moved into zero page

CBOS : 309 • when st eppi ng and t racing
CBOS: 310 •
CBOS : Jll t U ttUHUUHUUU U ttttUttttH H Ut

17 . SCROLLING Apple 11c v1aeo nrmware 20-0CT-B6 06:41 PAGE 49 17 SCROLLING Apple I le Video firllware 20-0CT- B6 06: 41 PAGE SO

CB2C: 3 ;aliqn this for fools with illeqal entry points CBB6 :BO 31 CBB9 61 BCS ·scRLJ ;yes! clear bott011 line, exit
CB2C: 0004 4 ds $CB30-*, 0 CBBB: 62 •
CB30: 5 • CB88: BO 78 05 63 SETSRC STA TF.MPA ; save new current line
CB30: 6 • SCROLLIT scrolls the screen either up or down, dependinq CBBB:20 24 re 64 JSR VTABZ ; qet base for new current line
CB30: 1 • on the value of X. It scrolls within windows with even CBBE:AC F8 05 6S LOY TOOY ; qet width for scroll
CB30: 8 • or odd edqes for both 40 and BO columns. It can scroll CB91 :2B 66 PLP ;qet status for · scroll
CB30: 9 • windows down .to l characters wide. CB92 :OB 67 PBP ;N•l if BO colu1111s
CB30: 10 • CB93:10 IF CBB4 6B BPL SXPRT ; =>only do 40 coluans
CB30:DA 11 .SCROLLDN PBX ;save X CB9S :AD SS CO 69 LOA TXTPAGE2 ; scroll aux page first (even bytes)
CBJI :A2 00 12 LOX 10 ;direction • down CB9B :9B 70 TYA ;test Y
.CBJ3 :BO OJ CBJB lJ BRA SCROLL IT :do scroll CB99:FO 07 CBA2 71 BEQ SCRLFT ; if Y-0, only scroll one byte
CBJS: 14 • CB9B:Bl 2B 72 SCRLEVEN LOA (BASL), Y
CBJS:DA lS SCROLLUP PBX ;save X CB90:91 2A 7J STA (BAS2L), Y
CB36:A2 01 16 LOX fl ;direction • up CB9F:BB 74 DEY
CBJB :A4 21 17 SCROLLIT LOY lilllllllTB ;qet width of screen window CBAO :DO F9 CB9B 7S BNE SCRLEVEN ;do all ·but ·last even byte
CB3A:2C IF CO 18 BIT ROB OVID ; in 40 or BO columns? CBA2:70 04 CBA8 76 SCRLFT BYS SXPLFT ;odd left edqe, skip this byte
CB30:!0 IB CBS7 19 BPL GET ST ;•>40, determine startinq line CBA4 :Bl 28 77 LOA (BASL), Y
CB3F:BD 01 CO 20 STA SETBOCOL ;make sure this is enabled CBA6:91 2A 7B STA (BAS2L). y
CB42:98 21 TYA ;qet llHOllDTB for test CBA8 :AD S4 CO 79 SXPLFT LOA TXTPAGEI ; now do uin page (odd bytes)
CB43 :4A 22 LSR A ;divide by 2 for BO coluan index CBAB:AC F8 OS BO LOY TF.MPY ; restore width
CB44 :AB 2J TAY ;and save CBAE:BO 04 CBB4 Bl BCS SXPRT ;even riqht edqe, skip this byte
CB4S :AS 20 24 LOA li!IDLFT ;test oddity of riqht edqe CBBO :Bl 2B B2 SCRLOOD LOA (BASL), Y
CB47 :4A 2S LSR A ;by rotatinq low bit into carry CBB2:91 2A BJ STA (BAS2L) 'y
CB4B :BB 26 CLY ; V•O if left edqe even CBB4 :BB B4 SXPRT DEY
CB49:90 03 ~B4E 27 BCC CBKRT ; =>check riqht edqe CBBS:IO F9 CBBO BS BPL SCRLODD
CB4B :2C Cl CB 28 BIT SEY! ;V•l if left edqe odd CBB7 :BO B4 CB60 B6 BRA SCRLIN ; scroll next line
CB4E:2A 29 CBKRT ROL A ; restore liNDLFT CBB9: B7 •
CB4F:4S 21 30 EOR lilllllllTB ;get oddity of riqht edge CBB9:20 AO re BB . SCRL3 JSR CLRLIN clear current line
CBS1:4A 31 LSR A ; C= I if r iq ht edge even caa:::20 22 re 89 JSR VTAB restore oriqinal cursor . line
CBS2 :70 03 CBS7 32 BYS GET ST ; if odd left, don't DEY CBBF:2B 90 PLP pull status off stack
CBS4 :BO 01 CBS7 33 BCS GET ST ; if even riqht, don't DEY CBCO:FA 91 PLX restore X
CBS6:BB 34 DEY ; if riqht edqe odd, need one less . CBC! :60 92 SEY! RTS done!!!
CBS7 :BC FB OS 35 GETST STY TOOY ; save window width
CBSA:AD IF CO 36 LOA ROB OVID ;N=l if BO columns
CBSD:OB 37 PBP ;save N,Z,V
CBSE :AS 22 38 LOA llNDTOP ; assume scroll from top
CB60 :EO 00 39 CPX 10 ;up or down?
CB62 :DO OJ CB67 40 BNE SETOBAS ;•>up
CB64 :AS 2J 41 LOA llNDBTM ;down, start scrollinq at bottoa
CB66:JA 42 DEC A ; really need one less
CB67: 43 •
CB67 :BO 7B OS 44 SETDBAS STA TF.MPA ; save current line
CB6A:20 24 re 4S JSR VTABZ ; calculate base with window width
CB60: 46 •
CB6D:AS 2B 47 SCRLIN LOA BASL ; current line is destination
CB6F:BS 2A 48 STA BAS2L
CB7! :AS 29 49 LOA BASH
CB73 :BS 2B so STA BAS28
CB7S: SI •
CB75 :AD 7B OS S2 LOA TOOA ;qet current line
CB78 :EO 00 5J CPX 10 ;qoinq up?
CB7A:DO 07 CBB3 S4 BNE SETUP2 •>up, inc current line
CB7C:C5 22 55 Cl!P llNDTOP down . Reached top yet?
CB7E:FO 39 CBB9 S6 BEQ SCRL3 yes! clear top line, exit
CBBO :JA 57 DEC A no, ·qo up a line
CB81:80 05 CBBB 58 BRA SETSRC set source for scroll
CB8J:IA 59 SETUP2 INC A up, inc current line
CB84 :CS 23 60 CllP llNDBTM at bottom yet?

.b

"' (;.)

.t:.. 17 SCROLLING Apple //c Video firmware 20-0CT-86 17 SCROLLING Apple //c Video firmware 20- 0CT- 86 06:41 PAGE S2

"'
06:41 PAGE Sl

.t:..
CBC2 : 94 • CCOB: 147 •

CBC2 : 9S * DOCLR is called by CLREOL . It decides whether CCOB: 148 • PASillVER7 is used by Pascal to display the cursor. Pascal

CBC2 : 96 • to do a (quick) 40 or 80 ooluan clear t o end of line. CCOB: 149 • nor.ally leaves the cursor on the screen at all tiaes. It

CBC2 : 97 • CCOB : l SO • is fleetinqly removed while a character is displayed, then

CBC2 : 2C lF CO 98 DOCLR BIT RD80VID ; 40 or 80 column clear? CCOB : ! Sl • promptly redisplayed. CTlrF and CTlrE, respectively,

CBCS :JO 13 CBOA 99 BM! CLR80 ; •>clear 80 col1111ns CCOB: 1S2 • disable and enable display of the cursor when pr inted usinq

CBC7: 91 28 100 CLR40 STA (BASL), Y CCOB: !SJ • t he Pascal 1. 1 entry point (PllRITE). Screen l/O is

CBC9:C8 101 !NY
CCOB: 1S4 • siqnificantly faster when the cursor is ·disabled . This

CBCA:C4 21 102 CPY liliDlillTH CCOB: lSS • feature is suppor ted by Pascal 1.2 and later .

CBCC:90 F9 CBC7 103 BCC CLR40 CCOB: 1S6 •

CBCE: 60 104 RTS CCOB :AD FB 04 1S1 PAS INVERT LOA VKlllE ;called by pascal t o

CBCF: !OS • CCOE:29 10 1S8 AND IM.CORSOR ;display cursor

CBCF:DA 106 CLRBALF PHX ; clear riqht half of screen CClO:DO OA CClC 159 BNE INVX ;=>cursor off, don't invert

CBDO :A2 08 107 LOX 1$08 ;for SCRH48 CC12: CC12 160 INVERT E~ .
CBD2 :AO 14 108 LOY 120 CC12 :20 10 CC 161 JSR PICKY ; load Y and qet char

CBD4 :AS 32 109 LOA IllVFLG CC15 :48 162 PHA

C806:29 AO 110 AND I SAO CC16:49 80 163 EOR 1$80 ;FLIP INVERSE/NORMAL

CBD8: 80 17 CBFl lll BRA CLR2 ; •>juap i nto aiddle CC18 :20 B3 CJ 164 JSR STORY ; stuff onto screen

CBDA: 112 • CC1B :68 165 PLA ;for ROCBAR

CBOA :OA 113 CLR80 PHX ;preserve X CC1C:60 166 INVX RTS

CBDB:48 114 PHA ;and blank CClO: 167 •

CBDC :98 115 TYA ;qet oount for CH CClO: 168 • PICK lifts a character fraa the screen in either

CBDD:48 116 PHA : save for lef t edqe check CClO: 169 • 40 or 80 oolu•ns fraa the current cursor position.

CBOE :38 117 SEC ; oount• NNDllDTB- Y-1 CClD: 170 • If the alternate character set is switched in,

CBOF :E5 21 118 SBC illlDlillTB CC!D: 171 • character codes $0- $1F are returned as $40-$5F (which

CBEl:AA 119 TAX ; save CB oounter CC!O : 172 • is what aust have been oriqinally printed t o the location).

CBE2 :98 120 TYA ; di v CB by 2 for half paqes CC!D : 173 •

CBE3:4A 121 LSR A CC10 :5A 174 PICKY PHY ;save Y

CBE4 :A8 122 TAY CC1E:2 0 90 CC 175 JSR GETCOR ;qet newest cursor into Y

CBE5:68 123 PLA ;restore oriqinal CH CC21 :AD lF CO 176 LOA R080VID ; 80 columns?

CBE6 :45 20 124 EOR llNOLFT ;qet startinq paqe CC24: 10 17 CCJD 177 BPL PICK! ;•>no

CBE8:6A 125 ROR A CC26:80 01 CO 178 STA SET80COL ; force 80STORE if 80 oolu•ns

CBE9: BO 03 CBEE 126 BCS CLRO CC29:98 179 TYA

CBEB:lO 01 CBEE 127 BPL CLRO CC2A:45 20 180 EOR liliDLFT ; C= 1 if char in main RAM

CBED:C8 128 !NY ; iff llNOLFT odd, startinq byte odd CC2C:6A 181 ROR A ;qet low bit into carry

CBEE :68 129 CLRO PLA ;qet blankity blank CC20: BO 04 CC33 182 BCS PICK2 ;=>store in aain 111eaOry

CBEF :BO OB CBFC 130 BCS CLRl ; startinq paqe is 1 (default) CC2F :AD 55 CO 183 LOA TXTPAGE2 ;else switch in paqe 2

CBFl :2C SS CO 131 CLR2 BIT TXTPAGE2 ;else do paqe 2 CC32:C8 184 !NY ; for odd left , aux bytes

CBF4:91 28 132 STA (BASL),Y CC33 :98 18S PICK2 TYA ;divide pos ' n by 2

CBF6: 2C 54 CO 133 BIT TXTPAGEl ; now do paqe 1 CC34:4A 186 LSR A

CBF9 :E8 134 !NX
CC35 :A8 187 TAY ;and use as offset into line

CBFA:FO 06 CC02 135 BEQ CLRJ ;all done CC36:Bl 28 188 LOA (BASL), Y ;pi ck character

CBFC:91 28 136 CLRl STA (BASL), Y CC38 :80 54 CO 189 STA TXTPAGEl ;80 columns, swit ch in

CBFE:C8 137 !NY ; forward 2 columns CC3B:80 02 CCJF 190 BRA PICKJ ; skip 40 oolumn pick

CBFF:E8 138 INX ; next CH CCJO:Bl 28 191 PICK! LOA (BASL) , Y ;pick 40 oolumn char

CCOO :OO EF CBFl 139 BNE CLR2 ; not done yet CC3F:2C lE CO 192 PICKJ BIT ALTCBARSET ;only allow if al t set

CC02:FA 140 CLRJ PLX ;restore X CC42: 10 06 CC4A 193 BPL PICK4

·CCOJ: 60 141 RTS ;and exi t CC44 :C9 20 194 CMP 1$20

CC04: 142 • CC46 :BO 02 CC4A 19S BCS PICK4

CC04: 9C FA 05 143 CLRPORT STZ TYPBEO ;disable t ypeahead CC48:09 40 196 ORA 1$40

CC07 :9C F9 05 144 STZ EXTINT2 ; and external interrupts CC4A :7A 197 PICK4 PLY ; restore real Y

CCOA :60 14S RTS CC4B: 60 198 RTS
CC4C 199 •
CC4C 200 • SBOl«:UR displays ei ther a checkerboard cursor, a solid
CC4C 201 • rectanqle, or t he current cursor character, dependinq
CC4C 202 • on the value of the CURSOR location. O=inverse cursor,
CC4C 203 • $FF-checkerboard cursor, anythinq else i s displayed
CC4C 204 • after bei nq anded wi th inverse mask .

.t>.
t0
(}1

17 SCROLLING

CC4C:
CC4C :AC FB 07
CC4F:DO 02 CC5J
CC51 :80 BF CC12
CCSJ:
CCSJ:
CC5J:
CC5J :20 10 CC
CCS6:48
CCS7 :80 7B 07
CCSA:98
CCSB:C8
CCSC:FO OD CC6B
CCSE:7A
CCSF:SA
CC60 :JO 09 CC6B
CC62 :AD lE CO
CC6S :09 7F
CC67 :4A
CC68:2D FB 07
CC6B :20 BJ CJ
CC6E:68
CC6F:60
CC70:
CC70:
CC70:
CC70:
CC70:
CC70:
CC70:
CC70:
CC70:
CC70:48
CC71 :E6 4E
CC7J:DO lE CC93
CC7S :AS 4F
CC77 :E6 4F
CC79:4S 4F
CC7B:29 10
CC7D :FO 14 CC93
CC7F:AD FB 07
CC82 :FO OF CC9J
CC84 :SA
CC8S :20 10 CC
CC88 :AC 7B 07
CC8B: 80 7B 07
CC8E:98
CC8F:20 BJ CJ
CC92:7A
CC9J:68
CC94 :20 E6 CS
CC97:10 26 CCBF
CC99 :4C C3 CF
CC9C:EA
CC9D:
CC9D:
CC9D:
CC9D:

Apple //c Video firmware 20-0CT-86 06:41 PAGE 5J

205 •
206 SHOl«:UR LOY CURSOR what• s my type?
207 BNE NO!INV =>not inverse
208 BRA INVERT else invert the char (exit)
209 •
210 • Exit with char in acc1J11ulator
211 •
212 NO!INV JSR PICKY ; get char on screen
21J PHA ; preserve it
214 STA NXTCUR ; save for update
21S TYA ; test for checkerboard
216 !NY
217 BEQ NO!!NV2 ;=>checkerboard, display it
218 PLY ;test char
219 PHY
220 BM! NO!INV2 ;don't need inverse
221 LOA ALTCBARSET ;mask • $7F if alternate
222 ORA 1$7F ; character set,
22J LSR A ; $JF if normal char set
224 NO!INVl AND CURSOR ; form char to display
22S NO!INV2 JSR STORY ; and display it
226 PLA ; restore real char
227 RTS
228 •
229 • The UPDATE routine increments the random seed.
2JO • If a certain value is reached and we are in Apple II
2JI • mode, the blinking check cursor is updated. If a
2J2 • key has been pressed, the old char is replaced on the
233 • screen, and we return with BM!.
2J4 •
23S • NO!E: this routine used by COit! firmware!!
236 •
237 UPDATE PHA ;save char
238 INC RNDL ;update seed
239 BNE UD2 ; check for key
240 LOA RNDH
241 INC RNDH
242 EOR RNDH
24J AND mo ; need to update cursor?
244 BEQ UD2 ;=>no, check for key
245 LOA CURSOR ; what cursor are we usinq?
246 BEQ UD2 ;=>lie cursor, leave alone
247 PHY ;+ save Y
248 JSR PICKY ;get the character into A
249 LOY NXTCUR ;get next character
2SO STA NXTCUR ; save next next character
2Sl TYA
2S2 JSR STORY ;and print it
2SJ PLY ;+
2S4 UD2 PLA ; get real char
2SS JSR XBITKBD ; was a key pressed?
2S6 BPL GETCURX ; =>no key pressed
2S7 CLRKBD JMP CLRKBD2 ; + restore old key look for key and exit
2S8 NOP ; + Keep code aliqnedkey
2S9 •
260 • ON CURSORS . Whenever the horizontal cursor position is
261 • needed, a call to GETCUR is done. This is the equivalent
262 • of a LOY CH. This returns the current cursor for II and

17 SCROLLING

CC9D:
CC9D:
CC9D:
CC9D:
CC9D:
CC9D:
CC9D:
CC9D:
CC9D:
CC9D:
CC9D:
CC9D:
CC9D:A4 24
CC9F :CC 7B 04
CCA2 :DO OJ CCA7
CCA4 :AC 7B OS
CCA1 :C4 21
CCA9:90 02 CCAD
CCAB:AO 00
CCAD:
CCAD:
CCAD:
CCAD:
CCAD:8C 7B OS
CCBO : 2C lF CO
CCB3:10 02 CCB1
CCBS :AO 00
CC87 :84 24
CCB9:8C 78 04
CCBC:AC 7B OS
CCBF:60
CCCO:

Apple //c Video firmware 20-0CT-86 06:41 PAGE S4

263 • lie mode, which may have been poked as either CH or OURCH.
264 •
26S • It also forces CH and OLDCH to 0 if 80 column mode active.
266 • This prevents LOY CH, STA (BASL), Y from trashing non screen
267 • mmory. It works just like the /le.
268 •
269 • All routines that update the cursor• s horizontal position
270 • are here. This ensures that the newest value of the cursor
271 • is always used, and that 80 col1J11n CH is always 0.
272 •
213 • GETCUR only affects the Y register
274 •
27S GETCUR
216
277
278
279 GETCURl
280
281
282 •

LOY
CPY
BNE
LOY
CPY
BCC
LOY

CH
OLDCH
GETCURl
DURCH
llliDllDTH
GETCUR2
10

; if CH=OLDCH, then
; OORCH is valid
; •>else CH must have been changed
;use OORCH
; is the value too big
;=>no, fits just fine
;else force CH to 0

28J • GETCUR2 is commonly used to set the current cursor
284 • position when Y can be used.
28S •
286 GETCUR2
287
288
289
290 GETCURJ
291
292
293 GETCURX

SS

STY
BIT
BPL
LOY
STY
STY
LOY
RTS

OUR CH
RD80VID
GETCURJ
10
CH
OLDCH
DURCH

INCLUDE ESCAPE

; update real cursor
; 80 columns?
; •>no, set all cursors
;yes, peg CH to 0

;qet cursor
;and fly ...

:>. IS ESCAPE Apple I le Video firmware 20-0C'r-S6 06:41 PAGE 55 IS ESCAPE Apple I le Video firmware 20-CX:T-S6 06:41 PAGE 56

tv
0- CCCO: 2 ' START AN ESCAPE SEQUENCE: CCF8: 60 • When in escape mode, the characters in ESCTAB (hiqh)

CCCO: J • WE HANDLE THE !'OLLC*ING (JjES: CCF8: 61 • bits set), are mapped into the characters in ESCCHAR.

CCCO: 4 • @ - RQIE l CLEAR CCF8: 62 • These characters are then executed by a call to CTLCRAR.

CCCO: 5 • A - Cursor riqht CCF8: 63 •

CCCO: 6 • B - Cursor left CCF8: 64 • CTLCRAR looks up a character in the table startinQ at

CCCO: 7 • c - Cursor down CCF8: 65 ' CTLTAB. It uses the current index as an index into the

ccco: s • D - Cursor up CCF8: 66 • table of routine addresses, CTLADR. If the character is

CCCO: 9 • E - C1R TD EOL CCF8: 67 • not in the table, a call to VIDOUTl is done in case the

CCCO: 10 • F - CLR TD EOS CCFS: 68 • character is BS, LF, CR, or BEL.

CCCO: 11 • I, Up Arrow - CURSOR UP (stay escape) ccrs: 69 •

CCCO: 12 • J, Lft Arrow - CURSOR LEFT (stay escape) CCF8: 70 • NarE: CTL(Jj and CTLOFF are not accessible except throuqh

ccco: IJ • K, Rt Arrow - CURSOR RIGHT (stay escape) CCFS: 71 • and escape sequence

CCCO: 14 • M, On Arrow - CURSOR DOll!i (stay escape) CCFS: 72 •

CCCO: 15 • 4 - GOTO 40 COLUMN MOOE CCF8: 7J MSB ON ;hiqh bit on

ccco: 16 • S - GOTO S 0 COLUMN MOOE CCF8: CCFS 74 ESCTAB EQU •
CCCO: 17 • CTL-D- Disable the printinQ of control chars CCF8:CA 75 ASC 'J' ; left (stay esc)

CCCO: 18 • CTL-E- Enable the printinq of control chars CCF9:88 76 DFB $SS ; left arrow (stay esc)

CCCO: 19 ' CTL-0- QUIT (PRIOIINIO) CCFA:CD 77 ASC 'M' ;dollll (stay esc)

CCCO: 20 • CCFB:SB 7S DFB $SB ;up arrow (stay esc)

CCCO :B9 OC CD 21 ESCJ LOA ESCCRAR, Y ;GET CHAR TO "PRINT" CCFC:95 79 DFB $95 ;riqht arrow (stay esc)

CCCJ:SA 22 PRY ;save index CCFD:SA so DFB $SA ;dollll arrow (stay esc)

CCC4: 20 SS CD 2J JSR CTLCRAR ;execute character CCFE:C9 SI ASC '!' ;up (stay esc)

CCC7:7A 24 PLY ; restore index CCFF:CB S2 ASC 'K' ; riqht (stay esc)

CCCS :CO OS 25 CPY IYRI ; If Y<YRI, stay escape COOO: ooos SJ YR! EQU 1-ESCTAB

CCCA:BO 21 CCED 26 BCS ESCRDKEY ; •>exit escape mode COOO:C2 S4 ASC ' B' ;left

cccc: 27 • COO! :CJ SS ASC 'C' ;down

cccc: 2S • This is the entry point called by RDKEY iff escapes C002:C4 S6 ASC 'D' ;up

cccc: 29 • are enabled and an escape is encountered. The next COOJ :Cl S7 ASC 'A' ;riqht

cccc : JO • keypress is read and processed. If it is a key that C004:CO SS ASC '@' ; formfeed

cccc: JI • terainates escape aode, a new key is read by ESCRDKEY. COOS :CS S9 ASC 'E' ;clear EOL

cccc: J2 • If escape mode should not be teminated, NEWESC is C006:C6 90 ASC 'F' ;clear EOS

cccc: JJ • called aqain. C007 :B4 91 ASC • 4' ; 40 column •ode

cccc : J4 • COOS :B8 92 ASC • s· ;SO column mode

CCCC:20 ID CC JS NEWESC JSR PICKY ;get current character C009:91 9J DFB $91 ; CTL-0 • QUIT

CCCF:4S J6 PRA ;and save it COOA:S4 94 DFB $S4 ;CTL-D ;ctl char disable

CC00:29 SO J7 AND 1$SO ; save invert bit COOB :85 95 DFB $SS ;CTL-E ;ctl char enable

CCD2:49 AB JS EOR 1$AB ;make it inverted •+• COOC: 96 •

CCD4 :20 BJ CJ J9 JSR STORY ; and pop it on the screen COOC: OOIJ 97 ESCNUM EQU *-ESCTAB-1

CCD7:20 E6 CS 40 ESCO JSR XBITKBD ; check for keystroke COOC: 9S •

CCDA:lO FB CC07 41 BPL ESCO COOC: cooc 99 ESCCRAR EQU . ; list of escape chars

CCDC:6S 42 PLA ;qet old char COOC:SS 100 DFB $SS ;J: BS (stay esc)

CCDD:20 99 CC 4J JSR CLRKBD ; restore char, qet key COOD:SS 101 DFB $SS ;<-:BS (stay esc)

CCE0:20 98 CJ 44 JSR UPSHIFT ;upshift esc char CDOE:SA 102 DFB $SA ;M: LF (stay esc)

CCEJ:AO IJ 45 ESCI LOY IESCNUM ; COUNT /INDEX COOF:9F !OJ DFB $9F ;UP :US (stay esc)

CCES :09 F8 CC 46 ESC2 CMP ESCTAB, Y ; IS IT A VALID ESCAPE? CDI0:9C 104 DFB $9C ;->:FS (stay esc)

CCES :FO 06 ccco 47 BEO ESCJ •>yes
/ CDll :SA 105 ' DFB $8A ;DN: LF (stay esc)

CCEA:SS 48 DEY COl2:9F 106 DFB $9F ; I: UP (stay esc)

CCEB:IO FS CCES 49 BPL ESC2 ;TRY 'EM ALL .. , COIJ: 9C 107 DFB $9C ;K: RT (stay esc)

ccED: 50 • CD14 :SS !OS DFB $SS ;ESC-B = BS

CCED: 51 • End of escape sequence, read next character, CDIS: CDIS 109 CTLTAB EQU . ; list of control characters

CCED: 52 • This is initially called by RDCHAR which is usually called CD!S:SA 110 DFB $SA ;ESC-C • ON

CCED: SJ • by GETLN to read characters with escapes enabled. CD16:9F lll DFB $9F ;ESC- D • UP

CCED: 54 • COl7:9C 112 DFB $9C ;ESC-A = RT

CCED:A9 OS 55 ESCRDKEY LOA IM.CTL ;enable escape sequences COlS :SC 113 DFB $SC ;@: Formfeed

CCEF:IC FB 04 56 TRB Vl«lDE COl9 : 9D 114 DFB $90 ;E: CLREOL

CCF2:20 OC FD 57 JSR RD KEY ; read char with escapes CDIA:SB 115 DFB $SB ;F: CLREOP

CCFS: 4C 44 FD 58 JMP NOESCAPE ;qot the key, di sable escapes CDIB:91 116 ore $91 ; SET40

CCFS: 59 • CDIC:92 117 DFB $92 ;SETSO

JS ESCAPE Apple /le Video firmware 20-0C'1- S6 06 :41 PAGE S7 JS ESCAPE Apple //c Video firmware 20-0CT-S6 06:41 PAGE SS

CDID:9S IJS DFB $9S QUIT CDSD:20 04 re 176 JSR VIDOOTI try to execute CR, LF, BS, or BEL
CDIE :04 119 DFB $04 Disable controls (escape only) CD60 :CD FS 04 177 CMP TEMPI if ace has changed
CDIF:OS 120 DFB $OS Enable controls (escape only) CD63:DO OA CD6F 178 BNE CTLOONE then function done
CD20: 121 • escape chars end here CD6S:A2 14 179 LOX JCTLNIJ! number of CTL chars
CD20 :SS 122 DFB $SS ;X.CUR.Cli CD67 :DD IS CD ISO FMDCTL CMP CTLTAB,X is i t in table
CD21 :S6 123 DFB $S6 ;X. CUR.OFF CD6A:FO 05 CD71 ISi er.a CTlGO •>yes, should we execute?
CD22 :SE 124 DFB $SE ;llormal CD6C:CA IS2 DEX else check next
CD23 :SF 12S DFB $SF ; Inverse CD6D:IO FS CD67 IS3 BPL FNDCTL •>try next one
CD24 :96 126 DFB $96 ; Scroll down CD6F:FA IS4 CTlDONE PLX restore X
CD2S :97 127 DFB $97 ;Scroll up CD70:60 ISS RTS and return
CD26:9S 12S DFB $98 ;mouse chars off CD71: IS6 •
CD27 :99 129 DFB $99 ; home cursor CD71 :4S JS7 CTLGO PBA ;save A

CD28:9A 130 DFB $9A ;clear line CD72:SO OC COBO 188 eve CTLGOI ;V clear, always do (pascal,escape)
CD29:9B 131 DFB $98 ;mouse cliars on CD74 :AD re 04 189 LOA Vl«lDE ; controls are enabled iff
CD2A: 132 • CD77:29 28 190 AMO JM.CTL+M.CTL2 ; M.CTL • 1 and
CD2A: 0014 133 CTLNUM EQU *-CTLTAB-1 CD79:49 OS 191 EOR JM.CTL ; M.CTL2 = 0
CD2A: 134 • CD7B:FO 03 COBO 192 BEO CTlGOl ;•>they're enabled!!
CD2A: CD2A 13S CTLADR EQU . CD7D:68 193 CGO PLA ;restore A
CD2A:66 re 136 011 LF ;move cursor down CD7E:FA 194 PLX ;restore X
CD2C:lA re 137 011 UP ;move cursor up CD7F:60 19S RTS ;and return
CD2E:AO FB 138 Oil NEllADV ; forward a space COBO: 196 •
CD30 :58 re 139 Dll Hci!E ; home cursor, clear screen CD80:8A 197 CTlGOl TXA ;double x as index
CD32 :9C re 140 Dll CLREOL ; clear to end of line CD8l :OA 19S ASL A ; into address table
CD34:42 re 141 Dll CLREOP ; clear to end of paQe CD82:M 199 TAX
CD36:CO CD 142 011 SET40 ; set 40 column mode CD83: 68 200 PLA ;restore A

CD38:BE CD 143 011 SETSO ; set 80 column mode cos4:20 A4 re 201 JSR CTLOO ; execute the char
CD3A:4S CE 144 011 QUIT ;Quit video firmware CD87:FA 202 PLX ;restore X
CD3C:91 CD 14S 011 CTlOFF ;disable /le control chars CD88 :60 203 RTS ;and return
CD3E:9S CD 146 Dll CTLCli ;enable //e control chars CD89: 204 •
CD40 :S9 CD 147 Dll X.CUR.ON ; turn on cursor (pascal) CD89: 20S • X.CUR.ON • Allow Pascal cursor display
CD42:SD CD 148 011 X.CUR.OFF ; turn off cursor (pascal) CD89: 206 • X.CUR.OFF • Disable Pascal cursor display
CD44 :BO CD 149 011 x.so ; normal video CD89: 207 • Cursor is not displayed during call, so it will
CD46:87 CD lSO 011 X.SI ; inverse video CD89: 208 • be right when •redisplayed'.
CD48 :30 CB !Sl 011 SCROLLDN ; scroll down a line CDS9: 209 • Note: Thouqh these comands are executed fraa BASIC,
CD4A:3S CB 1S2 011 SCROLLUP ; scroll up a line CD89: 210 • they have no effect on firmware operation.
CD4C:9F CD JS3 011 MOOSOFF ; disable mouse characters CD89: 211 •

CD4E:AS CD 1S4 Oil BOO:CUR ;move cursor home CD89:A9 JO 212 X.CUR.ON LOA JM.CURSOR ; clear cursor bit
CDSO :AO re lSS 011 CLRLIN ; clear current line CDSB:SO OE CD98 213 BRA CLRIT
CDS2 :99 CD IS6 011 MOU SON ; enable mouse characters CDSD: 214 •

CDS4: 1S7 • CD8D:A9 10 21S X.CUR.OFF LOA JM.CURSOR ; set cursor bit
CDS4: ISS MSB ON CDSF:SO 10 COAi 216 BRA SET IT
CDS4: IS9 • CD91: 217 •

CDS4: 160 • CTLCHAR executes the control character in the CD91: 218 • The control characters other than CR, LF, BEL, BS
CD54: 161 • accumulator. If it is called by Pascal, the character CD91: 219 • are normally enabled when video tinware is active.
CDS4: 162 • is always executed. If it is called by the video CD91: 220 • They can be disabled and enabled using the ESC-D
CDS4: 163 • firmware, the character is executed if M.CTL is set CD91: 221 • and ESC-E escape sequences.
CDS4: 164 • and M. CTL2 is clear • CD91: 222 •
CDS4: 165 • CD91 :A9 20 223 CTLOFF LOA fM.CTL2 ;disable control characters
CDS4: 166 • Note: This routine is only called if the video firmware CD93:80 OC COAi 224 BRA SETIT ;by setting M.CT12
C054: 167 • is active. The Monitor RC»i! calls VIOOUTI if the video CD95: 225 •
CD54: 168 • firmware is inactive. CD95:A9 20 226 CTlCli LOA JM.CTL2 ;enable control characters
CD54: 169 • CD97:80 02 CD98 227 BRA CLRIT ; by clearing M. CTL2
CDS4 :2C CJ CB 170 CTLCHARO BIT SEVI ; set V (use M .CTL) CD99: '-

228 •
CD57 :SO 171 DFB $SO ;BVC opcode (never taken) CD99: 229 • Enable mouse text by clearing M.MOOSE
COSS: 172 • CD99: 230 •
COSS :88 173 CTlCHAR CLV Always do control character CD99:A9 01 231 MOOSON LOA JM.!lllJSE
CDS9:DA 174 PHX save X CD9B: IC re 04 232 CLRIT TRB Vl«lDE
CDSA:8D rs 04 175 STA TEMPI temp save of A CD9E: 60 233 RTS

::..
N
-...J

b. 18 ESCAPE Apple //c Video firmware 20-0CT-86 06:41 PAGE 59 18 ESCAPE Apple //c Video firmware 20-0CT-86 06:41 PAGE 60

"' CD
CD9F: 234 • CDEB :80 05 CDF2 292 BRA ll!N3 done converting
CD9F: 235 • Disable mouse text by setting M.MOOSE CDE0 :30 03 CDF2 293 ll!N2 BM! ll!N3 =>80: no convert
CD9F: 236 • CDEF:20 80 CE 294 JSR SCRN48 40: convert to 80
CD9F:A9 01 237 MOOSOFF LOA IM.!t'.JUSE CDF2 :20 90 CC 295 llJN3 JSR GE"rCUR determine absolute CH
CDAl :OC FB 04 238 SETIT TSB OOOE CDF5 :98 296 TYA in case the window setting
CDA4:60 239 RTS CDF6:18 297 CLC was different
CDA5: 240 • CDF7 :65 20 298 ADC llNDLFT
CDA5: 2 41 ' EXECUTE 800: CDF9:28 299 PLP ;pin to right edge if
CDA5: 242 • CDFA :BO 06 CE02 300 BCS llIN4 ; 80 to 40 leaves cursor
CDA5 :20 E9 FE 243 HCMECUR JSR CLRCB ;move cursors to far left CDFC:C9 28 301 CMP 140 ;off the screen
CDAB:AB 244 TAY : (probably not needed) CDFE:90 02 CE02 302 BCC llJN4
CDA9:A5 22 245 LOA liNOTOP : and to top of window CEOO :A9 27 303 LOA 139
CDAB:85 25 246 STA CV CE02 :20 EC FE 304 ll!N4 JSR SE"rCUR : set new cursor
CDAD:4C 88 FC 247 JMP NEllVTABZ : then set base address, OURCV CE05 :A5 25 305 LOA CV : set new base address
CDBO: 248 • CE07 :20 Cl FB 306 JSR BASCALC : for left • O (always)
CDBO: 249 ' EXECUTE "NORMAL VIDEO" CEOA : 307 •
CDBO: 250 • CEOA :64 20 308 llNDREST STZ llNDLFT ;Called by !NIT and Pascal
CDBO :20 84 FE 251 x.so JSR SETNORM ; set INVFLG to $FF CEOC:A9 18 309 LOA 1$18 ;and bottc.
CDB3:A9 04 252 LOA IM. VMOOE ;then clear inverse mode bit CEOE :85 23 310 STA llNOBTM
CDB5 :BO E4 C09B 253 BRA CLRIT CE10:A9 28 311 LOA 1$28 : set left, width,bottOll
CDB7: 254 • CE12 :2C lF CO 312 BIT ROB OVID : set width to 80 if 80 columns
CDB7: 255 ' EXECUTE " INVERSE VIDEO" CE15:10 01 CE18 313 BPL llJN5
CDB7: 256 • CE17:0A 314 ASL A
CDB7 :20 80 FE 257 X.SI JSR SET INV ; set JNVFLG to $3F CE18 :85 21 315 llJN5 STA llNOliDTB ;set width
CDBA:A9 04 258 LOA IM. VMOOE : then set inverse mode bit CE1A:60 316 SE"rX RTS ;exit used by SET40/80
CDBC:BO E3 CDAl 259 BRA SETJT CEIB : 317 •
CDBE: 260 • CElB: 318 • Turn on video firmware:
CDBE: 261 * EXECUTE '40COL !t'.JDE' or '80COL !t'.JDE': CElB: 319 •
CDBE: 262 • CElB: 320 • This routine is used by BASIC init, ESC-4, ESC-8
CDBE:38 263 SET80 SEC : flaq an 80 collllln window CElB: 321 • It copies the Monitor RCJI to the lanquaqe card
CDBF:90 264 OFB $90 : BCC opcode (never taken) CElB: 322 • if necessary; it sets the input and output hooks to
CDC0:18 265 SE"r40 CLC : flag a 40 column window CEIB : 323 • $C30x; it sets all switches for video firmware operation
CDC1:2C FB 04 266 BIT V!t'.JDE ;but ••• is it pascal? CElB: 324 •
CDC4: 10 54 CElA 267 BPL SETX ; =>yes, don't execute CEIB:2C 7B 06 325 ROOKITIJP BIT VFACTV : don't touch hooks
CDC6:08 268 PRP ; save window size CEIE:lO 11 CE31 326 BPL V!D!t'.JDE : if vi deo firmware already active
CDC1 :20 lB CE 269 JSR ROOKITIJP : COP YR()! if needed, set I /0 hooks CE20 :20 38 C3 321 HOOKUP JSR COPYRCM ;Copy RCJI to LC?
CDCA:28 270 PLP ;and oet 40/80 CE23 :A9 05 328 SETBOOKS LOA l>C3KEYIN ;set up $C300 hooks
CDCB:BO 08 CDD5 271 BRA NINO ;=>set window CE25 :85 38 329 STA KSNL
COCO: 272 • CE27 :A9 07 330 LOA l>C3COOT1
COCO: 273 • CHK80 is called by PRIO to convert to 40 if it was CE29 :85 36 331 STA CSNL
COCO: 274 • 80. Otherwise the window is left ajar. CE2B:A9 C3 332 LOA l<C3COOT1
CDCD: 275 • CE20:85 39 333 STA KSNH
CDCD:2C lF CO 276 CHK80 BIT R080VJD ;don't set 40 if CE2F:85 37 334 STA CSllH
CDDO:lO 48 CElA 277 BPL SETX ;already 40 CE31: 335 •
CD02: 278 • CE31: 336 • Now set the video firmware active
CD02 :18 279 llJN40 CLC flag 40 column window CE31: 337 •
CDD3:BO 280 OFB $80 BCS opcode (never taken) CE31: 9C FB 07 338 VJD!t'.JOE STZ CURSOR : set a solid inverse cursor
CDD4 :38 281 llINBO SEC flag 80 column window CE34 :A9 OB 339 LOA IH.CTL ;preserve M.CTL bit
CDD5:64 22 282 lllNO STZ liNDTOP set window top now CE36:2D FB 04 340 AND OOOE
CD07 : 2C lA CO 283 BIT ROT EXT for text or mixed CE39:09 81 341 ORA IM. PASCAL+M .MOOSE ; no pascal, mouse
CDOA:30 04 COEO 284 BM! WINI =>text CE3B: 342 •
CODC:A9 14 285 LOA 120 CE3B: 343 • Pascal calls here to set its mode
CDOE:85 22 286 STA liNOTOP used by 80<->40 conversion CE3B: 344 •
CDEO :2C IF CO 287 ll!Nl BIT RDBOVID 80 columns now? CE3B:80 FB 04 345 PVMOOE STA OOOE set mode bits
CDE3:08 288 PRP save 80 or 40 CE3E:9C 78 06 346 STZ VFACTV say video firmware active
CDE4 :BO 07 COED 289 BCS ll!N2 =>80: convert if 40 CE41 :80 OF CO 347 STA SETALTCRAR and set alternate char set
CDE6:10 OA CDF2 290 BPL ll!N3 =>40: no convert CE44 :60 348 ox RTS
COE8:20 53 CE 291 JSR SCRN84 80: convert to 40 CE45: 349 •

.b.
rv
-0

18 ESCAPE

CE45 :
CE45:
CE45:
CE45:
CE45 :2C FD 04
CE48: 10 FA CE44
CE4A:20 02 CO
CE40:20 89 FE
CE50 :4C 93 FE

Apple //c Video firmware 20-0CT-86 06:41 PAGE 61

350· • QUIT converts the screen fran 80 to 40 if necessary,
351 • sets a 40 column window, and restores the normal l/O
352 ' hooks (COUTl and KEYIN).
353 .•
354 QUIT BIT OODE ; no quit t inq from pas cal
355 BPL OX
356 JSR NIN40 first, do an escape 4
357 ZZQUIT JSR SETKBD do a lNIO (used by cat!)
358 JMP SETVID and a PRIO

18 ESCAPE Apple //c Video firmware 20-0CT-86 06:41 PAGE 62

CE53: 360 •
CE53: 361 • SCRH84 and SCRN48 convert screens between 40 ' 80 cols.
CE53: 362 • IOOl'lOP must be set up to indicate the last line to
CE53: 363 • be done. All reqisters are trashed.
CE53: 364 •
CE53:A2 17 365 SCRN84 LOX 123 ;start at bott011 of screen
CE55 :80 01 CO 366 STA SET80COL ; allow paqe 2 access
CE58:8A 367 SCRl TXA ; calc base for line
CE59:20 Cl FD 368 JSR BASCALC
CESC:AO 27 369 LOY 139 ; start at right of screen
CE5E:5A 370 SCR2 PRY · ; save 40 index
CE5F:98 371 TYA ;div by 2 for 80 column index
CE60:4A 372 LSR A
CE61 :BO 03 CE66 373 BCS SCR3
CE63 :2C 55 CO 374 BIT TXTPAGE2 ; even column, do paqe 2
CE66:A8 375 SCR3 TAY ;qet 80 index
CE67 :Bl 28 376 LOA (RASL), Y ;qet 80 char
CE69:2C 54 CO 377 BIT TXTPAGEl ; restore paqel
CE6C:7A 378 PLY ; qet 40 index
CE60:91 28 379 STA (RASL), Y
CE6F:88 380 DEY
CE70:10 EC CE5E 381 BPL SCR2 ; do next 40 byte
CE72:CA 382 DEX ; do next line
CE73:30 04 CE79 383 BMI SCR4 ; =>done with setup
CE75:E4 22 384 CPX NNDTOP ;at top yet?
CE77:BO OF CE58 385 BCS SCRl
CE79:8D 00 CO 386 SCR4 STA CLR80COL ;clear 80STORE for 40 colimns
CE7C:8D OC CO 387 STA CLR80VIO ; clear BOVIO for 40 columns
CE7F:60 388 RTS
CE80: 389 •
CE80:A2 17 390 SCRN48 LOX 123 ;start at bott011 of screen
CE82:8A 391 SCl\5 TXA ; set base for current line
CE83 :20 Cl FB 392 JSR BASCALC
CE86:AO 00 393 LOY 10 ;start at left of screen
CE88:80 01 CO 394 STA SET80COL ;enable paqe2 store
CE8B:Bl 28 395 SCR6 LOA (RASL), Y ;qet 40 colimn char
CE80:5A 396 SCl\8 PRY ;save 40 column index
CE8E;48 397 PBA ;save char
CE8F:98 398 TYA ; div 2 for 80 column index
CE90:4A 399 LSR A
CE91 :BO 03 CE96 400 BCS SCR7 ; save on paqel
CE93 :80 55 CO 401 STA TXTPAGE2
CE96:A8 402 SCR7 TAY ;qet 80 column index
CE97:68 403 PLA ; now save character
CE98: 91 28 404 STA (RASL), Y
CE9A:80 54 CO 405 STA TXTPAGEl ; flip paqel
CE90:7A 406 PLY ; restore 40 column index
CE9E:C8 407 !NY ;move to the right
CE9F:CO 28 408 CPY 140 ;at right yet?
CEA! :90 rs CE8B 409 BCC SCR6 ;=>no, do next column
CEA3 :20 CF CB 410 JSR CLRBAlF ; clear half of screen
CEA6:CA 411 DEX ;else do next line of screen
CEA7 :JO 04 CEAD 412 BM! SCR9 ;=>done with top line
CEA9:E4 22 413 CPX NNOTOP ;at top yet?
CEAB:BO 05 CE82 414 BCS SCR5
CEAD: 80 OD CO 415 SCR9 STA SET80VID ; convert to 80 columns
CEBO: 60 416 RTS
CEBl: 56 INCLUDE PASCAL ;Pascal support stuff

A. w 19 PASCAL Video firmware Pascal stuff 20cOCT-86 06:41 PAGE 63 19 PASCAL Video firmware Pascal stuff 20-0CT-86 06:41 PAGE 64

0 CFl2 :A9 08 CEBl:AA 3 PSTATUS TAX is request code = 0? 61 LOA IM.GOXY ;turn off 9otoxy

CEB2 :FO 08 CEBC 4 BEQ PJORDY =>yes; ready for output CT14 :lC FB 04 62 TRB VMODE

CEB4:CA 5 DEX check for any input CT11 :80 DB CEF4 63 BRA PliRET ;=>DONE (ALllAYS TAKEN)

CEB5 :DO 07 CEBE 6 BNE PSTERR =>bad request, return error CF19: 64 •

CEB7 :20 E6 C8 7 JSR XBITKBD test keyboard CF19:20 OB CC 65 PCTL JSR PAS INVERT ;turn off cursor

CEBA:lO 04 CECO 8 BPL PNOTRDY =>no keystroked CFIC:8A 66 TXA ;qet char

CEBC:38 9 PJORDY SEC qood return CF1D:C9 9E 67 CMP 1$9E ; is it qotoXY?

CEBD:60 10 RTS CFIF:FO 08 CF29 68 BEQ STARTXY ;=>yes, start it up

CEBE:A2 03 11 PSTERR LDX 13 ; else fla9 error CT21 :20 60 C3 69 JSR SETRCf! ;must switch in RCJ4 for controls

CEC0:18 12 PNOTRDY CLC CT24 :20 58 CD 70 JSR CTLCHAR ; EXECUTE IT IF ·poss IBLE

CECl: 60 13 RTS CT27 :80 CB CEFl 71 BRA PliR!TERET ;=>display new cursor, exit

CEC2: 14 • CF29: 72 •

CEC2: 15 ' PASCAL OUTPUT: CF29: 73 ' START THE GOTOXY SEQUENCE:

CEC2: 16 • CF29: 74 •

.CEC2: CEC2 11 PliR!TE EQU . CF29: CF29 75 STARTXY EQU

CEC2:09 80 18 ORA 1$80 ; turn on hi9h bit CF29:A9 08 76 LOA IM.GOXY

CEC4:AA 19 TAX ; save character CF2B:OC FB 04 77 TSB VMODE ; turn on qotoxy

CEC5:20 54 CF 20 JSR PSETUP2 ; SETUP ZP STUFF, don't set Ref! CF2E:A9 FF 78 LOA 1$FF ;set XCOORD to -1

CECB :A9 08 21 LOA IM.GOXY ; ARE WE DOING GOTOXY? CFJO:BD FB 06 79 PSETX STA XCOORD ;set X

CECA:2C FB 04 22 BIT VMODE CFJJ :B O BF CEF4 80 BRA PliRET ;=>display cursor and exit

CECD:DO 2B CEFA 23 BNE GETX ;=>Doin9 X or Y? CFJ5: 81 •

CECF:8A 24 TXA ; now check for control char CFJ5: 82 ' PASCAL INPUT:

CED0:89 60 25 BIT 1$60 ; is it control? CFJ5: SJ •

CED2 :FO 45 CFl9 26 BEQ PCTL ;=>yes, do control CFJ5 :20 54 CF 84 PASREAD JSR PSETUP2 ; SETUP ZP STUFF

CED4 :AC 7B 05 27 LOY OUR CH ;qet horizontal position CTJ8 :20 05 C8 85 GKEY JSR XRDKBD ; key pressed?

CED7:24 32 28 BIT !NVFLG ; check for inverse CFJB:lO FB CF38 86 BPL GKEY ;=>not yet

CED9:JO 02 CEDD 29 BM! PliRl ; normal, qo store it CFJD:29 7F 87 AND 1$7F ;DROP HI BIT

CEDB:29 7F JO AND 1$7F CFJF:80 B6 CEF7 88 BRA PRET ;qood exit

CEDD:20 Cl CJ Jl PliRl JSR STORE ; now . store it (erasin9 cursor) CF41: 89 •

CEEO:C8 32 INY ; INC CH CF41: 90 ' PASCAL !NIT!AL!ZATICJI:

CEEl :SC 7B OS JJ STY OUR CH CF41: 91 •

CEE4 :C4 21 J4 CPY KNDliDTH CF41: CF41 92 P!N!T EQU

CEE6:90 OC CEF4 J5 BCC PliRET CF41 :A9 01 9J LOA IM .P«lUSE ; Set mode to pascal

CEE8 :20 60 CJ J6 JSR SETRCf! CF43 :20 JB CE 94 JSR PVMOOE ;without mouse characters

CEEB :20 E9 FE 37 JSR CLRCH ;set cursor position to 0 CF46 :20 51 CF 95 JSR PSETUP ;setup zero paqe for pascal

CEEE:20 " 66 re JS JSR LF CF49:20 04 CD 96 JSR ll!N80 ;do 40->80 .convert

CEF! :20 54 CJ J9 PliR!TERET JSR RESET LC CF4c:20 58 re 97 JSR HO!E ; home and clear screen

CEF4 :20 OB CC 40 PWRET JSR PAS INVERT ;display new cursor CF4F:BO AO CEFI 98 BRA PliRITERET ; display cursor, set OORCH, OORCV ••.

CEF7 :A2 00 41 PRET LOX 1$0 ; return with no error CFS!: 99 •

CEF9: 60 42 RTS CFS!: CFS! 100 PSETUP EQU .
CEFA: 4J • CFS! :20 60 CJ 101 JSR SETRCf! ; save LC state, set RCJ4 read

CEFA: 44 • HANDLE GOTOXY STUFF: CFS4: 64 22 102 PSETUP2 STZ KNDTOP ;set top to 0

CEFA: 4S • CFS6:20 OA CE !OJ JSR KNORE ST ; in it either 40 or 80 window

CEFA: CEFA 46 GETX EQU . CFS9:A9 FF 104 LOA 1$FF : assume normal text

CEFA:20 OB CC 47 JSR PAS INVERT ;turn off cursor CFSB:BS J2 !OS STA I NVF LG

CEFD:BA 48 TXA ; 9et character CFSD :A9 04 106 LOA IM. \/HOOE : is it

CEFE :J8 49 SEC CFSF:2C FB 04 107 BIT VMODE

CEFF:E9 AO so SBC 1160 ;MAKE BINARY CF62 :FD 02 CF66 108 BEQ PS! ;=>yes

CFO! :2C FB 06 Sl BIT XCOORD ;doing X? CF64 :46 J2 109 LSR !NVFLG ; no, make fla9 inverse

CF04 :JO 2A CFJO S2 BM! PSETX ;=>yes, set it CF66 :AC 7B OS 110 PS! LOY OUR CH

CF06: SJ • CF69:20 AD CC lll JSR GETCUR2 ; set all cursors

CF06: S4 • Set Y and do the GOTOXY CF6C:AD FB 05 112 LOA OUR CV

CF06: 55 • CF6F:BS 2S 113 STA CV

CF06: CF06 S6 GETY EQU . CF71: 114 •

CF06:8D FB OS S7 STA OUR CV CF71: llS • Put BASCALC here so we don't have to switch

CF09:20 71 CF S8 JSR PASCALC ; calc base addr CF71: 116 • .in the Rct!s for each character output.

CFOC:AC FB 06 S9 LOY XCOORD CF71: 111 •

CFOF:20 AD CC 60 JSR GETCUR2 ; set proper cursors CF71 :OA 118 PASCALC ·ASL A

b.
(;) _.

19 PASCAL

CF72:A8
CF73:4A
CF74 :4A
CF7S:29 OJ
CF77:09 04
CF79:8S 29
CF7B:98
CF7C:6A
CF7D:29 98
CF7F:8S 28
CFS! :OA
CF82:0A
CFSJ :04 28
CF8S:60
CF86:

Video firmware Pascal stuff

119 TAY
120 LSR A
121 LSR A
122 AND 1$0J
12J ORA 1$4
124 STA BASH
12S TYA
126 ROil A
127 AND 1$98
128 PASCLC2 STA BASL
129 ASL A
!JO ASL A
lJl TSB BASL
IJ2 RTS

S7 include moreaisc

20-cx:T-86 06:41 PAGE 6S

;calc base addr in BASL,H
; for qi ven line no.

; O<•line no.<=$17
; arqo()OOABCDE, generate
; BASH=OOOOOICD
;and
; BASL=EAHABOOO

;More random junk

20 MOREllISC

CF86
CF86
CF86
CF86

CF86:

CF86:8J 88 88
CF89:0S 03 SS

CF8C:9E 08 40 SO

CF94 :CD Cl D8 D9

CF9A:
CF9A:
CF9A:
CF9A:

CF9A:20 AO CF
CF9D:4C 84 C7

CFAO :20 60 CJ
CFA3 :AD 16 CO
CFA6:0A
CFA7:AO 01
CFA9:B9 FE FF
CFAC:8D 09 CO
CFAF:99 FE FF
CFB2 :SD 08 CO
CFBS :99 FE FF
CFB8 :88
CFB9:10 EE CFA9
CFBB: 90 03 CFCO
CFBD:8D 09 CO
CFC0:4C S4 CJ

CFC3:
CFC3:
CFC3:

CFC3 SA
CFC4 20 83 CJ
CFC7 7A
CFCS 4C DS C8

CFCB·:
CFCB:
CFCB:
CFCB:

CFCB :BO 11 CFDE
CFCD:C9 AO
CFCF:DO IJ CFE4
CFDI :89 00 02
CFD4 :A2 07
CFD6:C9 SD
CFD8 :FO 07 CFEI

Video tinware Pascal stuff 20-0CT-86 · 06: 41 PAGE 66

2
3 • here are 110re aiscellaneous routines stuffed ·here in a
4 • valiant effort to make other code aliqn properly.
5 tttuttttttttttuuuuuuuuuuuuuuttttttt

• various tables

9 irqtble dfb >lcbank2,>lcbankl,>lcbankl
10 dfb >wr cardram,>rdcardraa,>txtpage2

12 coatbl dfb $9E,$08,$40,$S0,$16,$08,$0!,$00

14 rtbl asc 'MAXYPS'

16
11 • MOVE!RQ - This routine transfers the rems interrupt vector into
18 • both language cards
19

21 • .oveirq jsr aoveirq
22 jap swrts

24 moveirq
2S
26
27
28 MIRQLP
29
JO
31
32
33
34
JS
36
37 MIRQSTD

JSR SETROll
LDA RDALTZP
ASL A
LDY fl
LOA IRQVECT, Y
STA SETALTZP
STA IRQVECT, Y
STA SETSTDZP
STA IRQVECT, Y
DEY
BPL MIRQLP
8CC M!RQSTD
STA SETALTZP
JMP RESETLC

;Read ROii and Write to RAM
;Which language card?
;C•l if alternate card
;Move t110 .bytes
;Get byte fre11 R<J4
;Set alternate card
;Store it in the RAM card
; Set main card

;Go do the second byte
;Is the card set right?
;No, it wasn't
;Clean up ' qo holle

J9 tttttttttttttUttttttttttttUttttUttlltttttttttttt

40 • CLRKBD2 - Moved here fran scrollinq routines
41 tUttttttttUUUUtttttUtttUttttttUttttttttttt

43 clrkbd2 phy ;Now preserves Y
44 jsr story
4S ply
46 j•p xrdkbd

48 ••
49 • LOOKASC - addition to monitor input routine, if a quote (')
SO • in input, the ascii of the next is input like a hex number
51 tttUttttttttttUttttttttttttttttttttttUUUUttt

SJ lookasc bes ladig ;11as char a hex .digit?
S4 cmp 1$AO ; Is it a quote
SS bne ladone ;Done if not
S6 lda inbuf,y ; Get next char
S7 ldx f7 ; for shiftinq asc into A2L and A28
S8 cmp f$8D ;11as it a er?
S9 beq lacr ; Go handle er

::.. 20 MORDIISC Video firmware Pascal stuff 20-0CT-86 06:41 PAGE 67 21 AUTOSTI Apple //C F8 IOnitor finiware 20-0CT- 86 06 :41 PAGE 68
(,..)
I\)

CFDA:CS 60 iny ;Advance index into inbuf F800:4A 3 PLOT LSR A ;Y-COORD/2

CTDB:4C 90 FF 61 jmp nxtbit ;Go shift it in 1'801 :OS 4 PBP ; SAVE LSB IN CARRY

CTDE: 4C BA FF 62 ladiq jmp diq rso2 :20 47 rs 5 JSR GBASCALC ;CALC BASE ADR IN GBASL, B

CTEI :4C A7 FF 63 lacr jmp get nu•
1'805 :28 6 PLP ;RESTORE LSB FRCI! CARRY

CTE4 :60 64 ladone rts rso6:A9 or 7 LOA 1$0F ;MASK $OF IF EVEN

CTES: OOIB 58 ds $0000-• ,0 1'808:90 02 rsoc 8 BCC R'!llASK

--- NEXT OBJECT FILE NAME IS FIRM. I F80A:69 EO 9 ADC 1$£0 ;MASK $FO IF 000

FBOO: rsoo 59 ORG FSORG FBOC:IS 2E 10 R'!llASK STA MASK

rBOO: 60 INCLUDE AUTOSTI : rs monitor raa FBDE:Bl 26 11 PLOT! LOA (GBASL), Y ;DATA
F810:45 30 12 EOR COLCI\ ; XOR COLOR

F812 :25 2E 13 AllD MASK ; AllD MASK

1'814:51 26 14 EOR (GBASL) ,Y ; XOR DATA

F816:91 26 15 STA (GBASL) ,Y ; TO DATA
FBIB:60 16 RTS
F819: 17 •
F819:2D 00 rB 18 BLINE JSR PLOT ;PLOT SQUARE

F81C:C4 2C 19 KLINE! CPY B2 ;!XliE?
F81E:BO 11 rB31 2D BCS RTSI ; YES, RETDR!i

F82D:CS 21 INY ; NO, !NCR INDEX (X-COORD)

rs21 :20 OE rs 22 JSR PLOT! ;PLOT NEXT SQOARE

F824 :90 r6 rBIC 23 BCC BLINE! ; ALllAYS TAKEN
F826 :69 DI 24 VLINEZ ADC 1$01 ;NEXT Y-COORD

F828 :48 25 VLINE PBA ; SAVE ON STACK
F829:20 00 Fl 26 JSR PLOT ; PLOT SQOARE

F82C:68 27 PLA
F82D:CS 2D 28 CMP V2 ;!XliE?
F82F:90 rs FS26 29 BCC VLINEZ ; NO, LOOP.

F831:60 30 RTSI RTS
F832: 31 •
F832:AO 2F 32 CLRSCR LOY 1$2F ;MAX Y, FULL SCRN CLR

F834 :DO 02 FS38 33 BNE CLRSC2 ;ALllAYS TAKEN

F836:AO 27 34 CLRTOP LOY 1$27 ;MAX Y, TOP SCRN CLR

F838 :84 2D 35 CLRSC2 STY V2 ; STORE AS BO'ITCM COO RD

F83A: 36 ; FOR VL !NE CALLS
FS3A:AO 27 37 LDY 1$27 ;RIGllTl«lST X-COORD (COLUlll)

r83C:A9 OD 38 CLRSC3 LOA 1$00 ;TOP COORD FOR VLINE CALLS

F83E:85 3D 39 STA COLOR ;CLEAR COLOR (BLltCK)

F840 :20 28 Fl 40 JSR VLINE ;DRAll VLINE
FS43:88 41 DEY ;NEXT LEMKJST X-COORD

F844: 10 F6 F83C 42 BPL CLRSC3 ; LOOP UNTIL DONE •
F846:6D 43 RTS
FS47: 44 •
F847:4S 45 GBASCALC PBA ;FOR INPUT ODDEFGB

F848:4A 46 LSR A
FS49:29 03 47 AllD 1$03
F84B:D9 04 48 ORA 1$04 ;GENERATE GBASB=OOOOOIFG

FS4D:85 27 49 STA GBASB
F84F:68 SD PLA ;AND GBASL•HDEDEDOD

FS50:29 IS 51 AllD 1$1S
FB52:90 02 FS56 52 BCC GBCALC
rS54:69 7F 53 ADC 1$7F
F856:85 26 54 GBCALC STA GBASL
FSSB:DA 55 ASL A
FS59:0A 56 ASL A
FSSA:DS 26 57 ORA GBASL
FSSC:SS 26 SS STA GBASL
FSSE:6D 59 RTS
FSSF: 60 •

21 AUTOSTl Apple //c F8 aonitor firmware 20-0CT-86 06:41 PAGE 69 21 AUTOSTl Apple //c F8 monitor firmware 20-0CT-86 06:41 PAGE 70

F85F :A5 30 61 NXTCOL LDA COLOR ; INCREMENT COLOR BY 3 F8BE:4A 119 HHNDXl LSR A
F861:18 62 CLC F8BF:90 08 F8C9 120 BCC HHNDX3 ;FORM INDEX INTO MNEMONIC TABLE
F862: 69 03 63 ADC 1$03 F8Cl:4A 121 LSR A
F864 :29 or 64 SETCOL AND 1$0F ;SETS C010R• l7'A MOO 16 F8C2:4A 122 HHNDX2 LSR A ; 1) 1XXX1010 => 00101XXX
F866:85 30 65 STA COLOR F8C3 :09 20 123 ORA 1$20 ; 2) XXXYYYOl => OOlllXXX
F868:0A 66 ASL A ;BarH HALF BYTES OF COLOR EQUAL F8C5 :88 124 DEY ; 3) XXXYYYlO => OOllOXXX
F869:0A 67 ASL A F8C6:DO FA F8C2 125 BNE HHNDX2 ; 4) XXXYYlOO => OOlOOXXX
F86A:OA 68 ASL A F8C8 :CB 126 !NY ; 5) XXXXXOOO => OOOXXXXX
F86B :OA 69 ASL A F8C9:88 127 HHNDX3 DEY
F86C:05 30 70 ORA COLOR F8CA:DO F2 F8BE 128 BNE HHNDXl
F86E:85 30 71 STA COLOR F8CC:60 129 OOlCllE RTS
F870: 60 72 RTS FBCO: 130 •
F871: 73 • raco: FF FF FF 131 OFB $FF, $FF, $FF
F871:4A 74 SCRN LSR A ;READ SCREEN Y-COORD/2 FBOO: 132 •
F872 :08 75 PBP ; SAVE LSB (CARRY) reno :20 a2 rs 133 INSTOSP JSR INSDSl ;GEN FMT, LEN BYTES
F873 :20 47 F8 76 JSR GBASCALC ;CALC BASE ADDRESS F803:48 134 PBA ; SAVE MNEMCIHC TABLE INDEX
F876 :Bl 26 77 LOA (GBASL), Y ;GET BYTE F8D4:Bl 3A 135 PRNTOP LOA (PCL),Y
F878 :28 78 PLP ;RESTORE LSB FROM CARRY F8D6 :20 DA FD 136 JSR PRBYTE
F879: 90 04 F87F 79 SCRN2 BCC RTMSKZ ;IF EVEN, USE LO H F809 :A2 01 137 LDX 1$01 ;PRINT 2 BLANKS
F87B:4A 80 LSR A F80B :20 4A F9 138 PRNTBL JSR PRBL2
F87C:4A 81 LSR A F8DE:C4 2F 139 CPY LENGTH ;PRINT INST (1-3 BYTES)
F87D:4A 82 LSR A ;SHIFT HIGH HALF BYTE DOiii F8EO:C8 140 !NY ; IN A 12 CBR FIELD
F87E:4A 83 LSR A F8El :90 Fl F804 141 BCC PRNTOP
F87F:29 OF 84 RTMSKZ AND 1$0F ;MASK 4- BITS F8E3:A2 03 142 LOX 1$03 ;CHAR COUNT FOR MNEMCll IC INDEX
F881: 60 85 RTS F8E5 :CO 04 143 CPY 1$04
F882: 86 • F8E7:90 F2 F80B 144 BCC PRNTBL
F882 :A6 3A 87 INSDSl LOX PCL ;PRINT PCL,H F8E9:68 145 PIA ;RECOVER MN!Xl!llC INDEX
F884 :A4 3B 88 LOY PCB F8EA:A8 146 TAY
F886:20 96 FD 89 JSR PRYX2 F8EB :B9 CO F9 147 LDA MNEML,Y
F889:20 48 F9 90 JSR PRBLNK ;FOLLONED BY A BLANK F8EE:85 2C 148 STA LMNEM ;FETCH 3-CHAR MNEMClllC
F88C:Al 3A 91 LOA (PCL,X) ;GET OPCOOE F8FO :B9 00 FA 149 LOA MNEMR,Y ; (PACKED INTO 2-BYTES)
F88E:A8 92 INSDS2 TAY ; Lable moved down 1 F8F3 :85 20 150 STA RMNEM
F88F:4A 93 LSR A ;EVEN/ODD TEST F8F5 :A9 00 151 PRMNl LOA l$00
F890 :90 05 F897 94 BCC !EVEN F8F7 :AO 05 152 LOY 1$05
F892: 6A 95 ROR A ;BIT 1 TEST F8F9:06 20 153 PRMN2 ASL RMNEM ; SHIFT 5 BITS or CHARACTER INTO A
F893 :BO OC FSA! 96 BCS ERR ;XXXXXXll INVALID OP F8FB:26 2C 154 ROL LMNEM
F895:29 87 97 AND 1$87 ;MASK BITS F8FD:2A 155 ROL A ; (CLEARS CARRY)
F897:4A 98 !EVEN LSR A ;LSB INTO CARRY FOR L/R TEST F8FE:88 156 DEY
F898:AA 99 TAX F8FF:DO F8 F8F9 157 BNE PRMN2
F899:BD 62 F9 100 LDA FMTl,X ;GET FORMAT INDEX BYTE F901:69 BF 158 ADC ISBF ;ADO "?" OFFSET
F89C:20 79 F8 101 JSR SCRN2 ; R/L B-BYTE ON CARRY F903:20 ED FD 159 JSR COOT ;OUTPUT A CHAR OF MNEM
F89F:OO 04 F8A5 102 BNE GETOO F906:CA 160 DEX
F8Al:AO FC 103 ERR LDY 1$FC ;SUBSTITUTE $FC FOR INVALID OPS F907 :DO EC F8F5 161 BNE PRMNl
F8A3:A9 00 104 LDA 1$00 ; SET PRINT FORMAT INDEX TO 0 F909:20 48 F9 162 JSR PRBLNK ; OUTPUT 3 BLANKS
F8A5:AA 105 GETFMT TAX F90C :A4 2F 163 LOY LENGTH
F8A6:BD A6 F9 106 LDA 002, x ; INDEX INTO PRINT FORMAT TABLE F90E:A2 06 164 LDX 1$06 ;CNT FOR 6 FORMAT BITS
F8A9:85 2E 107 STA FORMAT ;SAVE FOR ADR FIELD FORMATTING F910 :EO 03 165 PRADRl CPX 1$03
F8AB:29 03 108 AND 1$03 ;MASK FOR 2-BIT LENGTH F912 :FO IC F930 166 BEQ PRADR5 ; IF X=3 THEN ADDR.
FBAD: 109 ; (0• 1 BYTE, 1=2 BYTE, 2=3 BYTE) F914 :06 2E 167 PRADR2 ASL FORMAT
F8AD:B5 2F 110 STA LENGTH F916:90 OE F926 168 BCC PRADR3
FBAF:20 35 re lll JSR NEWOPS ; qet index for new opcodes F918: BO B9 F9 169 LOA CBARl-1 , X
F8B2 :FO 18 race 112 BEO GC1!0NE ; found a new op (or no op} F91B:20 ED FD 170 JSR COOT
F8B4:29 BF 113 AND 1$8F ;MASK FOR 1XXX1010 TEST F91E :BO BJ F9 171 LOA CHAR2- l,X
F8B6:AA 114 TAX ; SAVE IT F921 :FO 03 F926 172 BEQ PRADR3
F8B7: 98 115 TYA ;OPCODE TO A AGAIN F923 :20 ED FD 173 JSR COOT
F8B8 :AO 03 116 LOY 1$03 F926 :CA 174 PRADR3 DEX
F8BA:EO BA 117 CPX ISBA F927 :DO E7 F910 175 BNE PRADRI
F8BC :FO OB F8C9 118 BEO MNNOX3 F929: 60 176 RTS

J:>,
(...)
(...)

A. 21 AOTOSTl Apple I le F8 monitor firmware 20-0CT-86 06 : 41 PAGE 71 21 AOTOSTl Apple I le rs monitor firmware 20- 0CT- 86 06:41 PAGE 72
(,..)
A.

F92A: 177 • F973 :20 23S DFB $20

F92A:SS 178 PRADR4 DEY F974 :FF 236 DFB $FF

F92B:30 E7 F914 179 BM! PRADR2 F97S :33 237 DFB $33

F92D :20 DA FD lSO JSR PRBYTE F976:CB 238 DFB $CB

F930 :AS 2E lSl PRADRS LOA FORMAT F977 :60 239 DFB $60

F932 :C9 ES 182 CMP 1$ES ;BANDLE REL ADR MODE F978 :FF 240 DFB $FF

F934 :Bl 3A 183 LOA (PCL),Y ; SPECIAL (PRINT TARGET, F979:70 241 DFB $70

F936:90 F2 F92A 184 BCC PRADR4 ; Nar OFFSET) F97A:OF 242 DFB $OF

F938 :20 S6 F9 18S RELADR JSR PCADJJ F97B :22 243 DFB $22

F93B:M 1S6 TAX ;PCL,PCH+oFFSET+l TO A, Y F97C :FF 244 DFB $FF

F93C:E8 187 INX F97D :39 24S DFB $39

F93D: DO 01 F940 18S BNE PRNTYX ;+l TO Y,X F97E:CB 246 DFB $CB

F93F:C8 189 !NY F97F:66 247 DFB $66

F940 : 9S 190 PRNTYX TYA F980 :FF 248 DFB $FF

F941 :20 DA FD 191 PRNTAX JSR PRBYTE ;OOlPOT TARGET ADR F981 :70 249 DFB $70

F944 :BA 192 PRNTX TXA ; OF BRAliCH AND RETORN F982 :OB 2SO DFB $OB

F94S:4C DA FD 193 JMP PRBYTE F983:22 2Sl DFB $22

F948: 194 • F984 :FF 2S2 DFB $FF

F948 :A2 03 l 9S PRBLNK LOX 1$03 ; BLANK COO NT F98S :33 2S3 DFB $33

F94A:A9 AO 196 PRBL2 LOA 1$AO ;LOAD A SPACE F986:CB 2S4 DFB $CB

F94C:20 ED FD 197 PRBL3 JSR COOT ;OOlPUT A BLANK F987 :A6 2SS DFB $A6

F94F:CA 198 DEX F988 :FF 2S6 DFB $FF

F9SO :DO F8 F94A 199 BNE PRBL2 ; LOOP ONTIL COONT•O F989 :73 2S7 DFB $73

F9S2 :60 200 RTS F98A: 11 2S8 DFB $11

F9 S3: 201 • F98B:22 2S9 DFB $22

F9S3 :38 202 PCADJ SEC ;O• l BYTE, 1•2 BYTE, F98C :FF 260 DFB $FF

F9S4 :AS 2F 203 PCADJ2 LOA LENGTH : 2=3 BYTE F98D :33 261 DFB $33

F956 :A4 3B 204 PCADJ3 LOY PCH F98E:CB 262 DFB $CB

F9S8 :AA 20S TAX ;TEST DISPLACEMENT S!Gli F98F:A6 263 DFB $A6

F9S9 :10 01 F9SC 206 BPL PCADJ4 (FOR REL BRANCH) F990 :FF 264 DFB $FF

F9SB :88 207 DEY ;EXTEHD NEG BY DECR PCR F991 :87 26S DFB $87

F9SC:6S 3A 208 PCADJ4 AOC PCL F992 :01 266 DFB $01

F9SE: 90 01 F961 209 BCC RTS2 ;PCL+LEHGTR(OR OISPL) +l TO A F993 :22 267 DFB $22

F960 :CS 210 !NY ; CARRY INTO Y (PCR) F994 :FF 268 DFB $FF

F961 :60 211 RTS2 RTS F99S :33 269 OFB $33

F962: 212 • F996:CB 270 DFB $CB

F962: 213 ; nm BYTES : XXXXXXYO INSTRS F997: 60 271 DFB $60

F962: 214 ; IF Y• O TREH R!GBT RALF BYTE F998 :FF 272 DFB $FF

F962 : 21S ; IF Y• l TREH LEFT BALF BYTE F999 :70 273 OFB $70

F962: 216 : (X=INOEX) F99A:Ol 274 DFB $01

F962: 217 • F99B :22 27S DFB $22

F962 :OF 21S FMrl DFB $OF F99C :FF 276 DFB $FF

F963:22 21 9 DFB $22 F990 :33 277 DFB $33

F964 :FF 220 DFB $FF F99E :CB 278 DFB $CB

F96S :33 221 OFB $33 F99F: 60 279 DFB $60

F966:CB 222 DFB $CB F9AO:FF 280 DFB $FF

F967:62 223 DFB $62 F9Al :70 281 OFB $70

F96S :FF 224 DFB $FF F9A2:24 282 DFB $24

F969 :73 22S DFB $73 F9A3:31 283 DFB $31

F96A:03 226 DFB $03 F9A4:6S 284 DFB $6S

F96B :22 227 DFB $22 F9A5 :78 28S DFB $78

F96C: FF 228 DFB $FF F9A6: 286 ; ZZXXXYOl INSTR' S

F960 :33 229 DFB $33 F9A6 :00 287 002 DFB $00 ;ERR

F96E:CB 230 DFB $CB F9A7:21 288 DFB $21 ;HI!

F96F :66 231 OFB $66 F9A8 :81 289 DFB $81 ;Z-PAGE

F970 :FF 232 DFB $FF F9A9 :82 290 DFB $82 ;ABS

F971 :77 233 DFB $77 F9M:S9 291 DFB $S9 ; (ZPAG,X)

F972 :OF 234 DFB $OF F9AB:4D 292 DFB $40 ; (ZPAG), Y

21 AUTOSTl Apple //c re 110nitor firmware 20-0CT-e6 06:4 1 PAGE 73 21 AUTOSTl Apple //c re moni tor firmware 20-CX:T-e6 06: 41 PAGE 14

F9AC: 91 293 OFB $91 ; ZPAG,X F9E4 :A5 351 OFB $A5

F9AD:92 294 OFB $92 ;ABS,X F9E5:69 352 OFB $69

F9AE :e6 295 OFB $e6 ;ABS,Y F9E6:24 353 OFB $24

F9AF :4A 296 OFB $4A ; (ABS) F9E7 :24 354 OFB $24 ; (B) FORMAT

F9BO:e5 297 OFB $e5 ;ZPAG, Y F9Ee:AE 355 OFB $AE

F9Bl : 90 29e OFB $90 ;RELATIVE F9E9:AE 356 OFB $AE

F9B2:49 299 OFB $49 ; (ZPAG) (new) F9EA:Ae 357 OFB $A8

F9B3:5A 300 OFB $5A ; (ABS,X) (new) F9EB :AD 35e OFB SAD

F9B4 : 301 • F9EC:29 359 OFB $29

F9B4 :09 302 CHAR2 OFB $09 ;'Y' F9ED :eA 360 OFB $SA

F9B5 :OO 303 OFB $00 ; (byte F of FMT2) F9EE:7C 361 OFB $1C

F9B6:0S 304 OFB $OS 'Y' F9EF:SB 362 OFB $SB ; (C) FORMAT

F9B7:A4 305 DFB $A4 '$' F9F0 :15 363 OFB $15

F9BS :A4 306 OFB $A4 '$' F9Fl:9C 364 OFB $9C

F9B9:00 301 OFB $00 F9F2 :60 365 OFB $60

F9BA: 30S • F9F3 :9C 366 OFB $9C

F9BA:AC 309 CHAR! OFB $AC F9F4 :A5 367 OFB $A5

F9BB:A9 310 OFB $A9 ')' F9F5:69 36e OFB $69

F9BC:AC 311 OFB $AC '
F9F6:29 369 OFB $29

F9BO :A3 312 OFB $A3 'I' F9F7 :53 310 OFB $53 ; (0) FORMAT

F9BE:AS 313 OFB $AS '(' F9FS :S4 311 OFB $e4

F9BF:A4 314 DFB $A4 • $' F9F9:13 312 DFB $13

F9C0:1C 315 MllEML DFB $1C F9FA:34 373 OFB $34

F9Cl:SA 316 OFB $SA F9FB:ll 374 DFB $11

F9C2 :lC 311 OFB $1C F9FC:AS 315 OFB $A5

F9C3 :23 31S OFB $23 F9FD :69 376 DFB $69

F9C4:50 319 OFB $50 F9FE :23 311 OFB $23 ; (E) FORMAT

F9C5 :SB 320 DFB $SB F9FF:AO 37S DFB $AD

F9C6:1B 321 OFB $1B FAOO: 319 •

F9C7:Al 322 DFB $Al FAOO:OS 3SO MNEMR DFB $OS

F9CS : 9D 323 OFB $90 FA01:62 3el DFB $62

F9C9:SA 324 OFB $SA FA02:SA 3S2 DFB $5A

F9CA:l0 325 OFB $10 FA03 :4S 3S3 DFB $4S

F9CB:23 326 OFB $23 FA04 :26 3S4 DFB $26

F9CC:90 321 DFB $90 FA05:62 3SS OFB $62

F9CD:SB 32S OFB $SB FA06 :94 3S6 OFB $94

F9CE:lD 329 DFB $10 FA07:SS 3S7 DFB $SS

F9CF:Al 330 OFB $Al FAOS :54 3SS OFB $54

F9D0:1C 331 OFB $1C ;BRA FA09 :44 3S9 OFB $44

F901 :29 332 DFB $29 FAOA :CS 390 OFB $CS

F902:19 333 OFB $19 FAOB:54 391 OFB $54

F9D3:AE 334 OFB $AE FAOC: 6S 392 OFB $6S

F904 :69 335 OFB $69 FA00:44 393 DFB $44

F905 :AS 336 OFB $AS FAOE :ES 394 OFB $ES

F906:19 337 DFB $19 FAOF:94 395 OFB $94

F907 :23 33S OFB $23 FA10:C4 396 DFB $C4 ;BRA

F90S :24 339 OF& $24 FAll :B4 397 OFB $B4

F909:53 340 OFB $53 FA12 :OS 39S OFB $OS

F90A:1B 341 OFB $1B FA13 :e4 399 OFB $e4

F9DB:23 342 DFB $23 FA14 :74 400 DFB $14

F90C :24 343 OFB $24 FA15 :B4 401 OFB $B4

F900:53 344 DFB $53 FA16 :2S 402 OFB $2S

F90E:l9 345 OFB $19 FA11:6E 403 DFB $6E

F90F:Al 346 OFB $Al ; (A) FORMAT ABOVE FA!S :74 404 OFB $14

F9EO :AD 341 OFB $AD ; TSB FA19:F4 405 OFB $F4

F9El :!A 34S DFB $1A FAlA:CC 406 OFB $CC

F9E2:5B 349 OFB $5B FA1B:4A 407 OFB $4A

F9E3 :SB 350 OFB $5B FA1C :12 40S OFB $12

J:>,.
V>
01

~ 21 AUTOSTI Apple //c F8 monitor firmware 20-0CT-86
(..>

06:41 PAGE 7S 21 AU'?OSTI Apple //c F8 monitor firmware 20-CX:T- 86 06:41 PAGE 76

°' FAID:F2 409 DFB $F2 FAS6:6C FO 03 467 JMP (BRKV) ; call BRK HANDLER
FAIE:A4 410 DFB $A4 FAS9: 468 •
FAIF:BA 411 DFB $8A ; (A) FORMAT FAS9:20 82 FB 469 OLDBRK JSR INSDSI ;PR!li'? USER PC
FA20:06 412 DFB $06 ; TSB FASC:20 DA FA 470 JSR RGDSPI AND REGS
FA2l:AA 413 DFB $AA FASF : 4C 6S FF 471 JMP llCJf ;GO TO llCJf!TOR (NO PASS GO, NO $200!)
FA22 :A2 414 DFB $A2 FA62: 472 •
FA23:A2 415 DFB $A2 FA62:D8 473 RESET CLO ;DO THIS FIRST THIS TIME
FA24:74 416 DFB $74 FA63: 20 84 FE 474 JSR SETNORM
FA2S:74 417 DFB $74 FA66:20 2F FB rn JSR IHIT
FA26:74 418 DFB $74 FA69:20 40 CE 476 JSR ZZOOIT ;t Setvid ' Setkbd
FA27:72 419 DFB $72 ; (B) FORMAT FA6C:20 40 C7 477 JSR IH!'IMOOSE ; initialize the 1ouse
FA28:44 420 DFB $44 FA6F:20 04 CC 478 JSR CLRPORT ;clear port setup bytes
FA29:68 421 DFB $68 FA72:9C FC 04 479 STZ ACIABUF ; and the co1111ahead buffer
FA2A:B2 422 DFB $B2 FA7S :AD SF CO 480 LOA SETAN3 ; AN3 • TTL RI
FA2B:32 423 DFB ' $32 FA78 :20 BD FA 481 JSR RESET.X ; initialize other devices
FA2C:B2 424 DFB $B2 FA7B:2C 10 CO 482 BIT KBDSTRB ; CLEAR KEYBOARD
FA2D:72 42S DFB $72 FA7E:80 OS FASS 483 BRA BEEP SKIP ; t Bell already beeped
FA2E:22 426 DFB $22 FA80:EA 484 MOP ;t align code
FA2F:72 427 DFB $72 ; (C) FORMAT FA8l:DB 48S NElMJll CLO
FA30:1A 428 DFB $1A FA82 :20 3A FF 486 JSR BELL ; CAUSES DELAY IF KEY BOUllCES
FA31:1A 429 DFB $1A FA8S :AD F3 03 4B7 BEEPSKIP LOA SOFTEV+l ;IS RESET RI
FA32:26 430 DFB $26 FA8B:49 A5 488 EOR 1$AS ; A FUNNY CQ!PLEMENT OF THE
FA33:26 431 DFB $26 FA8A:CD F4 03 489 CMP PllREDUP ; PllR UP BYTE 11?
FA34 :72 432 DFB $72 FA8D:DO 17 FAA6 490 Biil: PllRUP ; NO SO PllRUP
FA3S :72 433 DFB $72 FA8F :AD F2 03 491 LOA SOFTEV ; YES SEE IF COLD START
FA36:BB 434 DFB $88 FA92:DO or FAA3 492 Biil: NOFIX ; BAS BEEN OOiE YET?
FA37:C8 43S DFB $C8 ; (D) FORMAT FA94:A9 EO 493 LOA 1$EO ; DOES SEV POillT AT BASIC?
FA38 :C4 436 DFB $C4 FA96 :CD F3 03 494 CMP SOFTEV+l
FA39:CA 437 DFB $CA FA99:DO OB FAA3 49S BNE NOF!X ; YES SO REENTER SYSTEM
FA3A:26 438 DFB $26 FA9B:AO 03 496 FIXSEV LOY 13 ; NO SO POINT AT llARM START
FA3B:48 439 DFB $48 FA9D:BC F2 03 m STY SOFTEV ; FOR NEXT RESET
FA3C:44 440 DFB $44 FAA0:4C 00 EO 49B JMP BASIC ; AND DO THE COLD START
FA3D:44 441 DFB $44 FAAJ: 499 •
FA3E:A2 442 DFB $A2 FAA3:6C F2 03 SOO NOFIX JMP (SOFTEV)
FAJF:CB 443 DFB $C8 ; (El FORMAT FAA6: SOl •
FA40: 444 • FAA6:20 CA FC S02 PllRUP JSR COLDS TART ;Trash oemory, init ports
FA40 :8S 4S 44S !RO STA $4S ; + Trash $4S for those who want it FAA9: FAA9 S03 SETPG3 EOU . ; SET PAGE 3 VECTORS
FA42 :AS 4S 446 LOA $4S ;t FAA9:A2 OS S04 LOX IS
FA44 :4C 03 CB 447 JMP NEllIRO ;t FAAB:BD FC FA SOS SETPLP LOA PllRCON-1,X ; ll!TR CNTRL B ADRS
FA47: 448 • FAAE:9D EF 03 S06 STA BRKV-1,X ; OF CURREN'? BAS IC
FA47: 449 • FABl:CA S07 DEX
FA47: 4SO • NEWBRK is called by the interrupt handler which has FAB2:DO F7 FAAB S08 BNE SETPLP
FA47: 4Sl • set the hardware to its default state and encoded FAB4 :A9 C4 S09 LOA 1$C4 ; LOAD RI SLOT +l
FA47: 4S2 • the state in the accumulator. Software that wants FAB6:80 SA FB12 SlO BRA PllRUP2 ;branch around mnemonics
FA47: 4S3 • to do break processing usinq full system resources FAB8: Sil •
FA47: 4S4 • can restore the machine state from this value. FABB: Sl2 • Extension to MNEML (left mnemonics)
FA47: 4SS • FAB8: Sl3 •
FA47 :8S 44 4S6 NEllBRK STA MAC STAT ; save state of machine FABB :BA Sl4 DFB $BA ;PHY
FA49:7A 4S7 PLY ; restore registers for save FAB9:BB SlS DFB $8B ;PLY
FA4A:FA 4S8 PLX FABA:AS Sl6 DFB $A5 ; STZ
FA4B:68 4S9 PLA FABB:AC Sl7 DFB $AC ;TRB
FA4C : 460 • FABC:OO Sl8 DFB $00 : ???
FA4C :28 461 BREAK PLP Note: same as old BREAK routine! ! FABD: Sl9 •
FA4D:20 4A FF 462 JSR SAVE save req' s on BRK FABD: S20 • This extension to the monitor reset routine ($FA62)
FAS0 :68 463 PLA including PC FABD: S21 • checks for apple keys . If both are pressed, it qoes
FAS! :8S 3A 464 STA PCL FABD: S22 • into an exerciser mode. If the open apple key only is
FAS3: 68 46S PLA FABD: S23 • pressed, memory i s selectively trashed and a cold start
FAS4:8S 3B 466 STA PCR FABD: S24 • is done.

J:>,
(..>
-...J

21 AUTOSTl Apple //c FS monitor firmware 20-0CT-S6 06:41 PAGE 77

FABD: S2S •
FABD:A9 FF S26 RESET .X LOA 1$FF
FABF:SD FB 04 S27 STA VKlDE initialize mode
FAC2 :20 3A FF S2S JSR BELL + Need bell delay for 3.S• drive
FACS :20 FS CS S29 JSR PCNVRST + Reset protocol converter
FAC8 :OE 62 CO S30 ASL BUTNl
FACB:2C 61 CO S31 BIT BUTNO
FACE:lO SE FB2E S32 BPL RTS2D
FAD0:90 04 FAA6 S33 BCC PllRUP ;open apple only, reboot
FAD2 :4C Cl C7 S34 JMP BANGER ;both apples, exercise 'er
FADS:EA S3S NOP ;+ align code
FAD6:EA S36 NOP ;+
FAD7 :20 SE FD S37 REGDSP JSR CROUT ;DISPLAY USER REG CONTENTS
FADA:A9 44 S3S RGDSPl LOA 1$44 ;ll!TB LABELS
FADC:SS 40 S39 STA AJL ;Memory state now printed
FADE:A9 00 S40 LOA f$00
FAEO :SS 41 S41 STA A38
FAE2 :A2 FA S42 LOX 1$FA
FAE4 :A9 AO S43 ROSP! LOA 1$AO
FAE6 :20 ED FD S44 JSR COOT
FAE9: BO 9A CE S4S LOA RTBL-$FA,X
FAEC:20 ED FD S46 JSR COOT
FAEF:A9 BO S47 LOA 1$80
FAF! :20 ED FD S4S JSR COOT
FAF4 :BS 4A S49 LOA ACC+S,X
FAF6:SO OA FB02 sso BRA RGDSP2 ;make room for mnemonics
FAFS: SSl •
FAFS: SS2 • Right half of new mnemonics, indexed from MNEMR
FAFS: SS3 •
FAFS:74 SS4 ore $74 ;PHY
FAF9:74 SSS ore $74 ;PLY
FAFA:76 SS6 DFB $76 ;STZ
FAFB:C6 SS7 DFB $C6 ;TRB
FAFC:OO SSS DFB $00 ; ???
FAFD: SS9 •
FAFD:S9 FA S60 PllRCON ON OLDBRK
FAFF:OO EO 4S S61 DFB $00,$E0,$4S
FB02: S62 •
FB02 :20 DA FD S63 RGOSP2 JSR PRBITE
FBOS :ES S64 INX
FB06:30 DC FAE4 S6S BM! RDSP!
FBOS:60 S66 RTS
FB09: S67 •
FB09 :Cl FO FO EC S6S TITLE ASC 'Apple]['
FBll :C4 S69 ore $C4 ;optional filler
FB12: S70 •
FB12 :S6 00 571 PllRUP2 STX LOCO ; SETPG3 MUST RETURN X=O
FB14 :S5 01 572 STA LOCI ; SET PTR B
FB16:20 60 FB 573 JSR APPLE II ;Display our banner ...
FB19:6C 00 00 574 JMP (LOCO) ;JUMP $C600
FBIC :OO 57S BRK
FBID:OO 576 BRK
FBIE: 577 •
FBIE:4C 00 C9 57S PREAD JMP MPADDLE ; read mouse paddle
FB21 :AO 00 S79 LOY f$00 ; !NIT COUNT
FB23:EA sso NOP ;COMPENSATE FOR !ST COUNT
FB24 :EA 5Sl NOP
FB2S :BO 64 CO 5S2 PREAD2 LOA PADDLO,X ;COONT Y-REG EVERY 12 USEC.

21 AUTOST! Apple //c F8 monitor firmware 20-0CT-86 06:41 PAGE 78

FB28:10 04 FB2E 583 BPL RTS2D
FB2A:C8 S84 !NY
FB2B:DO F8 FB2S S85 BNE PREAD2 ;EXIT AT 2SS MAX
FB20:88 S86 DEY
FB2E:60 S87 RTS2D RTS
FB2F: 61 INCLUDE AUTOST2

~ 22 AUTOST2 Apple /le re monitor fi rmware 20-0CT-86 06:41 PAGE i9 22 AUTOST2 Apple /le rs monitor firmware 20-0CT-86 06:41 PAGE 80
(..>
O>

FB2F : 2 • FBA6:2C lF CO 60 BIT RDS OVID ;but only if not 80 col1111ns

FB2F :A9 00 3 !NIT LOA fSOO ;CLR STATUS FOR DEBUG SOl"rllARE · FBA9 :30 05 FBBO. 61 BMI NEllADVl ;s>80 colU11ns, leav'em

FB31:85 48 4 STA STATUS FBAB :SD 7B 04 62 STA OLDCH

FB33 :AD 56 CO 5 LOA LORES FBAE:85 24 63 STA CH

FB36 :AD 54 CO 6 LOA TXTPAGEl ; !NIT VIDEO MODE FBBO :80 46 FBF8 64 NEllADVl BRA ADV2 ; check for CR

FB39 :AD 51 CO 1 SETTXT LOA TXTSET ; SET FOR TEXT MODE FBB2: 65 •

FB3C :A9 00 8 LOA fSOO ;FULL SCREEN ll!NDOll FBB2:EA 66 NOP

FB3E:FO OB FB4B 9 BEO SETWND FBBJ: 67 •

FB40 :AD 50 CO 10 SETGR LOA TXTCLR ;SET FOR GRAPHICS MODE FBB3:06 68 FBVERSICJI DFB GOODF8 ; /le, chels ID byte

FB43 :AD 53 CO 11 LOA HIXSET ;La!ER 4 LINES AS TEXT ll!NDOll FBB4: 69 •

FB46 :20 36 rs 12 JSR CLRTOP FBB4:10 06 FBBC 10 DOCOOTl BPL DCX ;=>video firmware active, no mask

FB49 :A9 14 13 LOA 1$14 FBB6:C9 AO 71 CHP tSAO ; is it control char?

FB4B:85 22 14 SETWND STA llNDTOP . ; SET NINIXJI FBB8:90 02 FBBC 12 BCC DCX ;=>yes, no mask

FB4D:EA 15 NOP FBBA:25 32 13 AND IllVFLG ;else apply inverse mask

FB4E:EA 16 NOP FBBC:4C F6 FD 74 DCX JHP COOTZ ; and· print character

FB4F:20 OA CE 11 JSR llNDREST ;40/80 column width FBBF:03 75 dfb $03 ; revision byte.

FB52 ;80 05 FB59 18 BRA VTA823 FBCO: 76 •

FB54: 19 • FBCO :OO 11 DFB $00 ; chels ID byte

FB54 :09 80 20 DOCTL ORA 1$80 ;controls need hiqh bit FBCl: 78 •

FB56 :4C 54 CD 21 JHP CTLCHARO ; execute control char FBCl :48 19 BASCALC PHA ;CALC BASE ADDR IN BASL,H

FB59: 22 • FBC2:4A 80 LSR A ; FOR GIVEN LINE NO.

FB59:A9 11 23 VTAB23 LOA 1$11 ;VTAB TO Ra! 23 FBC3 :29 03 81 AND 1$03 ; O<•LINE N0.<=$17

FB58 :85 25 24 TABV STA CV ;VTABS TO ROii IN A-REG FBC5 :09 04 82 ORA 1$04 ; llG=OOOABCDE, GENERATE

FB5D:4C 22 re 25 . JHP VTAB ;don't set OORCV!! FBC7 :85 29 83 STA BASH ; BASB=OOOOOICD

FB60: 26 • FBC9:68 84 PLA ; AllD

FB60 :20 58 re 27 APPLEII JSR HCJ!E ;CLEAR THE SCRN FBCA:29 18 85 AND 1$18 ; BASL=EABABOOO

FB63 :AO 09 28 LOY 19 FBCC:90 02 FBDO. 86 BCC BASCLC2

FB65 :89 BA C5 29 STITLE LOA APPLE2C-l, Y. ;GET A CHAR FBCE:69 7F 87 ADC 1$1F

FB68 :99 OD 04 30 STA LINE1+13, Y ;PUT IT AT TOP CENTER OF SCREEN FBD0:85 28 88 BASCLC2 STA BASL

FB6B:88 31 DEY FBD2:0A 89 ASL A

FB6C:DO F7 FB65 32 BNE STITLE FBD3:0A 90 ASL A

FB6E:60 33 RTS FBD4 :05 28 91 ORA BASL

FB6F: 34 • FBD6:85 28 92 STA BASL

FB6F :Ali F3 03 35 SETPllRC LOA SOFTEV+l ;ROOTINE TO CALCULATE THE 'FUNNY FBDB :60 93 RTS

FB72:49 A5 36 EOR 1$A5 ;CCJ!PLEllENT' FOR THE RESET VECTOR FBD9: 94 •

FB74 :SD F4 03 37 STA PllREDUP FBD9:C9 87 95 CHKBELL CHP 1$87 ;BELL CHAR? (CCliTROL-G)

FB77:60 38 RTS FBDB:DO 12 FBEF 96 BNE RTS28 ; NO, RETURN.

FB78: 39 • FBDD:A9 40 97 BELLI LOA 1$40 ; YES •••

F878: FB78 40 V!DllAIT EOU . ;CHECK FOR A PAUSE . (CONTROL- S) • FBDF:20 AB re 98 JSR llAIT ;DELAY .01 SECCJIDS

FB78 :C9 80 41 CHP 1$80. ;ONLY llHEN I BAVE A CR FBE2:AO CO 99 LOY 1$CO

FB7A:DO 18 FB94 42 BNE NCJIAIT ;NOT SO, DO REGULAR FBE4:A9 OC 100 BELL2 LOA 1$0C ;Tcx;GLE SPEAKER AT I KHZ

FB7C :AC 00 CO 43 LOY KBD ; IS KEY PRESSED? FBE6:20 A8 re 101 JSR NAIT ; FOR .I SEC .

F87F : l0 13 FB94 44 BPL NCJIAIT ;NO. FBE9 :AD 30 CO 102 LOA SPKR

FB81 :CO 93 45 CPY · 1$93 ;YES -- IS IT CTRL-S? FBEC:88 103 DEY

FB83 :DO OF FB94 46 BNE NCJIAIT ;NOPE - IGNORE . FBED:DO F5 FBE4 104 BNE BELL2

FB85: 2C 10 CO 47 BIT KBDSTRB ;CLEAR STROBE FBEF:60 • 105 RTS2B RTS

FB88 :AC 00 CO 48 KBDllAIT LOY KBD ;llAIT TILL NEXT KEY TO RESUME FBFO: 106 •

FBBB : IO FB FB88 49 BPL KBDllAIT ;llAIT FOR KEYPRESS FBFO :A4 24 107 STORADV LOY CH qet 40 col .. n position

FBBD:CO 83 50 CPY 1$83 ; IS IT COOTROL-C? FBF2:91 28 108 STA (BASL), Y and store

FBSF :FO 03 FB94 51 BEO NCJIAIT ;YES, SO LEAVE IT FBF4 :E6 24 109 ADVANCE INC CH increment cursor

FB91:2C 10 CO 52 BIT KBDSTRB ;CLR STROBE FBF6:A5 24 110 LOA CH

FB94 :2C 7B 06 53 NOllAIT BIT VFACTV ; is video firmware active? FBF8 :C5 21 ll1 ADV2 CHP llNDllDTB ;BEYCllD ll!NIXJI WIDTH?

FB97 :30 64 FBFD 54 BM! VIDOOT ;=>no, do normal 40 column FBFA:BO 66 FC62 112 BCS CR ; YES, CR TO NEXT LINE.

FB99 :89 . 60 55 BIT 1$60 ; is it a control? FBFC:60 113 RTSJ RTS ; NO, RETURN .

FB9B:FO 87 FB54 56 BEO DOCTL ;=>yes, do it FBFD: 114 •

FB9D :20 BS CJ 57 JSR STORCH ;print w/inverse mask FBFD:C9 AO 115 VIDOOT CHP ISAO ;CCllTROL CHAR?

FBAO :EE 7B 05 58 NEllADV INC OURCH ; advance cursor FBFF:BO EF FBFO 116 BCS STORADV ; NO, OOTPUT IT.

FBAJ :AD 7B 05 59 LOA OUR CH ;and update others FCOl:AS 117 TAY ; INVERSE VIDEO?

22 AUTOST2 Apple I /c rs monitor firmware 20-0CT-S6 06:41 PAGE Sl 22 AUTOST2 Apple II c rs monitor firmware 20-0CT-S6 06:41 PAGE S2

FC02:10 EC FBFO 118 BPL STORADV ; YES, OUTPUT IT. FC60 :80 E2 FC44 116 BRA C1REOP2 ; before clearing page

FC04 :C9 SD 119 VIDOUTl CMP 1$SD ;CR? FC62: 111 •

FC06:FO 68 FC73 120 BEQ NENCR ;Yes, use new routine rc62:so or FC73 11S CR BRA NENCR ;only LF if not Pascal

rcos :C9 SA 121 CMP 1$SA ;LINE FEED? FC64 :OO 179 BRK

FCOA:FO SA FC66 122 BEQ LF ; IF SO, DO IT. FC6S:OO lSO BRK

FCOC:C9 SS 123 CMP 1$SS ;BACK SPACE? (CONTROL-H) FC66: lSl •

FCOE:DO C9 FBD9 124 BNE CHKBELL ; NO, CHECK FOR BELL. FC66:E6 2S 1S2 LF INC CV ; !NCR CURSOR V. (DOO 1 LINE)

FClO :20 E2 FE 12s es JSR DECCH ;decrement all cursor H indices FC68:AS 2S 1S3 LOA CV

FC13:10 E7 rerc 126 BPL RTS3 ; IF POSITIVE, OK; ELSE MOVE UP. FC6A:CS 23 1S4 CMP NNDBTM ;OFF SCREEN?

FClS :AS 21 127 LOA NNDNDTH ; get window width, FC6C;90 IA FCSS lSS ecc NEllVTABZ ; set base+NNDLFT

FC11 :20 EB FE 12S JSR NDTHCH ;and set CH'S to NNDNDTH-1 FC6E:C6 2S 1S6 DEC CV ; DECR CURSOR v. (BACK TO eorml)

FCIA:AS 22 129 UP LOA NNDTOP ;CURSOR V INDEX FC70: IS7 •

FClC:CS 2S 130 CMP CV FC70:4C 3S CB lSS SCROLL JMP SCROLLUP ; scroll the screen

FClE:BO DC rerc 131 ecs RTS3 ; top line, exit FC73: 1S9 •

FC20 :C6 2S 132 DEC CV ; not top, go up one FC73 :20 E9 FE 190 NENCR JSR CLRCH ;set CH's to 0

FC22: 133 • FC76:2C FB 04 191 BIT Vl«lDE ;is it Pascal?

FC22:80 62 FC86 134 VTAB BRA NEllVTAB ; go update OURCV FC79:10 OA FCSS 192 BPL CRRTS ;pascal, no LF

rc24:20 c1 re 13S VTABZ JSR BASCALC : calculate the base address FC7B:20 44 FD 193 JSR NOESCAPE ;else clear escape mode

FC27:AS 20 136 LOA NNDLFT ; get the left window edge FC7E:80 E6 FC66 194 BRA LF ;then do 1F

FC29:2C lF CO 137 BIT RDS OVID ; SO columns? FC80: 19S •

FC2C:l0 02 FC30 13S BPL VTAB40 ;=>no, left edge ok FC80 :BD lS FF 196 GETINDX LOA INDX,X ; lookup index for mnemonic

FC2E:4A 139 LSR A ; divide width by 2 FC83 :AO 00 197 LOY 10 ;exit with BEQ

FC2F:IS 140 CLC ; prepare to add FC8S:60 19S CRRTS RTS

FC30:6S 28 141 VTAB40 ADC BASL ;add width to base FCS6: 199 •

FC32:SS 28 142 STA BASL FC86:AS 2S 200 NEllVTAB LOA CV ;update /le CV

FC34: 60 143 RTS4 RTS FC88 :80 re os 201 NEllVTABZ STA OUR CV

FC3S: 144 • FC8B.;SO 97 FC24 202 BRA VTABZ ; and calc base+NNDLFT

FC3S: 14S • NEWOPS translates the opcode in the Y register FC8D: 203 •

FC3S: 146 • to a mnemonic table index and returns with Z=l. FC80:20 90 CC 204 NENCLREOL JSR GET CUR ;get· current cursor

FC3S: 147 • If Y is not a new opcode, Z=O. FC90:A9 AD 20S NENCLEOLZ LOA l$AO ;get a blank

FC3S: 14S • FC92 :2C 78 06 206 BIT VFACTV ;if video firmware active,

FC3S:98 149 NENOPS TYA ; get the opcode FC9S:30 02 FC99 207 BM! NEllCl ;=>don't use inverse mask

FC36:A2 16 ISO LOX INUMOPS ; check through new opcodes FC97:2S 32 208 AND JNVFLG

FC38 :DD FE FE lSl NENOPI CMP OPTBL,X ;does it match? FC99:4C C2 CB .· 209 NEllCl JMP DOCLR ;go do clear

FC3B:FO 43 FCBO IS2 BEQ GETINDX ; =>yes, get new index FC9C: 210 •

FC3D:CA 1S3 DEX FC9C:80 EF FC80 211 CLREOL BRA NENCLREOL ; get cursor and clear

FC3E:IO rs FC38 1S4 BPL NEilOPl ; else check next one FC9E:80 FO FC90 212 CLEOLZ BRA NEilCLEOLZ : clear from Y

FC40:60 lSS RTS ; not found, exit with BNE FCAD: 213 •

FC41: 1S6 • FCAO:AO 00 214 CLRLIN LOY 10 ; clear entire line .

FC41 :OO 1S7 · BRK FCA2:SO EC FC90 21S BRA NENCLEOLZ

FC42: !SB • FCA4: 216 •

FC42:80 19 FCSD 1S9 CLREOP BRA CLREOPl ;ESC F IS CLR TO END or PAGE FCM : 1C 2A CD 211 CTLOO JMP (CTLADR,X) ; jump to proper routine

FC44 :AS 2S 160 CLREOP2 LOA CV FCA7: 218 •

FC46:48 161 CLEOPI PHA ; SA VE CURRENT L !NE NO. C!I STACK FCA7:EA 219 NOP

rc47 :20 24 re 162 JSR VTABZ ;CALC BASE ADDRESS FCAB: 220 •

FC4A:20 9E re 163 JSR CLEOLZ ;CLEAR TO EOL. (SETS CARRY) FCAS:3S 221 HAIT SEC

FC4D:AO 00 164 LOY 1$00 ;CLEAR FRCM H INDEX=O FOR REST FCA9:48 222 NAIT2 PHA

FC4F:68 16S PLA ; INCREMENT CURRENT LINE NO. FCAA:E9 01 223 NAIT3 SBC 1$01

rcso :IA 166 INC A FCAC:DO re FCAA 224 BNE ilAIT3 ;1.0204 USEC

FCSI :CS 23 167 CMP NNDBTM ;DONE TO eorTOM or il!NOOH? FCAE:68 22S PLA ; (13+2712'A+S12'A'A)

FCS3 :90 Fl FC46 168 ecc CLEOPl ; NO, KEEP CLEARING LINES. FCAF:E9 01 226 SBC 1$01

rcss :eo ce FC22 169 ecs VTAB ; YES, TAB TO CURRENT LINE FCBl:DO F6 FCA9 227 BNE ilAIT2

FCS7 :00 170 BRK FCB3:60 228 RTS6 RTS

FCSB: 171 • FCB4: 229 •

FCS8 :20 AS CD 172 HOME JSR HCMECUR ;move .cursor home FCB4 :E6 42 230 NXTM INC ML ; !NCR 2-BYTE A4

FCSB :80 E7 FC44 173 BRA CLREOP2 ; then clear to end of page FCB6:DO 02 FCBA 231 BNE NXTAI ; AND Al

FCSD: 174 • FCBB :E6 43 232 INC A4H

FCSD:20 90 CC 17S CLREOPl JSR GETCUR ; load Y with proper CH FCBA:AS 3C 233 NXTAl LOA AlL ; !NCR 2-BYTE Al.

.b. w
-0

~ 22 AUTOST2
~

Apple //c FB monitor finnware 20-0CT-B6 06:41 PAGE BJ 22 AUTOST2 Apple //c FB •onitor fin11ware 20-0CT-B6 06:41 PAGE B4

0 FCBC:C5 JE 234 CMP A2L ; AHO CCJ!PARE TO A2 FD17:EA 292 NOP

FCBE:A5 30 235 LOA AIB ; (CARRY SET IF >=) FDIB: 293 •

FCCO:E5. JF 236 SBC A28 FDIB: 6C JB 00 294 KEYillO JMP (KSllL) ;GO TO USER KEY-IN ·

FCC2:E6 3C 237 INC AIL FDIB : 295 •

FCC4 :DO 02 FCCB 23B BNE RTS4B FDIB:91 28 296 KEYill STA (BASL),Y ;erase false images

FCC6:E6 30 239 INC AIB FD1D:20 4C CC 297 JSR SllOl«:UR ;display true cursor

FCC8:60 240 RTS4B RTS FD20: 20 70 CC 2 9B DCllXTCUR JSR UPDATE ; look for key, blink II cursor

FCC9: 241 • FD23:10 FB FD20 299 BPL OCllXTCUR ; loop until keypress

FCC9:60 242 BEADR RTS ;don't do it FD25:48 300 Ga!KEY PBA ; save character

FCCA: 243 • FD26:A9 08 301 LOA IM.CTL ; 11ere escapes enabled?

FCCA:AO BO 244 COLDSTART LOY 1$BO ; let it precess down FD28:2C FB 04 302 BIT VMODE

FCCC:64 JC 245 STZ AIL FD2B:DO ID FD4A 303 BNE NOESC2 ;=>no, there is no escape

FCCE:A2 BF 246 LOX 1$BF ; start from BFXX down. FD2D:6B 304 PI.A ;yes, there may be a way out!!

FCDO:B6 30 247 BLAST STX AlB FD2E:C9 9B 305 CMP IESC ;escape?

FCD2:A9 AO 24B LOA 1$AO ; store blanks FDJO :DO 06 FDJB 306 BNE LOOKPICK ; =>no escape

FCD4:91 3C 249 STA (AIL),Y FD32 : 4C CC CC 307 JMP NEllESC ;=>qo do escape sequence

FCD6:8B 250 DEY FD35: 308 •

FC07:91 JC 251 STA (AIL) ,Y FD35 :4C ED CC 309 RDCBAR JMP ESCRDKEY ;do RDKEY with escapes

FCD9:CA 252 DEX ; back down to next page FDJB: 310 •

FCDA:EO 01 253 CPX fl ; stay away frail stack FD38 :2C 7B 06 311 LOOKPICK BIT VFACTV · ;only process f.arrov

FCOC:DO F2 FCOO 254 BNE BLAST ; fall into Ca!INIT FDJB:JO 07 FD44 312 BMI NOESCAPE ; if video firmware is active

!'COE: 255 • FD3D:C9 95 313 CMP IPICK ;was it PICK? (->,CTL-U)

FCOE:BD 01 CO 256 STA SETBOCOL ; init ALT screen holes FDJF:DO 03 FD44 314 BNE NOE SCAPE ; no, just return

FCEl :AD 55 CO 257 LOA TXTPAGE2 ; for serial and canm ports FD41 :20 10 CC 315 JSR PICKY ; yes, pick the character

FCE4 :A2 BB 25B LOX 1$BB ;C = I from CPX fl FD44: 316 •

FCE6: BO BB CF 259 CCJ!l LOA CCJ!TBL-1,X ; XFER from rom FD44: 317 ' NOESCAPE is used by GETCOUT too.
FCE9:90 OA FCF5 260 BCC CCJ!2 ; branch if defaults ok FD44 : 31B •

FCEB:DD 77 04 261 CMP $477,X ; test for prior set up FD44 : 4B 319 NOESCAPE PBA ;save it

FCEE:JB 262 CLC ;branch if not valid FD45 :A9 OB 320 NOESCl LOA IM.CTL ;disable escape sequences

FCEF:DO 04 FCF5 263 BNE CCJ!2 ; If $4FB l $4FF = TBL values FD47 :OC FB 04 321 TSB VMODE ; and enable controls

FCFI :EO 82 264 CPX 1$82 FD4A:6B 322 NOESC2 PI.A ;by Settino M.CTL

FCF3:90 06 FCFB 265 BCC CCJ!J FD4B:60 323 RTS

FCF5:9D 77 04 266 CCJ!2 STA $477,X FD4C: 324 •

FCFB:CA 267 DEX ;move all 8 ... FD4C:EA 325 NOP

FCF9:DO EB FCE6 268 BNE CCJ!l FD4D: 326 •

FCFB :AD 54 CO 269 CCJ!J LOA TXTPAGEI ; restore switches FD40 :20 A6 CJ 327 NarcR JSR GETCOUT ;disable controls and print

FCFE: BO 00 CO 270 STA CLRBOCOL ;to default states FD50 :C9 88 32B CMP 1$B8 ;CHECK FOR EDIT KEYS

FOO! :60 271 RTS FD52 :FO 10 FD71 329 BEO BCKSPC ; - BACKSPACE

FD02 :EA 272 NOP ;+ FD54:C9 98 330 CMP 1$98

FDOJ :EA 273 NOP FD56:FO OA FD62 331 BEO CANCEL ; - CCllTROL-X

F004 :EA 274 NOP FD5B :EO FB 332 CPX f$F8

F005:EA 275 NOP FD5A:90 03 F05F 333 BCC NOlCRI ;MARGIN?

FD06:EA 276 NOP FD5C:20 JA FF 334 JSR BELL ; YES, SOUND BELL

F007:EA 277 NOP F05F:E8 335 NOlCRI INX ;ADVANCE INPUT INDEX

FD08:EA 278 NOP F060 :DO 13 FD75 336 BNE NXTCHAR

FD09:EA 279 NOP F062:A9 DC 337 CANCEL LOA 1$DC ;BACKSLASH AFTER CANCELLED LINE

FDOA:EA 2BO NOP FD64 :20 A6 CJ 33B JSR GETCOUT

FDOB:EA 2Bl NOP FD67 :20 BE FD 339 GETLNZ JSR CROUT ;OUTPUT 'CR'

FDOC: 2B2 • FD6A:A5 33 340 GETLN LOA PROO'T ;OUTPUT PRCJ!PT CHAR

FDOC:A4 24 2B3 RDKEY LOY CB Qet char at current position FD6C:20 ED FD 341 JSR COOT

FDOE:Bl 2B 2B4 LOA (BASL), Y for those who restore it F06F:A2 01 342 GETLNI LOX 1$01 ; INIT INPUT INDEX

FDJO:EA 2B5 NOP if a prOQram controls input FD71 :BA 343 BCKSPC TXA

FD11 :EA 2B6 NOP hooks, no cursor may be displayed FD72 :FO Fl FD67 344 BEO GETLNZ ;lllLL BACKSPACE TO 0

FD12 :EA 2B7 NOP FD74 :CA 345 DEX

FDJJ :EA 2BB NOP FD75 :20 ED CC 346 NXTCBAR JSR ESCRDKEY ; do new RDCHAR (allow escapes)

FD14 :EA 2B9 NOP FD78 :C9 95 347 CMP IPICK ; USE SCREEN CHAR

F0!5 :EA 290 NOP FD7A:DO 08 FDB4 34B BNE ADDINP ; FOR CONTROL-U

FD16:EA 291 NOP FD7C:20 10 CC 349 JSR PICKY ; lift char frail screen

22 AUTOST2 Apple //c rs monitor firmware 20-0CT-S6 06:41 PAGE SS 22 AUTOST2 Apple //c rs monitor firmware 20-0CT-S6 06:41 PAGE S6

F07F :EA JSO NOP FOEJ :29 OF 40S PRHEX AND 1$0F ;PRINT HEX DIGIT IN A- REG

FDSO:EA JS! NOP FOES :09 BO 409 PRHEXZ ORA 1$BO ;LSBITS CliLY.

FOB! :EA JS2 NOP ; no upshiftinq needed FOE7:C9 BA 410 CMP l$BA

F082:EA JSJ NOP FOE9:90 02 FDED 411 BCC COOT

FOSJ:EA JS4 NOP FOEB:69 06 412 ADC 1$06

F084 : 9D 00 02 JSS ADOINP STA IN,X ; ADD TO INPUT BUFFER FOED : 41J •

F087 :C9 BD JS6 CMP 1$80 FOED :6C J6 00 414 COOT JMP (CSliL) ; VECTOR TO USER OO?PUT ROUTINE

FOB9 :DO C2 FD4D JS7 BNE NarCR FOFO : 41S •

FOBB:20 9C re JSB CROUT! JSR CLREOL ;CLR TO EOL IF CR FOF0:2C 7B 06 416 COOT! BIT VFACTV ;vi deo firmware active?

FOBE:A9 BD JS9 CROUT LOA 1$80 FOFJ : 4C B4 FB 417 JMP DOCOUTI ;mask II mode characters

F090 :DO SB FDED J60 BNE COOT ; (ALWAYS) FOF6:B4 JS 41B COUTZ STY YSAVI ;SAVE Y-REG

F092: J6! • FOFB :4B 419 PBA ;SAVE A -REG

F092:A4 JD J62 PRAI LOY AIR ;PRINT CR, Al IN HEX FOF9 :20 7B FB 420 JSR VIDllAIT ; OUTPUT CHR AND CHECK FOR CTRL-S

F094 :A6 JC J6J LOX AIL FOFC :6B 421 PLA ; RESTORE A-REG

F096 :20 BE FD J64 PRYX2 JSR CROUT FOFO:A4 JS 422 LOY YSAV! ;ANO Y-REG

F099 :20 40 F9 J6S JSR PRNTYX FOFF :60 423 RTS ;RETURN TO SENDER •••

FD9C:AO 00 J66 LOY f$00 FEOO: 424 •

F09E:A9 AD J67 LOA 1$AD ;PRINT '-' FEOO :C6 J4 42S BL! DEC YSAV

FOAO :4C ED FD J68 JMP COOT FE02 :FO 9F FDAJ 426 BEQ XJ\MB

FDAJ: J69 • FE04: 427 •

FDAJ:AS JC J70 XJ\MB LOA AIL FE04 :CA 42B BLANK DEX ;BLANK TO !()II

FOA5 :09 07 J71 ORA 1$01 ;SET TO FIWI SH AT FEOS :DO 16 FEID 429 BNE SETMDZ ;AFTER BLANK

FOA7:BS JE J72 STA A2L ; MOO B• 7 FE07 :C9 BA 4JO CMP 1$BA ; DATA STORE MOOE?

FOA9:AS JO J7J LOA AIR FE09:00 BB FOC6 4Jl BNE XJ\MPM ; NO; XAM, ADD, OR SUBTRACT .

FOAB:BS JF J74 STA A2H FEOB: 4J2 •

FDAD:AS JC J7S MOOBCHK LOA AIL FEOB:BS JI 4JJ STOR STA MOOE ; KEEP IN STORE MOOE

FOAF:29 07 J76 AND 1$01 FEOD:AS JE 4J4 LOA A2L

FOB! :DO OJ FDB6 J77 BNE DATADUT FEOF:91 40 4JS STA (AJL) ,Y ; STORE AS 1011 BYTE AT (AJ)

FD83 :20 92 FD J7B XAM JSR PRAl FEil :E6 40 4J6 INC AJL
. FOB6:A9 AO J79 DATADUT LOA 1$AO FEIJ:DO 02 FE17 4J7 BNE RTSS ; !NCR AJ, RETURN .

FOBB :20 ED FD JBO JSR COOT ;OUTPUT BLANK FEIS :E6 41 4JB INC AJH

FOBB:Bl JC JBI LOA (AIL),Y FE17:60 4J9 RTSS RTS

FOBD:20 DA FD JB2 JSR PRBYTE ;OUTPUT BYTE IN HEX FEIB: 440 •

FDCO :20 BA re JBJ JSR NXTAI FEIB :A4 J4 441 SETMODE LOY YSAV ;SAVE CONVERTED ':', '+',
FDCJ: 90 EB FDAD J84 BCC M008CHK ;Nar DeliE YET. GO CHECK MOD B FE1A:B9 FF 01 442 LOA IN-1, Y : ,_, , '.' AS l«>DE
FDCS:60 JBS RTS4C RTS ;DOOE . FEID :BS JI 44J SETlllZ STA MOOE

FOC6 : JB6 • FE1F:60 444 RTS

FOC6:4A JB7 XAMPM LSR A ;DETERMINE IF MONITOR !«JOE IS FE20 : 44S •

FOC7:90 EA FDBJ JB8 BCC XAM ; EXAMINE, ADD OR SUBTRACT FE20 :A2 01 446 LT LOX 1$01

FOC9 : 4A J89 LSR A FE22 :BS JE 447 LT2 LOA A2L,X ;COPY A2 (2 BYTES) TO

FOCA : 4A J90 LSR A FE24 : 9S 42 448 STA A4L,X ; A4 AND AS

FOCB:AS JE J91 LOA A2L FE26 :9S 44 449 STA ASL,X

FOCD :90 02 FDD I J92 BCC ADD FE28 :CA 4SO DEX

FDCF:49 FF J9J EOR f $FF ;FORM 2' S COMPLEMENT FOR SUBTRACT . FE29 : 10 F7 FE22 4Sl BPL LT2

FDDI :6S JC J94 ADD ADC AIL FE2B:60 4S2 RTS

FDDJ:4B J9S PBA FE2C: 4SJ •

FOD4:A9 BD J96 LOA 1$80 ; PRINT ' •' , THEN RESULT FE2C :Bl JC 4S4 MOVE LOA (AIL),Y ;MOVE (Al) THRO (A2) TO (A4)

FOD6:20 ED FD J97 JSR COOT FE2E:91 42 4SS STA (A4L) ,Y

FDD9:6B J9S PLA FEJO :20 84 re 4S6 JSR NXTA4

FDDA : J99 • FEJJ:90 F7 FE2C 4S7 BCC MOVE

FDDA:4B 400 PRBYTE PBA ;PRINT BYTE AS 2 HEX DIGITS FE3S :60 4SB RTS

FDDB : 4A 401 LSR A ; (DESTROYS A-REG) FE36: 4S9 •

FDOC:4A 402 LSR A FEJ6 :Bl JC 460 VERIFY LOA (AIL), Y ;VERIFY (Al) THRO (A2)

FDDD :4A 403 LSR A FEJ8 :DI 42 461 CMP (A4L) 'y ; WITH (A4)

FDDE:4A 404 LSR A FEJA:FO IC FES8 462 BEQ VFYOK

FDDF:20 ES FD 40S JSR PRHEXZ FEJC:20 92 FD 46J JSR PRAl

FDE2 :68 406 PLA FEJF:B l JC 464 LOA (AlL),Y

FDEJ: 407 • FE41 :20 DA FD 46S JSR PRBYTE

""" """

J:>,. 22 AUTOST2
J:>,.

Apple //c rs monitor firmware 20-0CT-S6 06 :41 PAGE S7 22 AUTOST2 Apple //c rs monitor firmware 20-0CT-S6 06:41 PAGE SS

"' FE44 :A9 AO 466 LOA f$AO FEAB:94 00 S24 IOPRT2 STY LOCO,X

FE46: 20 ED FD 461 JSR COOT FEAD:9S 01 525 STA LOCl,X

FE49:A9 AB 46S LOA f$AS !'EAi': 60 S26 RTS

FE4B :20 ED FD 469 JSR COOT FEBO: S27 •

FE4E :Bl 42 470 LOA (ML) ,Y FEBO :4C 00 EO S2S XBASIC JMP BASIC ;TO BASIC, COLD START

FESO :20 DA FD 411 JSR PRBYTE FEBJ: S29 •

FESJ:A9 A9 412 LOA f$A9 FEBJ : 4C OJ EO SJO BASCONT JMP BASIC2 ;TO BASIC, liARM START

FESS :20 ED FD 413 JSR COOT FEB6: SJ! •

FESS :20 B4 re 414 VFYOK JSR NXTA4 FEB6:20 7S FE SJ2 GO JSR AIPC ;ADDR TO PC IF SPECIFIED

FESB:90 09 FE36 47S BCC VERIFY FEB9:20 JF rr SJJ JSR RESTORE ;RESTORE FAKE REGISTERS

FESD:60 416 RTS FEBC:6C JA 00 SJ4 JMP (PCL) ; AND GO!

FESE : 411 • FEBF: SJS •

FESE :20 1S FE 47S LIST JSR AIPC ;MCJ\IE Al (2 BYTES) TO FEBF: 4C 07 FA SJ6 REGZ JMP REGDSP ;GO DISPLAY REGISTERS

FE61 :A9 14 419 LOA 1$14 ; PC IF SPEC'D AND FEC2: SJ7 •

FE6J:4S 4SO LIST2 PHA ; +DISASSEMBLE 20 INSTRUCTIONS. FEC2:JA SJS OPRTO DEC A ;Need SIT

FE64 :20 C4 CS 4Sl JSR SHON INST ; +Display a line FECJ:SD l'B 07 SJ9 STA CURSOR ; set checkerboard cursor

FE67:6S 4S2 PLA FEC6:A9 F1 S40 LOA f$FF-M.CTL ;reset mode

FE6S:JA 4SJ DEC A ; +Count down FECS :SO 04 FECE S41 BRA DOPRO

FE69:DO rs FE6J 4S4 BNE LIST2 FECA: S42 •

FE6B:60 4SS RTS FECA:4C rs OJ S4J USR JMP USRADR ;JUMP TO CCJITROL-Y VECTOR IN RAM

FE6C: 4S6 • FECD: S44 •

FE6C:4C S6 C9 481 MINI JMP GET INST! ; +Go to the aini assembler FECD:60 S4S liRITE RTS ;Tape write not needed

FE6F:C6 J4 4SS TRACE DEC YSAV ; +Stay on T for trace FECE: S46 •

FE11 :4C 4J CA 4S9 STEPZ JMP STEP ; +Off to the step rout i ne FECE:SD 7B 06 S47 DOPRO STA VFACTV ; say video tinware inactive

FE74: 0001 490 ds $FE7S-', 0 ;+Extra bytes FED! :SD OE CO S48 STA CLRALTCHAR ; switch in noraal char set

FE7S: 491 • FED4 :OC l'B 04 S49 TSB VKJDE ;don't change M.CTL

FE7S:SA 492 AIPC TXA ;IF USER SPECIFIED AN ADDRESS, FED7:DA sso PBX ;save X and Y

FE76:FO 07 FE7F 49J BEO AIPCRTS ; COPY IT FRCJ4 Al TO PC. FEDS:SA SS! PHY ; for rest of PRfO

FE7S :BS JC 494 AIPCLP LOA AIL,X ;YEP, SO COPY IT. FED9:20 CD CD SS2 JSR CHKSO ; convert to 40 if needed

FE1A:9S JA 495 STA PCL,X FEDC:7A SSJ PLY

FE7C:CA 496 DEX FEDD:FA SS4 PLX

FE7D:l0 F9 FE1S 497 BPL AIPCLP FEDE:A9 FD SSS IOPRTI LOA f<COOTI ; set 1/0 page

FE7F: 60 49S A!PCRTS RTS FEEO:SO C9 FEAB SS6 BRA IOPRT2 ; s>qo set output hook

FESO: 499 • FEE2: SS? •

FESO :AO JF SOO SETINV LOY mr ; SET FOR INVERSE VID FEE2: SSS • DECCH decrements the current cursor

FES2 :DO 02 FES6 SOI BNE SETIFLG ; VIA COOT! FEE2: SS9 • CLRCB sets all cursors to 0

FES4 :AO IT S02 SETNORM LOY f$FF ; SET FOR NORMAL VID FEE2: S60 • SETCUR sets cursors to value in Acc.

FES6:S4 J2 SOJ SETIFLG STY INVFLG FEE2: S 61 • See explanatory note with GETCUR

FESS : 60 S04 RTS FEE2: S62 •

FES9: sos • FEE2:SA S63 DECCB PHY (frOll $FCIO)

FES9 :A9 00 S06 SETKBD LOA fSOO ;DO '!NfO' FEE3 :20 90 CC S64 JSR GETCUR get current CB

FESB :SS JE SO? INPORT STA A2L ;DO '!NfAREG' FEE6 :SS S6S DEY decrement it

FESD:A2 JS S08 INPRT LOX fKSNL FEE? :SO OS FEEE S66 BRA SETCURI qo update cursors

FESF:AO IB S09 LOY fKEYIN FEE9: S67 •

FE91 :DO 08 FE9B 510 BNE IOPRT FEE9:A9 01 S6S CLRCB LOA fl set all cursors to 0

FE9J: Sll • FEEB:JA S69 NDTHCH DEC A dee window width (from $FC11)

FE9J :A9 00 S!2 SETVID LDA ISO ;DO 'PRfO' FEEC:SA S70 SETCUR PHY save Y

FE9S:SS JE SIJ OUTPORT STA A2L ;DO 'PRfAREG' FEED:AS S11 TAY need value in Y

FE97 :A2 J6 S14 OUTPRT LOX fCSNL FEEE:20 AD CC 512 SETCURI JSR GETCUR2 save new CH

FE99 :AO ro SIS LOY fCOUTI FEFI :7A S1J PLY restore Y

FE9B:AS JE S16 !OPRT LOA A2L FEF2 :AD 7B OS S74 LDA OUR CH and get new CH into ace

FE9D:29 or Sl1 AND fSOF FEFS:60 S7S RTS (Need LOA to set flags)

FE9F:DO 06 FEA7 SIS BNE NOTPRTO ;not slot 0 FEF6: S16 •

FEAI :CO IB Sl9 CPY fKEYIN ;Continue if KEYIN FEF6:20 00 FE S11 CRMCJI JSR BL! HANDLE CR AS BLANK

rEAJ :ro J9 FEDE S20 BEO IOPRTI FEF9:6S S7S PLA THEN POP STACK

FEAS:BO lB FEC2 S21 BRA OPRTO ;=>do PRfO FEFA:6S S19 PLA AND RETURN TO MON

FEA7:09 CO S22 NOTPRTO ORA l<IOADR FEl'B:DO 6C FF69 SBO BNE MCJIZ (ALWAYS)

FEA9:AO 00 S2J LOY f$00 FEFD: SS! •

22 AUTOST2 Apple /le F8 monitor firmware 20-0CT-86 06 :41 PAGE 89 22 AUTOST2 Apple II c F8 monitor firmware 20-0CT-86 06: 41 PAGE 90

FEFD:60 582 READ RTS ; Tape read not needed FF2D: 640 •
FEFE: 58J • FF2D:A9 C5 641 PRERR LOA 1$C5 ;PRINT 'ERR', THEN FALL INTO

FEFE: 584 • OPTBL is a table containinq the new opcodes that FF2F:20 ED FD 642 JSR COOT ; FllEEPER.
FEFE: 585 • wouldn't fit into the existinq lookup table. FFJ2:A9 02 64J LOA 1$02
FEFE: 586 • FFJ4 :20 ED FD 644 JSR COOT
FEFE:l2 587 OPTBL DFB $12 ;ORA (ZPAG) FFJ7 :20 ED FD 645 JSR COOT
FEFF:l4 588 DFB $14 ;TRB ZPAG FFJA: 646 •
FFOO:IA 589 DFB $IA ;INC A FFJA:A9 87 647 BELL LOA 1$81 ;MAKE A JOYFUL NOISE, THEN RETURN.

FFOl:IC 590 DFB $IC ;TRB ABS FFJC: 4C ED FD 648 JMP COOT
FF02 :J2 591 DFB $J2 ;AND (ZPAG) FFJF: 649 •
FFOJ :J4 592 DFB $J4 ;BIT ZPAG,X FFJF:A5 48 650 RESTORE LOA STATUS ;RESTORE 6502 REGISTER CCliTENTS

FF04 :JA 59J DFB $JA ;DEC A FF41 :48 651 PHA ; USED BY DEBUG sorriiARE

FF05 :JC 594 DFB $JC ;BIT ABS,X FF42 :AS 4S 6S2 LOA ASH
FF06 :52 S95 DFB $S2 ;EOR (ZPAG) FF44 :A6 46 6SJ RESTRI LOX XREG
FF07 :SA S96 DFB $SA ;PHY FF46:A4 47 6S4 LOY YREG
rroe :64 S97 DFB $64 ;STZ ZPAG FF48 :2B 6SS PLP
FF09:72 S98 DFB $72 ;ADC (ZPAG) FF49:60 6S6 RTS
FFOA:74 S99 DFB $74 ;STZ ZPAG,X - rr4A: 657 •
FFOB:7A 600 DFB $7A ;PLY FF4A:85 4S 658 SAVE STA ASH ;SAVE 6S02 REGISTER CONTENTS

FFOC:7C 601 DFB $7C ;JMP (ABS,X) FF4C:B6 46 6S9 SAVI STX XREG ; FOR DEBUG sorriiARE

FFOD:89 602 DFB $B9 ;BIT IMM FF4E:B4 47 660 STY YREG
FFOE:92 60J DFB $92 ;STA (ZPAG) FF50 :OB 661 PBP
FFOF:9C 604 DFB $9C ; STZ ABS ITS! :68 662 PLA
FFI0:9E 605 DFB $9E ;STZ ABS,X FF52 :B5 48 66J STA STATUS
FFll :B2 606 DFB $82 ;LOA (ZPAG) FFS4:BA 664 TSX
FF12 :02 607 DFB $02 ;CMP (ZPAG) rrss :B6 49 66S STX SPNT
FF13 :F2 608 DFB $F2 ;SBC (ZPAG) FFS7 :OS 666 CLO
FF14:FC 609 DFB $FC ;??? (the unknown opcode) rrse :60 667 RTS
FFIS: 0016 610 NUMOPS EQU *-OPTBL-1 ; number of bytes to check FFS9: 668 •
FFIS: 611 • FFS9:20 84 FE 669 OLORST JSR SETNORM ; SET SCREEN !«lDE

FFIS: 612 • !MDX contains pointers to the mnemonics for each of FFSC:20 2F FB 670 JSR !NIT ; AND !NIT KBD/SCREEN

FFIS: 61J • the opcodes in OPTBL. Pointers with BIT 7 FFSF:20 9J FE 671 JSR SETVID ; AS l/0 DEVS.
FFIS: 614 • set indicate extensions to MNEML or MNEMR. FF62 :20 B9 FE 672 JSR SETKBD
FFIS: 615 • FF6S: 67J •
FFIS :JB 616 INDX DFB $J8 FF6S:DB 674 Meli CLO ;MUST SET BEX !«lDE !
FFl6:FB 617 DFB $FB FF66:20 JA FF 67S JSR BELL ;FWEEPER.
FF17 :J7 618 DFB $J7 FF69:A9 AA 676 MCliZ LOA 1$AA ; ' *' PROMPT FOR !«lN!TOR

FFIS:FB 619 DFB $FB FF6B:8S JJ 677 STA PROOT
FF19:J9 620 DFB $J9 FF6D :20 67 FD 67B JSR GETLNZ ;READ A LINE OF INPUT

FFIA:21 621 DFB $21 FF70 :20 C7 FF 679 JSR Z!«lDE ;CLEAR MOOITOR MOOE, SCAN !DX
FFIB:J6 622 DFB $J6 FF7J :20 A7 FF 680 NXTITM JSR GETNUM ;GET ITEM, NCli-BEX
FFIC:21 62J DFB $21 FF76:B4 J4 6Bl STY YSAV ; CHAR IN A-REG.

FFID:JA 624 DFB $JA FF7B :AO 17 682 LOY ISUBTBL--CBRTBL ; X-REG=O IF NO BEX INPUT

FFIE:FB 625 DFB $F8 FF7A:BB 68J CBRSRCB DEY
FFIF:FA 626 DFB $FA FF7B:JO EB FF65 6B4 BM! MOO ;C~D Nar FOUND, BEEP ' TRY AGAIN.
FF20:JB 627 DFB $JB FF7D :D9 CC FF 685 CHP CBRTBL, Y ;FIND CCM!AND CHAR IN TABLE

FF21:FA 62B DFB $FA FFBO :DO FB FF7A 686 BNE CBRSRCH ;Har THIS TIME
FF22 :F9 629 DFB $F9 FFB2 :20 BE FF 687 JSR TOSUB ;Gar IT! CALL CORRESPONDING SUBROUTINE

FF2J:22 6JO DFB $22 FFBS :A4 J4 688 LOY YSAV ;PROCESS NEXT ENTRY Cli BIS LINE

FF24 :21 6J! DFB $21 FF87 :4C 7J FF 689 JMP NXTITM
FF2S :JC 6J2 DFB $JC FFSA: 690 •
FF26:FA 6JJ DFB $FA FF8A:A2 OJ 691 DIG LOX 1$0J
FF27 :FA 6J4 DFB $FA FFBC:OA 692 ASL A
FF28 :JD 6J5 DFB $JD FFSD:OA 69J ASL A ;Gar BEX DIGIT,

FF29 :JE 6J6 DFB $JE FFSE:OA 694 ASL A ; SHIFT INTO A2

FF2A:JF 6J7 DFB $JF FFSF:OA 69S ASL A
FF2B :FC 6J8 DFB $FC ;??? FF90:0A 696 NXTBIT ASL A
FF2C :OO 6J9 BRK FF91 :26 JE 697 ROL A2L

J:>,
J:>,
(...)

J:>,.
J:>,.
J:>,.

22 AUTOST2

FF93:26 JF
FF95:CA
FF96:10 F8 FF90
FF98 :A5 31
FF9A:DO 06 FFA2
FF9C:B5 JF
FF9E:95 JD
FFA0:95 41
FFA2:E8
FFAJ :FO FJ FF98
FFA5 :DO 06 FFAD
FFA7:A2 00
FFA9:86 3E
FFAB:86 3F
FFAD:20 B4 C5
FFB0:49 BO
FFB2 :C9 OA
FFB4: 90 04 FF8A
FFB6 :69 88
FFBB :C9 FA
FFBA:4C CB CF
FFBD :00
FFBE:
FFBE:A9 FE
FFCO :48
FFCl :B9 E3 FF
FFC4 :48
FFC5:A5 31
FFC7:AO 00
FFC9 :84 31
FFCB:60
Free:
FFCC:BC
FFCD:B2
FFCE:BE
FFCF:9A
FFDO :EF
FFDl :C4
FFD2 :A9
FFD3 :BB
FFD4 :A6
FFD5 :A4
FFD6:06
FFD7 :95
FFD3 :07
FFD9:02
FFDA:05
FFDB:OO
FFOC :93
FFDD:A7
FFDE:C6
FFDF : 99
FFEO :EC
FFEl :ED
FFE2 :EA
FFEJ:
FFEJ:
FFEJ:

Apple //c FB 11onitor fi!llware

698
699
700
701 NXTBAS
702
703
704
705
706 NXTBS2
707
708
709 GETNUH
710
711
712 NXTCHR
713
714
715
716
717
718
719
720 •
721 TOSUB
722
723
724
725
726 ZMODE
727
728
729 •
730 CHRTBL
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753 •

R01
DEX
BPL
LOA
BNE
LOA
STA
STA
INX
BEQ
BNE
LOX
STX
STX
JSR
EOR
CMP
BCC
ADC
CMP
JMP
BRK

LOA
PHA
LOA
PHA
LOA
LOY
STY
RTS

DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
NOP

A2H

NXTBIT
HOOE
NXTBS2
A2H,X
AlH,X
AJH,X

NXTBAS
NXTCHR
t$00
A2L
A2H
GETUP
1$80
f$0A
DIG
1$88
f$FA
LOO KA SC

f<GO

SUBTBL, Y

HOOE
t$00
HOOE

$BC
$B2
$BE
$9A
$EF
$C4
$A9
$BB
$A6
$A4
$06
$95
$07
$02
$05
$00
$93
$A7
$C6
$99
$EC
$ED

20-0C'I-86 06:41 PAGE 91

; LEAVE X=$FF IF DIG

;IF MODE IS ZERO,
; THEN COPY A2 TO Al AND A3

;CLEAR A2

;Get char, iny, upshift

;it's a digi t

; + Check for quote

;DISPATCH TO SUBROUTINE, BY
; PUSHING THE HHJRDER SUBR ADDR,
; THEN THE LO-ORDER SUBR ADDR
; lllTO THE STACK,
; (CLEARING THE MODE, SAVE THE OLD
; MODE IN A-REG),

; AND 'RTS' TO THE SUBROUTIME!

;•c (BASIC llARH START)
; •y (USER VECTOR)
;'E (OPEN AND DISPLAY REGISTERS)
; + ! (Mini assembler)
;V (MEMORY VERIFY)
;'K (INfSLOT)
;•p (PRISLOT)
;•B (BASIC COLO START)
;'-' (SUBTRACTION)
;' +' (ADDITION)
;H (MEMORY HOVE)
;'<' (DELIMITER FOR HOVE, VFY)
;N (SET NORMAL VIDEO)
; I (SET INVERSE VIDEO)
;L (DISASSEMBLE 20 INSTRS)
;G (EXECUTE PROGRAM)
; ' : ' (MEMORY FILL)
; ' • ' (ADDRESS DELIMITER)
;'CR' (END OF INPUT)
;BLANK
;+S (Step)
;+T (Trace)
;+

754 • Table of low order monitor routine
755 • dispatch addresses.

22 AUTOST2

FFEJ:
ITE3:B2
ITE4:C9
ITE5 :BE
FFE6: 6B
ITE7 :35
ITE8:8C
ITE9:96
ITEA:AF
ITEB:l7
ITEC:l7
ITED:2B
FFEE:IF
ITEF:83
ITF0:7F
ITFI :5D
ITF2 :B5
ITF3:17
ITF4:17
ITF5:F5
ITF6:03
FFF7:70
ITFB: 6E
FFF9:
ITF9:
ITFA:
ITFA:FB 03
ITFC:62 FA
ITFE:03 CB
0000:

0001

Apple /le F8 monitor firmware

756 •
757 SUBTBL
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779 •
780
781 •
782
783
784 IRQVECT

62

DFB > BASClllT- 1
DFB >USR-1
DFB >REGZ-1
DFB >HINH
DFB >VERIFY-!
DFB > INPRT-1
DFB >OOTPRT-1
DFB >XBASIC-1
DFB >SETHCDE-1
DFB >SETHOOE-1
DFB >!«JVE-1
OFB >LT-I
DFB >SETNORM-1
OFB >SETlNV-1
DFB >LIST-I
DFB >CO-I
DFB > SETHCDE-1
DFB >SETHCDE-1
DFB >CRHON-1
DFB >BLANK-I
DFB >STEPZ-1
DFB >TRACE-!

ds $ITFA-', 0

011 KM!
011 RESET
011 KElllRQ
include bank2

20-0CT-86 06:41 PAGE 92

;+

;+
;+

;KCJl-MASKABLE IKTERRUPT VECTOR
;RESET VECTOR
; IKTERRUPT REQUEST VECTOR

23 BANK2 Apple //c F8 monitor firmware 20-0CT-86 06:41 PAGE 93

0000: 2
0000: 3 •
0000: 4 • Bank 2 of the rans
0000: 5 •
QQQQ: fi tUUUUUUUUUUUUUUUUUUUt

--- NEXT OBJECT FILE NAl!E IS FIRM. 2
COOO COOO 7 orq SCOOO
COOO 63 include mint ;Mouse ' acia interrupt handler
COOO 0100 1 ds $Cl00-', 0

.i:.

fr.

24 MIMT

ClOO;
ClOO:
ClOO:
ClOO:
ClOO:
ClOO:
ClOO:
ClOO:
ClOO:
ClOO:
ClOO:
ClOO:
ClOO:
ClOO: ClOO
ClOO:A9 OE
Cl02 :IC 7F 07

Cl05 :38
Cl06:
Cl06:AD 19 CO
Cl09:10 2B Cl36
Cl08:80 79 CO
ClOE:A9 OC
CllO :2C FF 07
CllJ :DO 03 Cll8
cm:so SA co
Cll8 :09 02
Cl1A:80 78 CO
Cl1D:2C 7F 06
Cl20 :DO 02 Cl24
Cl22 :A9 OC
Cl24 :2C 63 CO
Cl27:10 02 Cl2B
Cl29:49 04
Cl2B:2D FF 07
Cl2E:OC 7F 07
Cl31 :IC 7F 06
Cl34;69 FE
Cl36;
Cl36; Cl36
CJ36 :AD FF 07
Cl39 :30 72 CIAO
Cl3B;AD 15 CO
Cl3E:OO 17 CO
Cl41 :10 6A CIAO
Cl43:8A
Cl44 :A2 00
Cl46:2C 15 CO
Cl49:30 OA Cl55
Cl4B:98
Cl4C:49 80
Cl4E:A2 80
Cl50:2C 17 CO
cm :10 39 CISE
CJ55:0A
C!56:BD 7F 04

Mouse ' serial interrupt stuff 20-0CT-86 06:41 PAGE 94

4 tUUUUUUUUUUUUUUUUUUtU

5 •
6 • Mouse interrupt handler
7 •
8 • MWSEIMT - Monitor's interrupt handler
9 •

JO • Returns C • 0 if interrupt handled
11 • If not aouse interrupt, Goes to aciaint
12 • Mew in this rom:
13 • If 07 of mo1111ode • I, •ouse X and Y interrupts are not processed
14 • and are passed on to the user.
15 •
16
17 mouseint equ • ; Entry point if X ' Y set up
18 Ida f$0E ;Clear status bits
19 trb moustat

21 sec ;Assume interrupt not handled
22 • Check for vertical blankillCJ interrupt
23 Ida vblint ;VBL interrupt?
24 bpi chkmou
25 sta iouenbl
26 Ida hill.mode
27 bit mouaode
28 bne cvnovbl
29 sta iou+2
30 cvnovbl ora faovmode
31 sta ioudsbl
32 bit mouarm
33 bne CVllOVed
34 Ida fv!Jlmode
35 cvmoved bit aoubut
36 bpi cv!Jut
37 eor fbut•ode
38 cv!Jut and •ouaode
39 tsb •oustat
40 trb •ouarm

;Enable iou access ' clear VBL interrupt ·
;Should ve leave v!Jl active?

; Disable VBL

;VBL bit in am isn't used

;Didn't •ove
;Button pressed?.

;Clear the button bit
;lihich bits vere set in the mode

41 adc fSFE ;C=l if int passes to user
42 • Check ' update mouse movement
43 chkmou equ
44 Ida moumode ; If 07 = !, user better handle it
45 bmi xmdone
46 Ida mouxint ;Mouse interrupt?
47 ora mouyint
48 bpi xmdone ; If not return with C from v!Jl
49 txa ;Get XI in A
50 ldx fO
51 bit mouxint ; X movement?
52 bmi cmxmov
53 cmloop tya ;Get YI into A
54 eor 1$80 ;Complement direction
55 ldx 1$80
56 bit mouyint
57 bpl cmnoy
58 cmxmov asl A
59 lda mouxl,x ; A = current low byte

b 24 MINT Mouse ' serial interrupt stuff
b
0-

Cl59:BO !A Cl75 60 bes cmrQht
Cl5B:DD 7D 04 61 cmp minxl,x
Cl5E:DO 08 Cl68 62 bne cmlok
Cl60 :BD 7F 05 63 lda mouxh,x
Cl63 :DD 1D 05 64 cmp minxh,x
Cl66:FO 22 ClBA 65 beq cm.noint
Cl 68 :BD 7F 04 66 cmlok lda mouxl,x
Cl6B:DO 03 Cl10 67 bne cmntO
Cl6D:DE 7F 05 68 dee mouxh,x
Cl 70 :DE 7F 04 69 cmntO dee mouxl,x
Cl73:80 15 CIBA 10 bra cm.no int
Cl75 :DD 7D 06 11 cmrQht cmp maxxl,x
Cl78 :DO 08 Cl82 12 bne cmrok
Cl 7A:BD 7F 05 73 lda 11ouxh,x
Cl7D :DD 7D 07 74 cmp maxxh,x
Cl80 :FO 08 CIBA 75 beq cmnoint
Cl82 :FE 7F 04 76 cmrok inc mouxl,x
Cl85 :DO 03 CIBA 11 bne cmnoint
Cl87 :FE 7F 05 18 inc mouxh,x
ClBA:EO 00 19 cmnoint cpx 10
ClBC :FO BD C14B 80 beq cm loop
Cl BE :BD 48 CO 81 cmnoy sta mouclr
Cl91 :A9 02 82 lda lmovmode
Cl93:2D IT 01 83 and mo um ode
Cl96:FO 09 CIA! 84 beq cmnovbl
Cl98 :8D 19 CO 85 sta iouenbl
Cl 9B :SD 5B CO 86 sta iou+3
Cl 9E :SD 78 CO 81 sta ioudsbl
ClAI :09 20 88 cmnovbl ora lmovarm
CIA3:0C 7F 06 89 . tsb mouar1
CIA6:A9 OE 90 lda 1$0£
ClAB :2D 7F 07 91 and moustat
ClAB :69 FE 92 adc 1$FE
ClAD:BO 05 CIB4 93 xmdone bes aciaint
Cl AF : 4C 84 C7 94 jmp swrts2

20-0CT-86 06:41 PAGE 95

;Which way?
;Move left

; Borrow from hiQh byte?

; At hiQh bound?

;Move riQht

;Should we enable VBL?

; Branch if not

; Enable VBL int

;Mark that we moved

C=l iff any bits were 1
If not handled, try acia
Back we QO

24 MINT

CIB2:
CIB2:
ClB2:
ClB2:
CIB2:
ClB2:
ClB2:
ClB2:
ClB2:
ClB2:
ClB2:
ClB2:
CIB2:
CIB2:
ClB2:
ClB2:
ClB2:
ClB2:
ClB2:
ClB2:
ClB2:
ClB2:
ClB2:
ClB2:
ClB2:
ClB2:
ClB2:
ClB2:
ClB2:
ClB2:
CIB2:
ClB2:
ClB2:
ClB2:
ClB2:
CIB2:
CIB2:
CIB2:38
ClB3:60
CIB4: ClB4
ClB4:20 BA Cl
CIB7: 4C 84 C7
Cl BA: ClBA
ClBA:A2 C2
ClBC:20 C2. Cl
ClBF:90 F2 ClB3
ClCl:CA
ClC2 :BC . 42 Cl
ClC5 :A9 04
ClC7:59 FA BF
ClCA:29 OC
ClCC:FO £4 ClB2
CICE:B9 F9 BF
ClDl :9D 38 04
C104: 10 DC CIB2
C106:EO C2
ClDB :BO 02 ClDC
CIDA:49 40

Mouse ' serial interrupt stuff 20-0CT- 86 06:41 PAGE 96

96 • This routine will determine if the source of
97 • is either of the built in ACIAs. If neither port
98 • Qenerated the interrupt, or the interrupt was . due
99 • to a transmit buffer enpty, protocol converter, or

100 • 'unbuffered' receiver full, the carry is set indi-
101 • catinQ an externally serviced interrupt.
102 • If the interrupt source was keyboard; 'buffered'
103 • serial input, or the DCD, the interrupt is serviced
104 • and the carry is cleared indicatinQ interrupt was
105 • serviced. (DCD handshake replaces CTS.)
106 • Location •ACIABUF• specifies which (if either) re-
107 • ceiver data is buffered. For port I it must contain
108 • $Cl, for port 2 a $C2. Any other values are cause
109 • interrupts to pass to external (RAM based) routines.
l10 • Location "TIPBED• specifies whether Keyboard in-
lll • put should be buffered, ignored, or processed by
l12 • RAM based routines . If bit · 7=1 and bit 6=0, key
l13 • board data is placed in the type-ahead buffer. If
l14 • bit 6 is set the · interrupt is cleared, but must
l15 • be recognized and serviced by a RAM routine. If
l16 • both bits = 0, the interrupt is serviced, but the
117 • keyboard data is iQnored.
l18 • llhile using type-ahead, Open-Apple CTRL-X will
119 • flush the buffer. No other code is recognized.
120 • If the source was an N:IA that has the transmit
121 • interrupt enabled, the original value of the N:IAs
122 • status registers is preserved. Automatic serial input
123 • buffering is .not serviced from a port so configured.
124 • Interrupts originating frat the protocol converter or
125 • keyboard (RM serviced) do not inhibit serial buffering
126 • and are passed thru. The RM service routine can rec-
127 • oqnize the interrupt source by a I state in bit 6 of
128 • the ACIAs status register; The RM service ·routine must
129 • cause the clearing of DSR (bit 6) AND make a second ac-
130 • cess to the status register before returning.
131 •
132 •
133 notacia . sec
134 acdone rts
135 aciaint · equ
136 jsr aciaint2
137 lllP swrts2
138 aciaint2 equ
139 ldx
140 jsr
!ff bee
142 dex
143 aciatst ldy
144 lda
145
146
147
148
149
150
151 aitst2
152
153

eor
and
beq
lda
sta
bpl
cpx
bes
eor

l<canslot
aciatst
acdone

devno2,x
1$4
scomd,y
1$0C
notacia
sstat,y
astat,x
notacia
l<canslot
aiport2
1$40

;Hot acia int

; Extra jsr since rest needs RTS

Test port 2 first
Check for interrupt
Return if interrupt done
;Try port 1

; Get index for acia
; If xmit ints .enabled pass to user
;Check if D<3>, D<2> = 01

;User better take it!
;Get status
; Save it away
;No interrupt
;C=l if can port. Called frat serout3
; Invert DSR if port I

.c.

.c.
-...J

-24 MINT Mouse & serial interrupt stuff 20-0CT-86 06:41 PAGE 97

· c1oc:Jc 38 05 154 aiport2 bit extint,x Is DSR-enabled?
CIDF:70 29 C20A 155 bvs aipass Yes, user wants it
CIEi: 10 25 C208 156 bpl aieatit No, eat it
CIE3 :90 23 -c208 157 bee aieatit Yes but I don't want it for port I
CIE5:89 40 158 bit t$40 Is DSR I?
CIE7 :FO 21 C20A 159 beq aipass If not, skip it
CIE9: 160 • It's a keyboard interrupt
CIE9 :AD 00 CO 161 lda kbd ;Get the key
CIEC:AO 80 162 ldy 1$80
CIEE:20 28 C2 163 jsr putbuf ; Put it in the buffer
CIFI :C9 98 164 cmp 1$98 ;Is it a •xi
CIF3 :DO OB C200 165 bne ainoflsh
CIF5 :AD 62 CO 166 lda butnl ;And the · closed apple?
ClF8:10 06 C200 167 bpl ainoflsh
CIFA:8E re 05 168 stx twkey ;Flush the type ahead buffer
ClFD:8E FF 06 169 stx trkey
C200 :AD 10 CO 170 ainoflsh lda kbdstrb ; Clear the keyboard
C203: 171 • $AO $BO table needed by serial firmware
C203: Cl42 172 devno2 equ •-sltdmy
C203 :AO BO 173 ldy ISBO ;Restore y
C205 :B9 F9 BF 174 lda sstat, y ;Bead status to clear int
C208 :29 BF 175 aieatit and 1$BF ; Clear the DSR bit
C20A:OA .176 aipass asl A ; Sl\ift DSR into c
C20B:OA 177 asl A
C20C:29 20 178 and 1$20 ; Is the receiver full?
C20E:FO 3E C24E 179 beq aciadone ; If not, we' re done
C210:B9 FA BF 180 lda soomd,y ;Are receive interrupts enabled?
C213:49 01 181 eor n ;Check for D<l>~D<O> = 01
C215:29 03 182 and 13
C217:DO 35 C24E 183 bne aciadone ; If not, were done
C219:8A .184 txa ;Is this acia buffered?
C21A:4D re 04 185 eor aciabuf
C21D:DO 93 CIB2 186 bne notacia ;The user better handle it!
C21F:08 187 php ;Save DSR status
C220 :20 22 CJ 188 jsr get data ;Get char ' check xon, etc
C223 : 90 28 C24D 189 bee aieat ;Don't put in buffer if eaten
C225 :AO 00 190 ldy 10
C227 :DO 191 dfb $00 ;BNE opoode to skip PBP
C228: C228 192 putbuf equ
C228 :08 193 php
C229:DA 194 phx
C22A:48 195 pha
C22B:B9 7C 05 196 lda twser, y ;Get buffer pointer
C22E:AA 197 tax ; Save it for later
C22F:lA 198 inc A ; Bump it to next free byte
C230 :89 7F 199 bit 1$7F ;overflow?
C232 :DO 01 C235 200 bne pbok
C234: 98 201 tya ;Hrap ·pointer
C235:D9 7C 06 202 pbok cmp trser,y ; Buffer full?
C238 :FO 03 C23D 203 beq pbfull
C23A: 99 7C 05 204 sta twser,y ; Save the new pointer
C23D:68 205 pbfull pla ;Get the data
C23E:2C 14 CO 206 bit rdramwrt
C241 :8D 05 CO 207 sta wrcardram ; It goes to ·aux ram
C244:9D 00 08 208 sta thbuf, x
C247 :30 03 C24C 209 bmi aiaux ; Branch if we want aux
C249 :8D 04 CO 210 sta wrmainram
C24C:FA 211 · aiaux plx

24 MINT

C24D:28
C24E :60

Mouse & serial interrupt stuff

212 aieat plp
213 aciadone rts

20-0CT-86 06:41 PAGE 98

;Get DSR status back

J:>,.
J:>,.

24 MINT Mouse ' serial interrupt stuff 20-0C'l-S6 06 :41 PAGE 99 24 MINT Mouse ' serial interrupt stuff 20-0C'l- 86 06:41 PAGE 100

co
C24F: 215 •uuuu u uuuuuuuuuu u uuu•

C24F: 216 •
C24F: 217 • SEROOT3 - outputs a character to a acia
C24F: 21S • Inputs : A = char, X = en
C24F: 219 •
C24F: 220
C24F: C24F 221 serout3 equ
C24F:20 55 C2 222 jsr serout4
C252 :4C S4 C7 223 jmp swrts2
C255: C255 224 serout4 equ • ; Entry point with rts
C255 :4S 225 pha ; Save the char
C256:2C AB C2 226 bit sorts ;Control char?
C259:FO 03 C25E 227 beq sordy ; Don' t inc column if so
C25B:FE 3S 07 22S inc col,x
C25E:20 B2 C2 229 sordy jsr ·qetstat2 ;Get acia stat us
C261:29 30 230 and 1$30 ; I set by qetstat
C263 :C9 10 231 cap f$10

C21C: 271 • inputs: x = en
C2N: : 272 • outputs: A = status, X = en, I = devno
C2N:: 273 •
C2N:: 274 tUUUUUUUUU UU UtUU UtUttUt

C21C: C2AC 275 qetstat equ
C2N: :20 B2 C2 276 jsr oetstat2
C2AF: 4C 84 C7 277 jmp swrts2 ;Return to other side
C2B2: C282 278 oetstat2 equ •
C2B2 :OS 279 php ;Save interrupt status
C283:78 280 sei
C2B4 :BC 42 Cl 281 gsttst ldy devno2,x ;Get index into hardware
C2B7 :B9 F9 BF 282 lda sstat,y ;Get the status
C2BA:l0 05 C2Cl 283 bpl ostnoint ;07 = 1 if interrupt
C2BC:20 06 Cl 284 jsr aitst2 ;Go service the interrupt
C2BF:80 F3 C2B4 285 bra osttst ; Interrupt may have chaJlqed status
C2Cl :28 286 ostnoint plp ;Restore interrupt status
C2C2:60 287 rts

C265 :DO F7 C25E 232 bne sordy
C267 :BO BS 06 233 lda flags,x ; Is Xal/XOFF enabled?
C26A:S9 20 234 bi t 1$20
C26C:FO lF C2SD 235 beq sook ; Branch if not
C26E:EC FC 04 236 cpx aciabuf : Is port interrupt driven?
C271 :FO 13 C2S6 237 beq sot st
C273 :20 E9 C2 23S jsr xrdnobuf ;Get a char from the acia
C276: 90 OE C2S6 239 bee sot st ; Branch if no char
C27S :BC 34 C2 240 ldy charptr,x ;Get pointer to charbuf
C27B:99 FE 05 241 sta charbuf,y ; Save the character
C27E:BD BS 06 242 lda flaqs,x ; Set bit for char in buffer
C2Sl :09 04 243 ora 1$04
C2S3:9D BS 06 244 sta flaqs,x
C286:BD B8 06 245 sotst lda flaqs,x ;Check if in xoff
C2S9:29 02 246 and 1$02
C2SB:DO Dl C25E 247 bne sordy ; Loop if not ready
C2SD:BC 42 Cl 24S sook ldy devno2,x
C290 : 6S 249 pla
C291 :48 250 pha ;Get char to XMIT
C292 : 99 F8 BF 251 sta sdata,y ; out it qoes
C295 :3C B8 06 252 bi t flaqs,x ; V= 1 if LF after CR
C298:49 OD 253 eor 1$00 ;check for CR.
C29A:OA 254 asl A ; preserve bi t 7
C29B:DO OD C2AA 255 bne sodone ;branch if not CR .
C29D:50 06 C2A5 256 bvc clrcol ; branch if no LF after CR
C29F:A9 14 257 lda 1$14 ;Get LF'2
C2Al:6A 258 ror A ; no shift in high bit
C2A2:20 55 C2 259 jsr serout4 ;Output the LF but don't echo it
C2A5:64 24 260 clrcol stz ch ; O position ' column
C2A7:9E 38 07 261 stz col,x
C2AA:68 262 sodone pla ;Get the char back
C2AB:60 263 sorts rts

C2l\C : 265
C2l\C: 266 •
C2l\C: 267 • GETSTAT - Gets t he st atus from a acia
C2l\C: 268 ' GETSTAT2 - Call from t his side
C2AC: 269 • If i nterrupt, aciatst is called
C2l\C: 270 • note: external interrupts are lost

~
~
-0

24 MINT

C2C3:
C2C3:
C2C3:
C2C3:
C2C3:
C2C3:
C2C3: C2C3
C2C3 :20 C9 C2
C2C6:4C B4 C7
C2C9: C2C9
C2C9:EC FC 04
C2CC:DO 07 C2D5
C2CE:AO 00
C2DO :20 FD C2
C2D3 :BO lF C2F4
C2D5:
C205:BD BB 06
C2DB :B9 04
C2DA:FO OD C2E9
C2DC:29 FB
C2DE : 9D BB 06
C2El :BC 34 C2
C2E4 :B9 FE 05
C2E7 :3B
C2EB: 60
C2E9:
C2E9 :20 B2 C2
C2EC:29 OB
C2EE:1B
C2EF:FO 03 C2F4
C2Fl :20 22 C3
C2F4 :60

Mouse ' serial interrupt stuff 20-0CT-B6 06:41 PAGE 101

289 *""'*'**'**'*"******'***Uttttuuu•
290 • This is the serial input routine. carry
291 • flaq set indicates that returned data is
292 • valid.
293 •
294 ••
2 95 xrdser equ
296 jsr xrdser2
297 jmp swrts
2 9B xrdser2 equ
299 cpx
300 bne
301 ldy
302 jsr
303 bes
304 •
305 xnosbuf
306
307
30B
309
310
311
312
313
314 •
315 xrdnobuf
316
317
318
319
320 xrddone

lda
bit
beq
and
sta
ldy
lda
sec
rts

jsr
and
clc
beq
jsr
rts

aciabuf
xnosbuf
10
qetbuf2
xrddone

flaqs,x
1$04
xrdnobuf
1$FB
flaqs,x
charptr,x
charbuf,y

qetstat2
1$8

xrddone
qetdata

is serial input buffered?
(in enqlish "NO SERIAL BUFFER")
Y•O for serial buffer
Any data in buffer?

; Is there a char in the onr byte buffer?

; Branch if not
; Clear the bit

;Get ACIA status

; indicate no data
; Branch if no data!
;Get data and check xon, etc

C2F5: C234 322 charptr equ '-$Cl ;Pointer to character buffers
C2F5 :OO BO 323 dfb $0, $BO

C2F7: 325 u

C2F7 : 326 •
C2F7: 327 • GETBUF - Gets a byte from the i nput buffer
C2F7: 328 • Inputs: Y=O for Serial buffer 80 for Keyboard buffer
C2F7: 329 • C = 0 if no data C = 1 if data valid A = Data
C2F7: 330 •
C2F7: 331 *'*'*'*****'*********"U**'***HHtt•••
C2F7: C2F7 332 qetbuf equ
C2F7:20 FD C2 333 jsr qetbuf2
C2FA:4C B4 C7 334 jmp swrts
C2FD: C2FD 335 qetbuf2 equ •
C2FD:B9 7C 06 336 lda trser, Y ;Test for data in buffer
C300 :09 7C 05 337 cmp twser,Y ; If = then no data
C303 :18 338 Cle
C304 :FO lB C321 339 beq gbdone ;Branch if empty
C306:48 340 pha ; Save current value
C307:1A 341 inc A ; Update the pointer
C308 :89 7F 342 bit 1$7F ;overflow
C30A:DO 01 C30D 343 bne qbnoovr
C30C: 98 344 tya

24 MINT Mouse ' serial interrupt stuff 20-0CT-86 06:41 PAGE 102

C30D :99 7C 06 345 qbnoovr sta trser,y ; Store the updated pointer
C310:7A 346 ply ;Get the old value of the pointer
C311 :AD 13 CO 347 lda rdraud ; Are we in main ram
C314 :0A 348 asl A ;C=l for Aux raa
C315:8D 03 CO 349 sta rdcardram ; Force Aux raa
C318 :B9 00 08 350 lda thbuf, Y ;Get byte frOll buffer
C31B:BO 04 C321 351 bes qbdone ; Branch if we were in aux bank
C31D :8D 02 CO 352 sta rcilainram ; Set back to main
C320 :38 353 sec ;Hark data there
C321:60 354 qbdone rts

C322: 356 ..
C322: 357 •
C322: 358 • GETDATA - Gets data from serial port
C322: 359 ' and checks for LF, XON, XOFF
C322: 360 • inputs: Y = index to acia
C322: 361 • outputs: A = data, Y dest, C = 1 if data ok = 0 if eaten
C322: 362 •
C322: 363 ..
C322 : C322 364 qetdata equ •
C322 :B9 F8 BF 365 lda sdata,y
C325 :48 366 pha ; Save the data
C326:09 80 367 ora 1$80 ; Set 07 for c011pares
C328 :A8 368 tay
C329:BD 88 06 369 lda flaqs,x ;Get options byte
C32C:89 08 370 bit l$08 ;Eat linefeeds?
C32£:DO 04 C334 371 bne qdnolf
C330:CO SA 372 cpy llfeed ; Is it a LF?
C332 :FO 12 C346 373 beq qdeat ;Eat it if it is
C334 :89 20 374 qdnolf bit 1$20 ;Xon/XOIT enabled?
C336:FO 10 C348 375 beq qdok
C338 :CO 91 376 cpy lxon ; Is it an xan
C33A:DO 04 C340 377 bne qdnxon
C33C :29 FD 378 and ISFD ;Clear xoff bit
C33£:80 06 C346 379 bra qdeat ;And eat it
C340 :CO 93 380 qdnxon cpy . txoff
C342 :DO 04 C348 381 bne qdok
C344 :09 02 382 ora 1$02 ; Set xoff bit
C346:18 383 qdeat Cle
C347:BO 384 dfb $80 ;BCS opcode
C348 :38 385 qdok sec
C349:9D 88 06 386 sta flaqs,x
C34C:68 387 pla
C340:60 3B8 rts
C34£ : 64 include auxstuff ;Auxillary move stuff

~ 2S AUXSTUFF Aux ram support stuff 20-0CT-86 06:41 PAGE 103 2S AUXSTUFF Aux ram support stuff 20-0CT-86 06:41 PAGE 104

(.71
0 C34E: 4 '''""""**"""""''""" C397: 62 ••

C34E: S ' NAME : MOVEAUX C397: 63 ' NAME : XFER

C34E: 6 ' FUNCTION: PERFORM CROSSBANK MEMORY KlVE C397: 64 • FUNCTION: TRANSFER CONTROL CROSSBANK

C34E: 7 ' INPUT : Al=SOURCE ADDRESS C397: 6S ' INPUT : $03ED=TRANSFER ADDR

C34E: 8 • : A2=SOURCE END C397: 66 • : CARRY SET=XFER TO CARD

C34E: 9 • : A4=DESTINATION START C397: 67 • CLR• XFER TO MAIN

C34E: 10 • : CARRY SET=MAIN- ->CARD C397: 6B • : VF1AG CLR=USE STD ZP/STK

C34E: 11 • CLR=CARD-->MAIN C397: 69 • : SET=USE ALT ZP/STK

C34E: 12 ' OUTPUT : NONE C397: 70 ' OUTPUT : NONE

C34E: 13 ' VOLATILE: NITTHING C397: 71 • VOLATILE: $03ED/03EE IN DEST BANK

C34E: 14 ' CALLS : NITTHING C397: 72 ' CALLS : NITTHING

C34E: 15 u C397: 73 ' NITTE : ENTERED VIA JMP, NC7r JSR

C34E: C34E 16 MOVEAUX EQU • C397: 14 ..

C34E:48 17 PHA ;SAVE AC C397: 7S •

C34F:AD 13 CO 18 LOA RD RAM RD ; SA VE STATE OF C397: C397 76 XFER EOU

C352:48 19 PBA ; MEMORY FLAGS C397:48 77 PBA ; SAVE AC CJI CURRENT STACK

CJSJ :AD 14 CO 20 LOA RDRAMllRT C398: 78 •

CJS6:48 21 PBA C398: 79 • COPY DESTINATION ADDRESS TO THE

C3S7: 22 • C398: 80 • OTHER BANK SO THAT llE HAVE IT

C357: 23 ' SET FLAGS FOR CROSSHANK MOVE: C398: 81 • IN CASE NE DO A SWAP:

CJS7: 24 • C398: B2 •

CJS7:90 08 C361 25 BCC HOVEC2M ;•>CARD->MAIN C398 :AD ED 03 83 LOA $03ED ; GET XFERADDR LO

CJS9:8D 02 CO 26 STA RDMAiNRAM ; SET FOR MAIN C398:48 84 PHA ; SAVE ON CURRENT STACK

CJSC:8D OS CO 27 STA WRCARDRAM ; TO CARO C39C:AD EE 03 8S LOA $03EE ;GET XFERADDR Bl

CJSF:BO 06 C367 28 HCS HOVESTRT ; =>(ALWAYS TAKEN} C39F:48 B6 PHA ;SAVE IT TOO

C361: 29 • C3AO: B7 •

C361: C361 30 MOVEC2M EOU . C3AO: 8B • SWITCH TO APPROPRIATE BANK:

C361 :80 04 CO 31 STA WRMAINRAM ; SET FOR CARD C3AO: B9 •

C364 :BO 03 CO 32 STA RDCARDRAM ; TO MAIN C3A0:90 OB C3AA 90 BCC XFERC2M ; •>CARD-->MAIN

C367: 33 • C3A2:8D 03 CO 91 STA RDCARDRAH ; SET FOR RUNNING

C367: C367 34 MOVESTRT EOU • C3A5 :80 OS co 92 STA NRCARDRAH ; IN CARD RAH

C367:82 3C 3S HOVELOOP LOA (AlL) ;qet a byte C3A8:BO 06 CJBO 93 BCS XFERZP ;•> always taken

C369:92 42 36 STA (A4L) ;move it C3AA: C3AA 94 XFERC2M EOU •
C36B:E6 42 37 INC A4L C3AA:8D 02 CO 9S STA RLMAINRAH ; SET FOR RUNNING

C36D:DO 02 C371 JB BNE NEXTAl C3AD:8D 04 CO 96 STA WRMAINRAH ; IN MAIN RAH

C36F:E6 43 39 INC A4H C3BO: 97 •

C311 :AS JC 40 NEXTAl LOA AIL C3BO: CJBO 98 XFERZP EOU . ;SWITCH TO ALT ZP/STK

C373 :CS 3E 41 CMP A2L C3B0:68 99 PLA ; STUFF XFERADDR

C37S :AS 30 42 LOA AIH CJBI :80 EE 03 100 STA $03EE ; BI AND

C377 :ES 3F 43 SBC A2B C3B4:6B 101 PLA

C379:E6 JC 44 INC AlL CJBS: 80 ED 03 102 STA $03ED LO

C37B:DO 02 C37F 4S BNE CO! C3BB : 6B 103 PLA ;RESTORE AC

C37D:E6 30 46 INC AlH C389:70 OS C3CO 104 BVS XFERAZP ;=>switch in alternate zp

C37F:90 E6 C367 47 CO! BCC HOVELOOP : •>more to move CJBB: BO 08 CO !OS STA SETSWZP ; else force standard zp

CJBI: 4B • C3BE:SO 03 C3C3 106 eve JMPDEST ;=>always perform transfer

C381 :BO 04 CO 49 STA llRMAINRAM ;CLEAR FLAG2 CJCO :BO 09 CO 101 XFERAZP STA SETALTZP ; switch in alternate zp

C3B4: 6B so PLA ;GET ORIGINAL STATE C3C3 :4C EB C7 !OB JMPDEST JMP SWXFG02 ;Back we qo

CJBS: 10 03 CJBA Sl BPL COJ ;=>IT WAS OFF C3C6: 109 ..

C387:BD OS CO S2 STA WRCARDRAM C3C6 : 6S include banqer2 ;Diaqnostic routines

C38A: CJBA 53 C03 EOU •
C38A:BD 02 CO S4 STA RDMAINRAH ;CLEAR FLAG!
C3BD:6B SS PLA ;GET ORIGINAL STATE
C38E:l0 03 C393 S6 BPL MOVER ET ; =>IT WAS OFF
C390:8D 03 CO S1 STA RDCARDRAM
C393: C393 S8 MOVERET EOU •
C393:68 S9 PLA ;Restore AC
C394 :4C 84 C7 60 JMP SWRTS2

26 BA!iGER2 Apple /le diagnostics 20-0CT-86 06:41 PAGE 105 26 BA!iGER2 Apple //c diagnostics 20-0CT- 86 06:41 PAGE 106

C3C6 : 3 .. C42A:A5 01 61 memB lda $01
C3C6 : 4 • C42C:85 03 62 mem9 sta $03
C3C6: 5 • Here is the rest of the diagnostic stuff C42E:98 63 tya ; restore pattern to ACC

C3C6: 6 • the first part has been moved into the $0000 space C42F:AO 00 64 ldy 1$00 ; fill this page with the pattern

C3C6: 7 • to make desperately needed room C431:18 65 meaA clc
C3C6: 8 • C432 : 70 2A CB 66 adc ntbl,x

C3C6: 9 U1'1UUUUUUUUUUUUU•ttHtttttt C435 :51 02 67 eor ($02) ,y

C3C6: C3C6 10 TSTMEM equ . C437 :DO 39 C472 68 bne MEMERROR ;if any bits are different, qive up!!!

C3C6:86 01 11 stx $01 C439:Bl 02 69 lda ($02) ,y ; restore correct pattern

C3C8 :86 02 12 stx $02 C43B:CA 70 dex ; keep x in the ranqe 0-4

C3CA:86 03 13 stx $03 C43C:l0 02 C440 71 bpl • eaB
C3CC:A2 04 14 ldx 14 ;do RAM $100-$FITF five times C43E:A2 04 72 ldx 14
C3CE:86 04 15 stx $04 C440 :CB 73 memB iny ;all 256 filled yet?

C3DO :85 05 16 MEMl STA $05 ; keep ace in a safe place C441 :DO EE C431 74 bne memA ; branch if not

C3D2 :A2 04 17 ldx 14 C443 :E6 01 75 inc 1 ;bump paqe I
C3D4 : 64 01 18 stz $01 C445 :DO CB C412 76 bne mem7 ; loop through $0100 to $FFOO

C3D6:E6 01 19 inc 1 ;point to paqe 1 first C447:6A 77 ror a ; change ACC for next pass

C308:A8 20 mem2 tay ; save ACC in Y for now C448 :2C 19 CO 78 bit rdvblbar ; use RDVBL for a little randanness •••

C3D9:8D 83 CO 21 sta lcbank2 ; anticipate not $COOO range ••• C44B:l0 02 C44F 79 bpl •e11C
C3DC:8D 83 CO 22 sta lcbank2 C44D:49 A5 80 eor 1$A5
C3DF:A5 01 23 lda $01 ; get page address C44F:C6 04 81 memC dee $04 ;have 5 passes been done yet?

C3El:29 FO 24 and 1$FO ; test for $CO-$CF range C451 :30 03 C456 82 bmi memo ;skip if yes

C3E3:C9 CO 25 cmp 1$CO C453 :4C DO CJ 83 jmp meml ; start next pass

C3E5 :DO OC CJFJ 26 bne mem3 ; branch if not. ••
C3E7 :AD 88 CO 27 lda lcbankl
CJEA:AD BB CO 28 lda lcbankl ; select primary $0000 space C456:AA 85 •e11D TAX ;save ace
C3ED:A5 01 29 lda $01 C457 :2C 13 CO 86 BIT rdrard ; aain or aux ram ?

C3EF:69 OF 30 adc 1$F ;Plus carry • +$10 C45A:30 10 C46C 87 BM! MEMF ; skip if aux ram

CJFl:DO 02 C3F5 31 bne mem4 ; branch always taken C45C:8A 88 txa
C3FJ:A5 01 32 11em3 lda $01 C45D:8D 05 CO 89 STA wrcardram ;enable aux mem write

C3F5 :85 03 33 mem4 sta $03 C460 :80 03 CO 90 STA rdcardram ;enable aux 11e11 read

C3F7:98 34 tya ; restore pattern to ACC C463 :SD 09 CO 91 STA setaltzp ; swap in alt zero paqe

C3F8 :AO 00 35 ldy l$00 ; fill this page with the pattern C466:8D 81 CO 92 STA RCJl!N ; Force rom enable

C3FA:l8 36 mem5 clc C469:4C 97 04 93 jap TSTZPG ; and test it!

C3FB:7D 2A CB 37 adc ntbl,x
C3FE:91 02 38 sta ($02) ,y C46C:8D 08 CO 95 MOO STA setstdzp ; swap in main zero page

C400:CA 39 dex ; keep x in the ranqe 0-4 C46F:4C EF C4 96 JMP Sl«:HTST
C401: 10 02 C405 40 bpl ae11 6
C403 :A2 04 41 ldx 14
C405 :CB 42 mem6 iny ;all 256 filled yet?
C406:DO F2 CJFA 43 bne mem5 ;branch if not
C40B :E6 01 44 inc 1 ;bump paqe I
C40A:DO CC CJDB 45 bne mem2 ; loop through $0100 to $FFOO

C40C:E6 01 47 inc $01 ;point to paqe 1 aqain
C40E:A2 04 48 LOX 14
C410:A5 05 49 LOA $05
C412:A8 50 mem7 tay ; save ACC in Y for now
C413:AD 83 CO 51 lda lcbank2 ;anticipate not $COOO range •••
C416:AD 83 CO 52 lda lcbank2
C419:A5 01 53 lda $01 ; get page address
C41B:29 FO 54 and 1$FO ; test for $CO-$CF range
C41D:C9 CO 55 cmp f$CO
C41F:DO 09 C42A 56 bne memB ;branch if not •• •
C421 :AD 88 CO 57 lda lcbankl ; select primary $0000 space
C424 :A5 01 58 lda $01
C426:69 OF 59 adc l$F ;Plus carry =+$10
C428 :DO 02 C42C 60 bne rnem9 ;branch always taken

b

~

.b.
(11

26 BANGER2 Apple //c diagnostics 20-0CT-86 06:41 PAGE 107 26 BANGER2 Apple /le diagnostics 20-0CT-S6 06:41 PAGE 108

I\)
C472 :38 98 M™ERROR sec ; indicate main ram failure C4CA:A2 02 143 BADSIITCH ldx 12
C473:AA 99 BADBITS tax ; save bit pattern in x for now C4CC:7A 144 ply
C474 :AD 13 CO JOO lda rdramrd ;main or aux mem? C4CD:OS 14S php
C477 :BS JOI clv ;with V-FLG C4CE:BD 6C CS 146 bswtchl lda smess,x ; anticipate MMU error
C47S:JO 03 C47D 102 bpl bbitsl ;branch if primary bani C4Dl :2S 147 plp
C47A:2C 2A CS 103 bit setv C4D2 :OS 14S php
C47D:A9 AO 104 bbitsl lda 1$AO ; try to clear video screen C4D3:90 03 C4DS 149 bee bswtch2 ;branch if not IOU error
C47F:AO 06 105 ldy 16 C4D5 :BD 6F CS 150 lda smesst3,x ; anticipate !00 error
C4Sl:99 FE BF 106 clrsts sta ioadr-2,y C4D8 :CO 06 151 bswtch2 cpy 16 ; compare with where we left off
C484: 99 06 CO 107 sta ioadrt6,y C4DA:90 OB C4E7 152 bee bswtch3 ;skip if !t!U
C4S7 :SS !OS dey C4DC:CO OS 153 cpy IS
C4SS:S8 109 dey C4DE:90 04 C4E4 154 bee bswtch2a ;skip if GLU (ioudis or dhires failure)
C4S9 :DO F6 C4Sl 110 bne clrsts C4EO :CO 11 155 cpy 1$11
C4SB:SD 51 CO Ill sta txtset C4E2:90 03 C4E7 156 bee bswtch3 ;skip if IOU
C4SE:SD 54 CO 112 sta txtpagel C4E4 :BD 72 CS 157 bswtch2a lda smesst6,x ;GLU error (ioudis failure)
C491 :99 00 04 113 clrs sta $400, y C4E7:9D B8 05 15S bswtch3 sta screen,x
C494 :99 00 05 114 sta $500, y C4EA:CA 159 dex
C497:99 00 06 115 sta $600, y C4EB:l0 El C4CE 160 bpl bswtchl ;print "ll!U", "IOU" or "GLU"
C49A:99 00 07 116 sta $700, y C4ED:30 FE C4ED 161 hangy bmi hangy ;branch forever
C49D :CS 117 iny
C49E:DO Fl C491 118 bne clrs
C4AO:SA 119 txa ; test for switch test failure C4EF:AO 01 163 Sl«:HTST ldy llt!UIDX
C4Al :FO 27 C4CA 120 beq BADSIITCH ;branch if it was a switch C4Fl:A9 7F 164 svtstl lda 1$7F
C4A3:AO 03 121 ldy 13 C4F3:6A 165 svtst2 ror a ; set IOU/lt!U switches to match A
C4A5 :BO 02 C4A9 122 bes badmain : branch if ZP ok C4F4 :BE 2F CS 166 ldx SVlBLO,y
C4A7:AO 05 123 ldy 15 C4r7 :FO or C50S 167 beq svtst4 ;branch if done settinq switches
C4A9:A9 AA 124 badmain lda 1$AA ;mark aux report with an asterisks C4F9:90 03 C4FE 16S bee svtst3 ;branch if setting switch to 0-state
C4AB:50 03 C4BO 125 bvc badprim C4FB:BE 41 CS 169 ldx svrBLl,y ;else get index to set switch to 1
C4AO:SD BO 05 126 sta screen-S C4FE:9D FF BF 170 svtst3 sta ioadr-1,x ;set switch
C4BO :B9 66 CS 127 badprim lda niess,y C501 :CS 171 iny
C4B3: 99 Bl 05 12S sta screen-7,y C502:DO EF C4F3 172 bne svtst2 ;branch always taken •••
C4B6:SS 129 dey C504: 173 •
C4B7:10 F7 C4BO 130 bpl badprim ;message is either "RN!" or "RAM ZP" C504 :AE 30 CO 174 click ldx spkr
C4B9:AO 10 131 ldy 1$10 ;print bits C507 :2A 175 rol a
C4BB:SA 132 bbits2 txa C50S :88 176 svtst4 dey
C4BC:4A 133 lsr a C509:BE 53 CS 177 ldx RSllTBL, y : now verify the settings just aade
C4BD:AA 134 tax C50C:FO 13 C521 17S beq svtst6 ;branch if done this pass
C4BE:A9 5S 135 lda 1$5S ;bits are printed as ascii 0 or 1 C50E:30 F4 C504 179 bmi click ;branch if this switch no to be verified.
C4C0:2A 136 rol a C510:2A ISO rol a
C4Cl :99 B6 05 137 sta screen-2, y C511:90 07 C51A lSl bee svtst5
C4C4 :8S 138 dey C513 :1E 00 CO 182 asl ioadr,x
C4C5 :SS 139 dey C516:90 IF C537 JS3 bee swerr
C4C6 :DO F3 C4BB 140 bne bbits2 C518:BO EE C508 1S4 bes svtst4 ; branch always
C4C8 :FO FE C4C8 141 hangx beq hangx ; hang forever and ever C51A:lE 00 CO 1S5 svtst5 asl ioadr,x

C51D:BO 18 C537 1S6 bes swerr
C51F:90 E7 C508 1S7 bee swtst4 : branch always
C521: 1S8 •
C521 :2A 1S9 svtst6 rol a : restore original value
C522 :CS 190 iny : and !00/MMU index
C523 :3S 191 sec
C524 :£9 01 192 sbc II ; try next pat tern
C526:BO CB C4F3 193 bes svtst2
C528 :SS 194 dey was lt!U just tested?
C529:FO OS C533 195 beq swtst7 yes, go test 100
C52B:CO 08 196 cpy llOU!DX-1 was IOU just tested?
C52D:DO 10 C53F 197 bne BIGLOOP no, go loop again
C52F:AO 11 198 ldy IGLUIDX yes, go test IOOD!s switch
C531 :DO BE C4Fl 199 bne swtstl branch always

J:>,
c.n w

26 BANGER2

C533:AO 09
C535:DO BA C4Fl
C537:
C537:5A
C5JB:
C538 :A2 00
C53A:CO OA
C53C:4C 70 C4

Apple /le diaqnostics 20-0CT-86 06:41 PAGE 109

200 swtst7 ldy l!OUIDX
201 bne swtstl ; branch always
202 •
203 swerr phy ; save y to distinquish from MMU or GLU
204 ; failure
205 ldx 10 ; indicate switch error
206 cpy llOUIDX+l ; set carry if 100 was cause
207 jmp bbitsl

26 BANGER2 Apple //c diaqnostics 20-0CT-86 06:41 PAGE 110

C53F:46 80 209 BIGLOOP lsr $BO
C541 :DO N: C4EF 210 bne Sl«:BTST
C543:A9 AO 211 blp2 lda 1$AO
C545:AO 00 212 ldy 10
C547;99 00 04 213 blp3 sta $400,y ; clear screen for success messaqe
C54A: 99 00 05 214 sta $500, y
C54D:99 00 06 215 sta $600, y
C550:99 00 07 216 sta $700, y
C55J:CB 217 iny
C554 :DO Fl C547 21B bne blpJ
C556:AD 61 CO 219 blp4 LOA butnO ; test for both Open and Closed Apple
C559:2D 62 CO 220 AND butnl ; pressed
C55C:OA 221 asl a ;put result in carry
C55D:E6 IT 222 INC $IT
C55F:A5 IT 223 LOA $IT
C561 ;90 OJ C566 224 bee dquit
C563 :4C BE 04 225 jmp DJAGS
C566: 226 •
C566:AD 51 CO 227 dquit lda txtset ;put success message on t-he screen
C569;AO OB 22B ldy IB
C56B:B9 75 CB 229 suc2 lda success,y
C56E;99 BB 05 230 sta SCREEN,y
C571 :BB 231 dey
C572:10 F7 C56B 232 bpl suc2
C574:30 EO C556 233 bmi blp4 ; loop forever

C576; OOOA 235 ds $c5B0-*,$00
C5BO: 66 include rw. slinky

.t. 27 RW.SLJNKY Apple //c diaqnostics 20-0CT- B6
(.11

06.:41 PAGE 111 27 RW.SLINKY Apple //c diaqnostics 20-0CT-B6 06:41 PAGE 112

.t.
CSBO: 2 • tt UH•* UH H H HU A' H H H ttH UH U H H H HU' CSEE:A9 20 60 prbad . lda lbadblk ; Invalid address

CSBO : 3 • PREAD - Reads bytes from card into the Apple CSFO :80 F8 04 61 sta error
CS80: 4 • 07 of the address = 1 ·if aux ram CSF3 :80 81 CO 62 prbadz sta romin ;put the rem baclt in

CS80: 5 u CSF6:60 63 rts

CS80 :DA 7 sl.pread phx ;save x
CS Bl :AE 7B 06 8 ldx sl.lcstate ; qet languaqe card state
CSB4 :FE 00 CO 9 inc $COOO,x ; restore it, the rom is ayway
CSB7 :FA 10 plx ;restore x

CSBB :AS 49 12 lda paddr ;Move the address
CSBA:90 FB BF 13 sta addrl,x
CSBD:AS 4A 14 lda paddr+l
CSBF:90 F9 BF lS sta addrm,x
CS92:AS 4B 16 lda paddrt2
CS94 :29 7F 17 and 1$7F ;Mask off high bit
CS96:D9 BB 03 18 ·cmp numbanks,y ;Valid address
CS99 :BO S3 CSEE 19 bqe prbad
CS9B:9D FA BF 20 sta addrh,x
CS9E:2C 14 CO 21 bit rdramwrt ; Save current bank
CSAl :OB 22 php
CSA2: BO 04 CO 23 sta wrmainram ; Assume main
CSA5:24 4B 24 bit paddrt2 ;If 07 = 1 then aux
CSA7 : 10 03 CSAC 2S bpl prmain
CSA9:BO OS CO 26 sta wrcardram ; Its t he card ram
CSAC:AO 00 27 prmain ldy 10
CSAE :AS 4B 28 lda pcount+ 1 ;More than a page to move?
CSBO:BD FB OS 29 sta yval
CSB3 :FO 14 CSC9 30 beq pr last
CSBS :BO FB BF 31 prloop lda data,x ;Get a byte
CSBB :91 4S 32 sta {pbuff), y
C5BA:CB 33 iny
C5BB:BD FB BF 34 lda data, x
C5BE :·91 45 35 sta (pbuff) ,y
CSCO :CB 36 iny
C5Cl :DO F2 C5B5 37 bne pr loop
CSC3:E6 46 38 inc pbuff+l ; Bump buffer pointer to next page
C5C5 :C6 4B 39 dee pcount+ 1 ; Dec page count
C5C7 :DO EC C5B5 40 bne pr loop
CSC9 :A5 47 41 prlast lda pcount ; Any bytes left to do?
C5CB: FO 16 C5E3 42 beq prdone
CSCO :BD 7B 05 43 sta xval ; Save bytes moved
C5DO : 4A 44 lsr A ;C • 1 if odd I of bytes
C5Dl :BO 06 CSD9 45 bes prodd
C5D3 :BO FB BF 46 prloop2 lda data,x
CSD6; 91 45 47 sta (pbuff), y
C5DB :CB 4B iny
C509 :BO FB BF 49 prodd lda data, x
C5DC: 91 45 50 sta (pbuff) ,y
C5DE :CB 51 iny
CSDF :C4 47 52 cpy pcount
C5El:DO FO C503 53 bne prloop2
C5E3: BO 04 CO 54 prdone sta wrmainram ; Fix main I aux r am
C5E6:2B 55 plp
C5E7 :10 03 C5EC 56 bpl prmain2
C5E9:BD 05 CO 57 sta wrcardram
CSEC:BO 05 C5F3 5B prmain2 bra prbadz

27 RN.SLINKY Apple'/ /c diagnost i cs 20-0CT-86 06:41 PAGE 113 27 RN. SLINKY Apple //c diagnostics 20-0CT-86 06:41 PAGE 114

CSF1: 65 .. C667: 124 ..

CSF7: 66 • PWRITE - Writes bytes from Apple to card C667: 12S • Various data tables

CSF7: 67 • D7 of the address • 1 if aux ram C667: 126 ..

CSF7: 68 ••
C667: 128 • ·status info table

CSF7:DA 70 sl.pwrite phx ;save x C667: C667 129 stattbl equ .
CSF8 :AE 78 06 71 ldx sl.lcstate ;get language card state . C667 :F8 130 dfb $F8 ; Status byte

CSFB:FE 00 CO 72 . inc $COOO,x ; restore it, the rom is ayway C668 :OO 00 00 131 dfb $00,$00,$00 ;Size

CSFE:FA 73 plx ;restore x C66B:07 132 dfb 7 ; Name lenqt h
C66C: 133 MSB OFF

CSFF:AS 49 7S lda paddr ;Move the address C66C:S2 41 4D 43 134 asc 'RAK:ARD'

C601:9D F8 BF 76 sta addrl,x C673 :20 20 20 20 13S asc

C604 :AS 4A 77 lda paddr+l C67C: 136 MSB ON

C606:9D F9 BF 78 sta addni,x C67C:OO 00 137 dw 0 ;Type subtype

C609;AS 4B 79 lda paddr+2 C67E:Ol 01 138 dw revnum ;Version

C60B:29 7F 80 and f$7F ;Mask off high bit
C60D:D9 BB 03 81 cmp numbanks,y ;Valid address . C680:03 03 03 140 parmtbl dfb 03,03,03 ; Table of parameters

C610:BO DC CSEE 82 bge prbad C683: 03 03 03 141 dfb 03,03,03

C612:9D FA BF 83 sta addrh,x C686:01 01 03 142 dfb 01, 01,03

C61S:2C 13 CO 84 bit rdramrd ; Save current bank C689 :03 01 01 143 dfb 03,01,01

C618:08 8S php e68C:Ol 01 01 144 dfb 01,01,01

· C619;8D 02 CO 86 sta rdmainram ; Assume ·main C68F:Ol 04 .04 14S dfb 01, 04,04

C61C:24 4B 87 bit paddr+2 ; If D7 • 1 then aux C692:04 04 FF 146 dfb 04,04,$FF

C61E:l0 03 C623 88 bpl P"'ain C69S :FF FF FF 147 dfb $FF, $FF, SIT

C620;8D 03 CO 89 sta rdcardram ; Its the · card ram C698 :FF" FF 148 dfb "$FF,$FF

C623 :AO 00 90 p.,.ain ldy 10
C62S :AS 48 91 lda pcount+ 1 ;More than a page to· move? C69A: C69A lSO Clldtbl equ . ; Table of caoand addresses

C627 :SD F8 OS 92 sta yval C69A:S2 lSl dfb >pstat0-1 ; Status unit 0

C62A:FO 14 C640 93 ·beq pwlast C69B:73 1S2 dfb >sl.pstatus-1 ; Status

C62C:Bl 4S 94 pwloop lda (pbuff) ,y ;Get a byte C69C:2F 1S3 dfb >pZClld-1 ; Read block unit O

C62E: 9D FB BF 9S sta data,x C69D:B8 1S4 dfb >prdblk-1 ;Read block

C63l:C8 96 iny C69E:2F lSS dfb >pzcmd-1 ;Write block unit O

C632 :Bl 4S 97 lda (pbuff),y C69F;BC 156 dfb >pwrblk-1 ;Write block

C634:9D FB BF 9S sta data,x C6A0:2F 1S7 dfb >pzcmd-1 ; Format unit O

C637 :CS 99 iny C6Al :38 1S8 dfb >iorts- 1 ;Foraat

C638 :DO F2 "C62C 100 bne pwloop C6A2:69 1S9 dfb >pcntl-1 ;Control unit O

C63A:E6 46 101 inc pbuff+l ; Bump buffer pointer to next page C6A3:69 160 dfb >pcntl- 1 ;Control

C63C:C6 48 102 dee pcount+l ; Dec page count C6A4:38 161 dfb >iorts-1 ; !nit unit 0

C63E:DO EC C62C 103 bne pwloop C6A5 :38 162 dfb >iorts-1 ; !nit

C640 :AS 47 104 pwlast lda pcount ;Any bytes left to do? C6A6:2F 163 dfb >pzand-1 ;Open unit 0

C642 :SD 78 OS !OS sta xval C6A7:2F 164 dfb >pzand-1 ;Open

C64S :FO 13 C6SA 106 beq pwdone C6AS:2F 16S dfb >pzcmd-1 ;Close unit 0

C647:4A 107 lsr A ;C = 1 if odd f of bytes C6A9:2F 166 dfb >pzC11d-l ;Close

C648:BO 06 C6SO 108 bes pwodd C6AA:2F 167 dfb >pzaod-1 ;Read unit 0

C64A:Bl 4S 109 pwloop2 lda (pbuff) ,y C6AB:39 168 dfb >pread2. z- 1 ;Read

C64C: 9D FB BF 110 sta data,x C6AC:2F 169 dfb >pmnd-1 ;Write unit 0

C64F:C8 lll iny C6AD:3C 170 dfb >pwrite2-l ;Write

C6SO :Bl 4S 112 pwodd lda (pbuff) ,y C6AE:4S 171 dfb >xstatus-1 ;·ProDOS status call

C6S2:9D FB BF 113 sta data,x C6AF:9D 172 dfb >xread-1 ; ProDOS read call

C65S :CS 114 iny C6BO :Al 173 dfb >xwrite-1 ;ProOOS write call

C6S6:C4 47 115 cpy pcount C6Bl :38 174 dfb >iorts-1 ; ProDOS format call

C6S8 :DO FO C64A 116 bne pwloop2 C6B2 :3F l 7S dfb >dosconv2-l ;Dos Command

C6SA:SD 02 CO 117 pwdone sta rdmainrain ; Fix main I aux ram C6B3:42 176 dfb >xdiag-1 ;Diagnostics !

C6SD:28 118 plp
C65E:l0 03 C663 119 bpl p.,.ain2
C660: 8D 03 CO 120 sta rdcardram
C663: 8D 81 CO 121 p.,.ain2 sta rem.in ;put the rom back in
C666:60 122 rts

~

~

.i:. 27 Rll.SLINKY Apple //c diagnostics 20-0CT-86 06: 41 PAGE 115 28 MCOIJE.X.AUX Apple //c diagnostics 20-0CT-B6 06 :41 PAGE 116

8!
C6B4 :DA 17B swsl.bt phx ;save x C71C: 2 ... tt •••••

C6B5 :20 16 CB 179 jsr getlc ; qet lanquaqe state C71C: 3 • the followinq code had better start at $C71C or else
C6BB:5A lBO phy ; save it C7!C: 4 ttttt tttttt U ttU tt Utt ttttUtttt tt tttttttt ttttttt

C6B9:BC 7B 06 lBl sty sl. lcstate ; save it here too
C6BC:20 £F DB 1B2 jsr boot.sl ;do the boot C71C:BO 2B CO 6 sta rombank
C6BF:4C OE CB 1B3 jap fixlc ; restore lanquaqe card state and return C71F:4C C2 C6 7 jmp sw.set•ou ;do the real thing

C6C2:DA 1B5 sw.setmou phx ;save x C722:BO 2B CO 9 sta rombank
C6C3 :20 16 CB 1B6 jsr qetlc ;qet lanquaqe card state C725 :4C CD C6 10 jmp sw.•tstint ; do the real thinq
C6C6:5A 1B7 phy ;save it
C6C7 :20 21 D6 lBB jsr x.setmou ; set the mouse mode to a C72B :BO 2B co 12 sta rombank
C6CA:4C OE CB 1B9 jmp fixlc ; restore lanquaqe card state and return C72B:4C DB C6 13 jmp sw.mread ;do the real thinq

C6CD:DA 191 SW .•tstint phx ;save x C72E:BO 2B CO 15 sta rombank
C6CE:20 16 CB 192 jsr qetlc ;qet lanquaqe card state C731 :4C E3 C6 16 jmp sw.•clear ;do the real thing
C6Dl :SA 193 phy ;save it
C6D2 :20 C2 D6 194 jsr x.mtstint ;check mouse status bits C734 :BD 2B co lB sta rombank
C6D5: 4C OE CB 195 jmp fixlc ; restore lanquaqe card state and return C737:4C EE C6 19 jmp sw.•clamp ;do the real thinq

C6DB :DA 197 sw.mread phx ;save x C73A:BO 2B CO 21 sta rombank
C6D9:20 16 CB 198 jsr qetlc ; qet lanquaqe card state C73D:4C F9 C6 22 jmp sw.mhome ;do the real thinq
C6DC:5A 199 phy ;save it
C6DD:20 79 D6 200 jsr x.mread ; updates the mouse screen holes C740 :BO 2B co 24 sta rombank
C6EO :4C OE CB 201 jmp fixlc ; restore lanquaqe card state and return C743 :4C 04 C7 25 jap sw. initmouse ;do the real thinq

C6E3:DA 203 sw.mclear phx ;save x C746 :8D 2B CO 27 a •• oveirq sta rombank
C6E4:20 16 CB 204 jsr qetlc ;qet lanquaqe card state C749:4C 9A CF 28 jap •.oveirq
C6E7:5A 205 phy ;save it
C6EB:20 6B 06 206 jsr x.aclear ; sets the mouse to O, 0 C74C:BD 2B CO 30 sta rombank
C6EB:4C OE CB 207 jllp fixlc ; restore lanquaqe card state and return C74F:4C 84 C6 31 jmp swsl.bt

C6EE:DA 209 SW .mclamp phx ;save x C752 :BD 2B co 33 sta rombank
C6£F:20 16 CB 210 jsr qetlc ;qet lanquaqe card state C755:0A 34 phx ;save x
C6F2:5A 211 phy ; save it C756:20 16 CB 35 jsr Qetlc ;qet lanquaqe card state
C6F3 :20 A3 D6 212 jsr x.mclamp ; store new mouse bounds C759:5A 36 phy ;save it
C6F6:4C OE CB 213 jmp fixlc ; restore lanquaqe card state and return C75A:BC 7B 06 37 sty sl.lcstate ;save it here too

C75D:20 00 OB 3B jsr execute ;do something with slinky
C6F9:DA 215 SW.mhOl\e phx ;save x C760:4C OE CB 39 jmp fixlc ;restore lanquaqe card state and return
C6FA:20 16 CB 216 jsr qetlc ; qet lanquaqe card state
C6FD:5A 217 phy ;save it C763 : OOlD 41 ds $c710-• , $00
C6FE:20 51 D6 21B jsr x.mhome ; clear mouse position and status C7BO: 6B include switcher2 ;Bank switch stuff @ 2:C7BO
C701 :4C OE CB 219 jmp fixlc ; restore lanquaqe card state and return

C704:DA 221 sw.init1ouse phx save x
C705 :20 16 CB 222 jsr 9etlc qet lanquaqe card state
C70B:5A 223 phy save it
C709:20 00 06 224 j sr i.nitmouse reset the mouse
C70C:4C OE CB 225 jmp fixlc restore lanouaqe card state and return

C70F: OOOD 227 ds $C71C-',00
C7!C: 67 include moode.x .aux

29 Sll!TCBER2 Apple //c diaqnosti cs 20-0CT- S6 06 :41 PAGE 117

C780: 0000 2 ds $C7S0-',$00
C780: 3 ..
C780: 4 •
C780: S ' Sll!TCH!liG ROOTINES
C780: 6 •
C780: 1 tuuuuuuuuuuututuuuuutu

C780 :80 28 CO S svrti2 sta roaba.nk
C7SJ :40 9 rti
C7S4 :SD 2S co ID svrts2 sta ranbank
C7S7 :60 11 rts
C7SS :SD 2S CO 12 swreset2 sta ranbank
C78B: 4C 62 FA 13 jmp reset
C78E:SD 28 CO 14 swirq2 sta ran bank ; Irq entry
C791 :2C S7 C7 IS bit swrtsop
C794 :4C 04 CS 16 jmp irqent
C797 :8D 2S CO 11 svsthk2 sta rombank
C79A:4C SO CS IS jmp pcnv
C790:8D 2S CO 19 svzzqt2 sta ranbank ;ltluse basic routines
C7AO :4C 00 04 20 jmp basicin
C7A3:SD 2S CO 21 sta ranbank ; Set termi nal mode
C7A6 :4C Fl C7 22 jmp svsttmJ
C7A9:SO 2S CO 2J sta rombank ;Jump to comand routine
C7AC :4C 06 CS 24 jmp svClldJ
C7AF:SO 2S CO 2S sta ranbank ;Aux move
C7B2 :4C 4E CJ 26 jmp movea.ux
C7BS :SD 2S CO 27 sta rombank ;XFER
C7B8 :4C 97 CJ 2S jmp xfer
C7BB:SO 2S CO 29 sta rombank ;ltluse interrupt handler
C7BE:4C 00 Cl JO jmp aouseint
C7Cl :SD 2S CO Jl sta ranbank ; Diaqnost i cs
C7C4:4C SE 04 J2 jmp diaqs
C1C1 :SD 2S CO JJ sta rombank ;Appletalk
C7CA:4C SO CS J4 jmp a talk
C7C0:8D 2S CO JS sta rombank ; Serial output
C700: 4C 4F C2 J6 jmp seroutJ
C70J :SD 2S CO J7 sta ranbank ;Get status
C706:4C AC C2 JS jmp qetstat
C7D9:SD 2S co J9 sta rombank ; Read from serial port
C7DC:4C C3 C2 40 jmp xrdser
C7DF:8D 28 CO 41 sta rombank ; Get char fro1 buffer
C7E2:4C F7 C2 42 jmp qetbuf
C1ES :SD 28 CO 4J sta rombank
C7E8:4C CS D4 44 jmp zznm
C7EB:8D 28 CO 45 swxfqo2 sta rombank ;Go to user s xfer dest
C7EE:6C ED OJ 46 jmp ($JED)
C7Fl :DA 47 swstt mJ phx ;save X
C7F2 :20 16 CB 48 j sr qetlc
C7F5:5A 49 phy
C7F6:20 AO 01 so jsr set term
C7F9:80 lJ C80E 51 bra fixlc ; Fix Lanouaoe card and return

C7FB: OOOB 53 ds $CB03- ',0 ; $C803 interrupt ent ry point
CB03:4C BE C7 S4 jmp swirq2

C806 DA 56 swcmd3 phx ;Go to t he canmand routine
C807 20 16 CB 51 j sr oetlc ; Get lanouaoe card state
CBOA SA 58 phy ;Save it
CBOB 20 00 DO 59 jsr command

J:>.
(11
'.J

29 Sll!TCBER2

CBOE:FA
C80F :FE 00 CO
C812:FA
C813 :4C S4 C7

C816:
C816:
C816:
CS16: C816
CB16:AO 81
C818 :2C 12 CO
C81B:l0 OC C829
C81D:AO 8B
C81F:2C 11 CO
C822:10 02 C826
C824 :AO 8J
C826:8D 81 CO
C829:60

C82A:
C82A: C82A
C82A:53 43 2B 29
C82F: OO 89 03 05
C837 :OO S3 51 53
C841 :OO 11 04 06
C849 :00 14 52 S4
CBSJ :00 11 13 14
C8SB:OO 12 IA IB
C866:
C866:D2 Cl CD AO
C86C:CD CO OS C9

C875 :DJ F9 FJ F4
C87E: 0002
CS80: 0780
0000:

Apple //c diaqnostics

60 fixlc
61
62
63

plx
inc $COOO,x
plx
:Imp svrts2

20-0CT-86 06:41 PAGE llB

;Restore LC
;Restore real I

65 tUUUUttttttttttttttttttttttttttttttt

66 • GETLC - Gets lanquaoe card state in Y
67 tttUUUUUUUUUUUUUttttUttttt

68 oetlc equ
69 ldy
70 bit
71 bpl
72 ldy
73 bit
74 bpl
15 ldy
76 qlcbnkl sta
11 qlcdone rts

1$81
rdlcram
qlcdone
1$SB
rdlcbnk2
qlcbnkl
1$83
romin

79 • Oiaqnostic routine tables
80 setv equ •
81 ntbl dfb SJ, 67 ,43, 41, 7

;Lanquaqe card enabled?

;Bank 2?

;Bank l !

82 svtblO dfb $00,$89,$03,$05,$09,$01,$7F,$5F
83 dfb $00,$83,$51,$53,$55,$57,$0F,$00,$00,$80
S4 svtbll dfb $00,$11,$04,$06,$0A,$02,$7F,$60
85 dfb $00,$84,$52,$54,$56,$58,$10,$0E,$00,$7F
S6 rsvtbl dfb $00,$ll,$13,$14,$!6,$18,$FF,$7F
87 dfb $00,$12,$1A, $1B,$1C,$10,$1E,$1F ,$00,$7E,$00
8S MSB ON
89 ClleSS asc "RAM ZP"
90 saess asc "lt!UIOOGLU"

92 success
69
70
71

asc "Syste11
ds $CS80- ',0
ds $0000-',0
include command

OK"
;Protocol converter

; Serial port comand processor

::. 30 CCMMANO Command processor for serial ' C01111 20-0CT-S6 06:41 PAGE 119 30 CCH1AllO Command processor for serial ' comm 20-0CT-S6 06:41 PAGE 120

&:
0000: 2 lttUUltUUUUttUUUUUUUttUttUUUttUt 0034:C9 00 60 Cllp lucspace ; is it a space? (uppercased)

0000: 3 • The command routine now supports S new 2-character commands. These 0036:DO 04 OOJC 61 bne i nClldJ ; no, oo on with 2-chr cmd handlino
0000: 4 • commands enable or disable a feature of the serial port and are OOJS:IS 62 clc ;yes, iqnore spaces between characters

0000: S • derived frOll their equivalent in the super serial card for the II. 0039: 63 ; of 2-chr couands

0000: 6 • 0039:6S 64 pla ;pull uppercased char off stack

0000: 7 • The new commands are as follows: OOJA:SO E4 D020 6S bra noClld2 ;ie mark then •handled• and don't

0000: s • L - send LF out after CR OOJC: 66 ; do anythi no else
0000: 9 • X - detect XOFF, and wait for XOll
DOOO: 10 • F - accept keyboard input 003C:BD.B8 03 68 incad3 lda seillOde,x ;qet sermode back

0000: 11 • M - iqnore LF in after CR 003F:4S 69 pha ; save serllOde for a mini t
0000: 12 • C - auto CR when col1111n count > printer width 0040:29 07 70 and 17 ;throw out all but bits 0-2

DOOO: 13 • 0042 :BO F8 06 71 sta temp ; save - this is i ndex of which end it is

0000: 14 • Usaqe of location $779 (port I) and $77A (port 2) are as follows: 004S:6B 72 pla ; qet se111ode back
0000: IS • bit 7 - echo output to screen if on 0046:29 FO 73 and 1$FO ;now clear bits 0-3

DOOO: 16 • bit 6 - qenerate LF after CR if on 004S:9D B8 03 74 sta serllOde,x ; since we' re done with them now
DOOO: 17 • bit S - accept XOFF if on 004B:6B 1S pla ;qet character back

0000 : IB • bit 4 - iqnore keyboard input if on 004C:DA 76 phx ; shove x (Cn) on stack
DOOO: 19 • bit 3 - accept LF in after CR if on 0040:AE FB 06 77 ldx temp ;qet index to command' s !st chr

DOOO: 20 • bit 2 - a character was received throuoh the ACIA and is in OOSO:C9 4S 7B Cllp 1$4S ;is it an E?

0000: 21 • location $SFE (port I) or $67E (port 2) if on OOS2:FO 71 DOCS 79 beq enable ;yes

DOOO: 22 • bit I - XOFF is accepted, awaitinq Xai if on OOS4 :C9 44 BO Cllp 1$44 ;no, is it a D?

DOOO: 23 • bit O - siqnifies COllllll port if on, printer port if off OOS6:FO 6F DOC7 Bl beq disable ;yes

0000: 24 llUttttUUUUUttUttUUt•ttUUUttUUUttUt OOSB:FA B2 plx ; retrieve X-Cn (old X still in te11p)
OOS9:DA BJ phx ;push it back to keep stack neat

DOOO: OOOD 26 charCR equ $OD OOSA:DD JS 06 B4 Cllp eschar, x ; compare to the command character

0000: 0000 27 ucspace equ $00 ; need an •upper case• space character OOSD:OS BS php ;save result of eo11parison for a bit
OOSE:AE FB 06 S6 ldx temp ;reload X• index to Clld's first chr

D000:4S 29 canmand pha ; shove character on stack 0061 :2B S7 plp ;retrieve result of comparison of char

0001 :JC BS 03 30 bit sermode,x ; Already in command? 0062: SS ; to couand char

0004:30 IC D022 31 blli inClld ;If so, qo do it 0062:FO 13 D077 S9 beq flaqit ;yes tis 1-chr cad followd by nether aad

D006:BC JS 06 32 ldy eschar,x ; If eschar • 0 ignore couands 0064:C9 OD 90 Cllp lcharCR ; is it a (quess what) CR?

0009:FO 14 DOIF 33 beq nocmd 0066:FO 17 D07F 91 beq one letter ; yes - a 1-chr C01111and

DOOB:SD JS 06 34 eor eschar,x ; Is it the command char?
OOOE:OA JS asl A ; Iqnore hiqh bit 0068: 93 ; come here for unimplemented but leqal 2-char commands

OOOF :DO OE DOIF 36 bne nocmd ; char not command char
0011 :Ac re 01 37 command! ldy cursor ; Save the cursor 0068: D06S 9S Clld2null equ
D014 :SC 79 06 JS sty old cur 0068:FA 96 plx ;pull x (Cn) off stack

D017:AO BF 39 ldy landcur ; Set command cursor 0069:AD 79 06 97 lda old cur ; rest ore non-cad-mode cursor

00!9:SC FB 07 40 sty cursor 006C:SD FB 07 98 sta cursor
D01C:4C BS DO 41 jmp cominitl ; initiate command mode 006F:IE B8 03 99 asl sermode,x ;clear end-mode bit (bi t 7 of sermode)

0072: SE BB 03 100 lsr sermode,x ;by shiftino out bit 7 ' shifting in a 0

DOIF:JS 43 nocmd sec ;Mark char not handled 007S :SO AB DOIF 101 bra noClld ; return •arkinq character not handled

D020:6B 44 nocmd2 pla ;Restore oriqinal char
D021:60 4S rts 0077: D077 103 flaqit equ • ; COiie here if qet eschar after LX!ll or T

0077:FA 104 plx ; need X-Cn to set bit 0 of se111ode

0022: D022 47 incmd equ • ; Command mode 007B:DA 105 phx ; but l eave en on stack too

D022 :BC 42 Cl 4B ldy devno2,x ; Get index for ACIA 0079:FE BS 03 106 i nc sermode,x ;bit 0 was 0, but is now I

D025:29 SF 49 and 1$5F ; no hi-bit and upshift lower case 007C: 107 ; I means new 00111Rand mode

0027:4S 50 pha ; save character D07C:AE F8 06 108 ldx temp X= index to and' s first chr

D028 :BO 88 03 51 lda sermode,x ; need to see if in 2- chr command 007F: D07F 109 oneletter equ • come here if 2-chr cmd turns out I chr

0028:89 08 52 bit 1$08 ;bit 3 set if so 007F:BD 25 D2 110 lda cmd2list ,x qet command chr

0020:00 03 0032 53 bne incmd2 ;branch if so DOB2:80 OB D08F lll bra backtol treat it as if we just qot it

D02F:68 54 pla ;pull char back, not in 2-chr cmd
DOJO :80 52 DOS4 55 bra i ncmdl ;qo on with reqular command mode 0084: D084 113 incmdl equ • in command mode, not 2-chrs tho

DOB4 :DA 114 phx Save slot
D032 0032 57 incmd2 equ • ; handle 2nd chr of 2-chr commands 0085:A2 04 115 ldx 14 check 5 possible 2- chr cmds

D032 68 58 pla ;pull char off stack 0087 :DD 25 02 116 cmd2locp cmp cmd2list,x is i t there?
0033 48 59 pha ; & r eshove it to keep stack neat D08A:FO 71 DOFD 117 beq cmd2found yes, need t o flao it for next t ime

30 CCJ!MA!jO caamana processor for serial ' comm 20-0CT-86 06:41 PAGE 121 30 CQtWID Coaiaand processor for serial ' comm 20-0CT-86 06:41 PAGE 122

D08C:CA ll8 dex ;nope DODB:4C 39 01 176 xready j•p Clldi ;qo do mask stuff to FLAGS

D08D:l0 F8 0087 ll9 bpl cnd2loop ; try next if there is one
D08F: D08F 120 backtol equ . ; come here to check for 1-chr Cllds DODE: 178 ; ser11ode bit 0 tells whether to set or clear co.and mode

008F:A2 OC 121 ldx 112 ; Check 13 c:ouands
D091 :DD 18 02 122 cmdloop cmp Clldlist,x DODE : DODE 180 cdone equ •
0094 :FO 74 DlOA 123 beq cnfound ; Riqht char? DODE:BD 88 03 181 lda seraode,x ;so oet it

0096:CA 124 dex DOE1:4A 182 lsr A ;shift bit 0 to carry

0097:10 F8 D091 125 bpl cadloop DOE2 :BO 01 0085 183 bes C<lllinitl ; if set , start new aid mode

0099:FA 126 plx ;lie didn't find it DOE4 :AD 79 06 184 lda old cur ; Restore the cursor

D09A:68 127 pla DOE7:8D FB 07 m sta cursor :• fall throuoh to aiset with carry clear

0098:48 128 pha DOFA:OB 1B6 caset p)1>

009C:29 7F 129 and 1$7F ; if char is cntl char DOEB: lE 88 03 187 asl seillOde,x ; set c:omand mode acc:ordino to carry

D09E :C9 20 130 cmp 1$20 : it can be the new coed char DOEE:2B !BB plp

DOAO:BO 03 DOA5 131 bes ckdio ;branch if not cntl character DOEF:7E 88 03 189 ror ser11ode,x ; leaves carry clear

DOA2:9D 38 06 132 cmdz2 sta eschar,x ;save C<lllmand char and DOF2:68 190 pla ; character handled

DOM: 133 ; drop thru ckdio to cdone DOF3:60 191 rts ;because carry clear ...

001.5:49 30 134 ckdio eor 1$30 ; zap it down to On if char was a diqit
DOA7:C9 OA m CllP 1$0A ;is it a dioit? DOF4: DOF4 193 Clld21 equ . ; eo11e here to handle LE ' LD

OOA9:BO JJ DODE 136 bes cdone ;skip if no, an unexpected intruder DOF4:A9 4C 194 lda 1$4C ; make LE look like L

DOAB:AO OA 137 ldy 110 ; A - A t 10 • current nlJlber DOF6 :21 195 plp ;oet P back with carry indicatino E or D

OOAD:6D 7E 07 138 diqloop adc nlllber : C•O on first entry DOF7 :BO 96 DOBF 196 bes backtol ; carry set means it was an E

DOBO :88 139 dey DOF9:A9 48 197 lda 1$48 ; make LD look like K

OOBl:DO FA DOAD 140 bne dig loop DOFB:80 92 DOBF 198 bra backtol

0083:80 OA DOBF 141 bra ccminit ; not startino new Clld •ode, just save I
DOFD:BA 200 cmd2found txa ; copy index of aid to ace

DOB5: DOB5 14J caninit I equ . ; start new aid •ode here DOFE:FA 201 plx ; restore X to en

DOB5 :BD 88 03 144 lda se.rmode,x ;oet ser11ode DOFF:lD 88 OJ 202 ora seillOde,x ;copy top 2 bits of sermode

0088:29 co 145 and ISCO ;clear bits 0-5 (starting a new Clld seq - Dl02:09 08 20J ora 1$0B :• set bit 3 - 2-chr-c:omand-mode flao

DOBA: 9D 88 OJ 146 sta Seillode,X ;they are used for •isc durino aid mode) 0104 :90 88 OJ 204 sta seillOde,x ; ser11ode • index to 2-chr Cllds issued

DOBD:A9 00 147 lda 10 ; load a O to stuff in llllBER D!07 :3B 205 sec ; set carry so we stay in co111and mode

OOBF:8D 7E 07 148 ccminit sta nlJlber 0108 :BO EO DOEA 206 bra ca set ; for next t ae

DOC2 :38 149 sec : Mark in com and llOde
OOCJ :BO 25 ODEA 150 bra ens et DIOA:A9 DI 208 aifound lda l<Clldcr ; oet hi byte of where to oo

DIOC:4B 209 pha ; save it on stack

DOC5: DOC5 152 enable equ • ; oot a 2-chr co.and aE DIOD:BD F5 DI 210 lda Clldtable, x ;oet lo byte of where to oo

DOC5 :JB 15J sec ; set carry Dll0:48 211 pha ; save it on stack

OOC6:90 154 dfb $90 ;bee to skip next byte (the CLC) D111:60 212 rts :oo there by RTSino

DOC7: DOC7 155 disable equ . ; oot a 2-chr co.and ao
OOC7: 18 156 clc ; clear carry Dll2:2B 214 cmd.c plp ; restore status to check carry bit

DOC8:08 157 php ;push P to save carry DllJ :FA 215 plx ; restore slot number in x

DOC9 :EO 00 158 cpx 10 ; if X-0 then command is LE or LO Dll4 :BO 05 DllB 216 bes aid.cl ; skip if enable

DOCB :FO 27 DOF4 159 beq cmd21 ; so just make it act like L or K Dll6:9E BB 04 217 stz pwdth,x ;CD is same as PliOTH=O, no CR

DOCD:EO 04 160 cpx 14 : if X-4 then command is CE or CD Dll9:80 CJ DODE 218 bra cdone ; we' re done here

DOCF:FO 41 D112 161 beq Clld.c ;skip if so
DllB:BC B6 Dl 220 cad.cl ldy defidx2-$Cl, x ; oet y index into aux screenholes

DODI: 163 tttttUtt tt UUt t UttttU t tUUt t UUUttttUilltttt DllE:20 2A D2 221 jsr r .oetalt ;qo oet it froa aux

DODI : 164 • for other 2-chr Cllds, their FLAGS 1asks' indexes are 2XtJ Dl21 : 9D 88 04 222 sta pwdth,x ; restore default PliDTH

DODI: 165 ' for an E or 2Xt4 for a D D124:80 88 DODE 223 bra cdone ;we' re done here

DOD! : 166 u

DOD1:8A 168 txa ; copy x to ace for ari thmetic Dl26:FA 225 Clldz plx ; Zero escape character

OOD2:18 169 clc ; clear carry for ar i t hlletic Dl27:9E 88 04 226 stz pwdth,x ; And the width

DOD3 :0A 170 asl A ;aul t iply index by 2 Dl2A:A9 00 227 lda 10

DOD4 : 69 OJ 171 adc 13 ; add J to get sask index D12C:4C A2 DO 228 jmp cmdz2

DOD6:AA 172 tax ; put mask index in X
0007 :28 173 plp :oet carry back
DOD8 :BO 01 DODB 174 bes xready ; carry set = Enable so X is ready I Dl2F : Dl2F 2JO cmdcr equ

DODA:E8 175 inx ; cmd was Disable so inc X to next mask Dl2F: Dl2F 231 cmdn equ

b
01

"°

J:>,. 30 CCHWID Command processor for serial ' co111111 20-0CT-86 06:41 PAGE 123 I 30 CCMMAND Command processor for serial ' co111111 20-0CT-86 06:41 PAGE 124

g
D12F:7A 232 ply
0130 :AD 7E 07 233 lda number ;Get nullber inputted 0188: 0188 288 aodr equ
0133 :FO 05 D13A 234 beq cmdi2 ;skip if 0 0188 :99 F9 BF 289 sta sstat,y ; Reset the l!CIA
0135: 99 BB 04 235 sta pW<lth,y ; Update printer width DlBB:AD 7B 06 290 lda vfactv ;Check if video firaware active

Dl38:FO 236 dfb $FO ; BEQ opcode to skip next byte (the PLY) DlBE:OA 291 asl A ;Save it in C

0139: 013 9 237 Clldi equ . DlBF :20 97 C7 292 jsr swsthk2 ; assU11e video firaware active

0139: 0139 238 cmdk equ . 0192:90 03 0197 293 bee Clldq ;branch if oood guesser •. •

0139: 0139 239 cmdl equ • 0194 :20 90 C7 294 jsr swzzqt2 ; Reset the hooks

D139:7A 240 ply 0197:18 295 Clldq clc ;Quit terminal .aode

Dl3A:B9 BS 06 241 cmdi2 lda flaqs,y 0198 :BO 296 dfb $BO ; BCS to skip next byte

0130:30 02 02 242 and maskl,x ;Mask off bit we' 11 change 0199:38 297 cmdt sec ; Into terminal llOde

0140:10 OD 02 243 ora mask2,x ;Change it D19A:FA 298 plx ;Recover X

0143:99 BB 06 244 sta flags,y ; Back it goes D19B:20 AO Dl 299 jsr setter.
0146:98 245 tya ; Put slot back in x 019£:80 A8 0148 300 bra cdone2
Dl47:AA 246 tax ; (via ace)
Dl48:4C DE DO 247 cdone2 jmp cdone ;Good bye

DlAO: DlAO 302 setter. equ . ; set/ clear terminal •ode
DIAO :BO B8 03 303 lda sermode,x ; Get terminal a ode stat us

D14B:88 249 cmdp dey ;Make y point to co11111and req DIAJ :89 40 304 bit 1$40 ; Z• l if not in terminal aode

Dl4C:A9 IF 250 cmdd lda 1$1F ;Mask off high three bits DIAS:90 12 DIB9 305 bee stclr ; Branch if clearing terminal •ode

Dl4E:38 251 sec ;C=I means high 3 bits D1A7 :DO 20 DlC9 306 bne stwasok ;llas already set

D14F:90 252 dfb $90 ; BCC opcode to skip next byte DIA9:E4 39 307 cpx kswh ;Are we in the input hooks

D150:A9 ro 253 Clldb lda 1$FO ;Mask off lower 4 bits ro = BNE DlAB:DO 47 D1F4 308 bne strts ; Leaves C• l if =

0152:18 254 clc ;FO will skip this if Clldp or Clldd DIAD:09 40 309 ora 1$40 ; Set tera aode bit

0153:39 FB BF 255 and scntl,y ;Mask off bits being changed DlAF:AC 79 06 310 ldy old cur ; Save what was in oldcur

Dl56:Bo rs 06 256 sta temp ;Save it D1B2 :BC 7A 06 311 sty oldcur2
D159:FA 257 plx D1B5 :AO or 312 ldy Item cur ;Get new cursor value

Dl5A:AD 7E 07 258 lda mnber Get inputed number D1B7 :BO 07 DlCO 313 bra stset
0150:29 or 259 and 1$0F Only lower nibble valid D1B9:FO OE DIC9 314 stclr beq stwasok ;Branch if already clear

D15F:90 05 0166 260 bee nos hi ft If C=l shift to upper 3 bits D1BB:29 BF 315 and 1$BF ;Clear the bit

D16l:OA 261 asl A DlBD:AC 7A 06 316 ldy oldcur2 ; Restore the cursor

Dl62:0A 262 asl A DICO: 90 BB 03 317 stset sta ser.ode,x
D163:0A 263 asl A D1C3 :BC 79 06 318 sty old cur ; Save cursor to be restored after CClUand

0164 :OA 264 asl A DIC6:8C FB 07 319 sty cursor
D165:0A 265 asl A D1C9:BC 42 Cl 320 stwasok ldy devno2,x
0166:00 FB 06 266 noshift ora temp Get the rest of the bits DICC:58 321 cli ;want to leave with interrupts active

D169:C8 267 iny Put them in the ACIA DICD:OB 322 php
Dl6A:BO 17 0183 268 bra cmdp2 increment puts ea away where they qo . DICE:78 323 sei ; but off while we twittle bits

D1CF:B9 FA BF 324 lda sCOlld, y
0102 :09 02 325 ora 1$2 ;disable receiver interrupts if

Dl6C:B9 FA BF 270 cmds lda scomd,y Transmit a break 0104:90 02 0108 326 bee Clldt2 ; not i n terminal aode
Dl6F:48 271 pha save current ACIA state 0106:29 FD 327 and 1$FD ;enable when in terminal mode

DI 70 :09 OC 272 ora l$0C Do the break 0108: 0108 328 cmdt2 equ .
0172:99 FA BF 273 sta scomd,y 0108: 99 FA BF 329 sta scomd,y
0175 :A9 E9 274 lda 1233 For 233 ms DlDB:A9 00 330 lda 10
D177:A2 53 275 mswait ldx 183 llait 1 ms DlDD :6A 331 ror a ; set kbd interrupts according to t-mode

Dl 79:48 276 msloop pha ((12*82) +11) +2+3=1000us DIDE:BD FA 05 332 sta typhed
D17A:68 277 pla DIEl:lO 07 DIEA 333 bpl cmdt3 ;branch if leaving terminal mode

Dl7B:CA 278 dex 01£3: 9C 7C 05 334 stz twser ; and ser buf ...
Dl7C:DO FB 0179 279 bne ms loop 01£6: 9C 7C 06 335 stz trser
Dl7E:3A 280 dee a D1E9:8A 336 txa ; use x to enable seri al buffering

Dl7F:DO F6 0177 281 bne ms wait DIEA:BD FC 04 337 cmdt3 sta aciabuf
0181 :68 282 pla 01£0:28 338 plp ; restore carry, enable interrupts.

0182 :FA 283 plx DIEE:BE FC 05 339 flush stx twkey ;Flush the type ahead buffer

0183: 0183 284 cmdp2 equ . DlFl :BE FF 06 340 stx trkey
0183:99 FA BF 285 sta scomd,y DlF4 :60 341 strts rts
0186:80 co 0148 286 bra cdone2

DlF5: 343 MSB OFF

.t>.
~

30 Cil'IMANO

01F5: OlF5
01F5 :38
01F6 :38
01F7:38
01F8 :2E
01F9:2E
01FA:4F
01FB :4B
01FC:4A
01F0:96
01FE:87
01FF : 6B
0200: 98
0201 :25

0202:
0202 :7F BF BF 7F
0200:80 00 40 00

0218 0218
0218 49 4B 4C 4E
02 1C OD
02 10 42 44 50 51
0225 0225
0225 4C 58 46 40

022A:
D22A:
022A:
D22A:

022A:AD 13 CO
0220 :0A
022E:AD 18 CO
0231 :08
0232: 80 00 co
0235 :80 03 co
0238 :B9 78 04
023B:28
023C:BO 03
D23E :8D 02 CO
0241 :10 03
0243 :80 01 co
0246:60

0247:03 07
0249

0241

0246

Canmand processor for ser ial ' comm 20-0CT-86 06 :41 PAGE 125

344 cmdtable equ
345 dfb
346 dfb
347 . dfb
348 dfb
349 dfb
350 dfb
351 dfb
352 dfb
353 dfb
354 dfb
355 dfb
356 dfb
357 dfb

359 • masks for:
360 mask! dfb
361 mask2 dfb

363 cmdlist equ
364 asc
365 dfb
366 asc
367 cmd2list equ
368 asc

>Cllldi-1
>Cllldk- 1
>Cllldl-1
>Cllldn-1
>Cllldcr-1
>Cllldb-1
>Cllldd-1
>Cllldp-1
>Cllldq-1
>Cllldr- 1
>Clllds-1
>Cllldt-1
>CllldZ-1

;command routines' lo bytes

I K L N cr ~ m n FD ~ ~
$7F, $BF , $BF, $7F, $IT, $OF, $OF, $EF, $EF, $F7, $F7
$80' $00' $40' $00' $00' $20' $00' $00' $10' $00' $08

"IKLN"
$00
"BDPORSTZ " .
"LXFHC"

; er (part of Cllldlist)

; 2-chr commands ' first chrs

370 ..
371 • R .GETALT is the same as GETALT in main rem . Only the
372 • location is different,
373 ttttttttttttt•tttttttttUtt·U UUUttUUttttUUlll

375 r .qetalt lda rdramrd
376 as l
377 lda rd80col
378 php
379 s t a clr80col
380 sta rdcardram
381 lda $478, y
382 plp
383 bes r .qetalt l
384 sta rdmainram
385 r .qetalt l bpl r .qetalt2
386 s ta set80col
387 r .qetal t2 r t s

389 defidx2
72

dfb 3, 7

; save state of aux memory

;and the 80STORE switch

no 80STORE to qet paqe 1
pop in the ot her half of RAM
read the des i red byte
and res t ore memory

; same as OEFIOX in main r om.
;Mo use BAS IC routines @ 2 :CIOO

02 49 OIB7 I
include mbasic
ds $0400-•, 0

31 MBASIC

MOO
MOO
MOO
MOO
MOO
MOO
MOO
MOO
MOO
MOO
MOO

0400:91 28
0402:A9 05
0404 :85 38
D406:AD 00 CO
D409:0A
D40A:08
040B :78
040C: 20 79 06
MOF :AO 05
0411 :AE 7F 05
0414 :AD 7F 04
0417:20 41 04
D41A:AO OC
041C:AE IT 05
041F :AD IT 04
0422:20 41 04
0425 :AD 7F 07
0428 :2A
0429 :2A
042A:2A
042B:29 03
0420:49 03
042F:IA
0430 :28
M31 :AO 10
0433 :20 52 04
0436 :7A
0437 :A2 11
D439:A9 80
043B:90 00 02
043E:4C 84 C7

0441
0441
0441
0441
0441
0441

0441 EO 80
0443 90 OD 0452
0445 49 FF
0447 69 00
0449 48
044A 8A
044B 49 FF

aouse BAS IC routines 20-0CT- 86 06:41 PAGE 126

3 u

4 • BAS IC!N - input from basic
5 •
6 • creates tXXXXX,tYYm,tSS
7 • XXXXX = x position, YYYYY = y position, SS = status
8 • - = key pressed
9 • 1 = button pressed

10 • 2 = button just pressed
11 • 3 = button just released
12 • 4 = button not pressed
}J tttttttUUttttUUUUttttttUttttUUUttttttttt

15 basicin sta
16 lda
17 sta
18 lda
19 asl
20 php
21 sei
22 jsr
23 ldy
24 ldx
25 lda
26 jsr
27 ldy
28 ldx
29 lda
30 jsr
31 lda
32 rel
33 rel
34 rel
35 and
36 eor
37 inc
38 plp
39 ldy
40 jsr
41 ply
42 ldx
43 lda
44 putinbuf sta
45 jap

(basl),y
l>inent
kswl
kbd
A

x.mread
15
mouxh
mouxl
hextodec
112
mouyh
mouyl
hextodec
aoustat
A
A
A
13
13
A

116
hexdec2

117
1$80
inbuf,x
svrts2

; fix flashinq char
; fix input entry

; test the keyboard

; save kbd and int stat for later
;no interrupts while· oettino position

;move x position into the buffer

;convert it

;restore int ' kbd status

;x=O from last divlO

;x = eol
;er

;qoback

47 u

48 • HEXTOOEC - puts +0000, into the input buffer
49 • inputs: a = low byte of number
50 • x = hiqh byte of number
51 • y = pos i tion of ones diqit
52 tttttttutttttt••uuuuuuuuuuuuuuuut

54 hextodec cpx 1$80 ; is it a neqative number?
55 bee hexdec2
56 eor 1$FF ; form two's complement
57 adc 10 ; c = 1 from compare
58 pha ;save it
59 txa
60 eor 1$FF

l>- 3J MBASIC mouse BAS IC routines 20-0CT-S6 06:41 PAGE 127
0-
IV

D44D:69 00 6J adc 10
D44F :AA 62 tax

. D4S0:6S 63 pla
D4SJ :3S 64 sec
D4S2 :SD J4 02 6S hexdec2 sta binl ; store the number to convert
D4SS:SE JS 02 66 stx binh
D4SS :A9 28 67 lda I'+• ; store the sign in the buffer
D4SA:90 02 D4SE 6S bee hdpos2
D4SC:A9 2D 69 lda I'-'
D4SE:4S 70 hdpcs2 pha ; save the sign

· D4SF:A9 2C 71 lda I',, ; store a comma after the number
D461:99 01 02 72 sta inbuf+J,y
D464: D464 73 hdloop equ • ;divide by JO

D464: 7S • divide BINH,1 by 10 and leave remainder in a

0464 :A2 11 77 ldx 116+1 ; J6 bits and first time do nothing
0466:A9 00 7& lda 10
046S:JS 79 clc ;co() so first ROL leaves ao(J
0469:2A SO dvlOloop rol A
046A:C9 OA SJ cmp 110 ;a >= 101
D46C:90 02 D470 S2 bee dvJOlt ;branch if <
D46E:E9 OA S3 sbc 110 ; c = 1 fran compare and is left set
D470 :2E J4 02 S4 dvlOlt rol binl
D473 :2E JS 02 SS rol binh
D476:CA S6 ·dex
0477:DO ro D469 S7 bne dvJOloop
0479:09 30 SS ora 1'0' ;make a ascii char
D47B:99 00 02 S9 sta inbuf,y
047E:SS 90 dey
D47F:FO OS D4S9 91 beq hddone ; stop on O, 6, J2
04Sl :CO 07 92 cpy 17
D4S3 :FO 04 D4S9 93 beq hddone
D4SS :CO OE 94 cpy 114
D4S7 :DO DB D464 9S bne hdloop
04S9 : 6S 96 hddone pla ;get the sign
D4SA: 99 00 02 97 sta inbuf, y
04SD:60 9S rts
D4SE: 73 include banger

32 BANGER

D4SE:
D4SE:
D4SE:
D4SE:
D4SE:
D4SE:
D4SE:
D4SE:
D4SE:
D4SE:
D4SE:
D4SE:
D4SE:
D4SE:
D4SE:
D4SE:
D4SE:
D4SE:
D4SE:
D4SE:
D4SE:
D4SE:
D4SE:
D4SE:
D4SE:
D4SE:
D4SE:
D4SE:
D4SE:
04SE:
D4SE:SO SO CO
D49l:SD 7S CO
D494:SD SF CO

D497
D497
D497
D497
D497

D497:AO 04
D4 99:A2 00
D49B:lS
D49C:79 2A CS
D49F:9S 00
D4AJ :ES

0011
0009
0001
OSBS

D4A2 :DO F7 D49B
D4A4 :JS
D4AS :79 2A CS
D4AS :DS 00
D4M:DO 10 D4BC
D4AC:ES
D4AD :DO rs 04A4
D4AF:6A
D4B0:2C 19 CO
D4B3:JO 02 04B7
D4BS:49 A5
D4B7 :SS

Apple //c Diagnostics 20-0CT-S6 06:4J PAGE 12S

3 • These routines test all 12SK ram. All combinations of soft
4 • switches applicable to the /le are tested and verified.
5.
6 • In the event of any failure, the diagnostic is halted. A message
7 • is written to screen memory indicating the source of the failure.
S • When RAM fails the message is canposed of "RAM ZP" (indicating
9 • failure detected in the first page of RAM) or "RAM" (meaning the

JO • other 63. 7SK), followed by a binary representation of the failing
11 • bits set to •J•. For example, "RAM 0 1 1 0 0 0 ·o o• indicates
12 • that bits S and 6 were detected as failing. To represent
J3 • auxillary memory, a ••• symbol is printed preceeding the message.
14 •
J5 • When the !t!U or IOU fail, the message is simply "!t!U" or "IOU".
J6 • If the IOUDIS or DHIRES switch fails, the message is "GLU".
17 •
lS • The test will run continuously for as long as the Open and Closed
J 9 • Apple keys remain depressed (or no keyboard is connected) and no
20 • failures are encountered. The message "System OK" will appear in
21 • the middle of the screen ·when a successful cycle has been run and
22 • either of the Apple keys are no longer depressed. Another cycle
23 · • may be initiated by pressing both Apple keys again while this
24 • message is on the screen. To exit diagnostics, Control-Reset
2S • must be pressed without the Apple keys depressed.
26 •
27 •
2S GLUIDX
29 IOUIDX
30 MMUIDX
31 SCREEN
32 •
33 DIAGS
34
35

EQU
EQU
EQU
EQU

sta
sta
sta

$11
$09
$01
$5BS

txtclr
ioudsbl
setan3

text mode off
Disable IOU
Double hires off

37 • Test Zero-Page, then all of memory. Report errors when
3S • encountered. Accumulator can be anything on entry. All
39 • registers used, but no stack. Addresses between $COOO
40 • and $CFIT are mapped ·to main .$DOOO bank. Addresses
41 • bet ween $CO 00 and $CFFF are mapped to main $000 0 bank •

43 TSTZPG ldy 1$4
44 ldx 10
45 zpl clc ; fill zero page with a pattern
46 adc ntbl, y
47 sta $00,x
4S inx
49 bne zpl ; after all bytes filled,
50 zp2 clc ; ACC has original value again.
Sl adc ntbl, y ; so values can be tested
52 cmp $00,x
S3 bne ZPERROR ; branch if memory failed
54 inx
55 bne zp2 ; loop until all 2S6 bytes tested
56 ror a . ; change ACC so location $FF will change
57 bit rdvblbar ; use RDVBL for a little randanness ••.
5S bpl zp3
59 eor 1$A5
60 zp3 dey ; use a different pattern now

32 BANGER Apple /1 c u1agnosucs 20-0CT-8b 06:41 PAGE 129

I 0488 :10 El D49B 61 bpl zpl ; branch to retest with other value
D4BA:30 06 D4C2 62 bmi TSTMEM2 ;branch always

D4BC:55 00 64 ZPERRlll eor $00,x ;which bits are bad?

I
D4BE:l8 65 clc ; indicate zero· page failure
D4BF: 4C 73 C4 66 jmp BADB!TS
D4C2 :4C C6 CJ 67 TSTMEM2 JMP TSTllEll ;Off to the rest of it

D4C5: D4C5 69 zznm equ .
D4C5 :20 90 C7 70 jsr swzzqt2 ;Get out of the hooks
D4C8:68 71 pla ;Get junk off of stack
D4C9:7A 72 ply
D4CA:68 73 pla
D4CB:A9 IT 74 lda HFF
D4CD:AA 75 tax
D4CE:E8 76 zzloop inx
D4CF: 50 DA 04 77 eor qtbl,x
D4D2:9D 00 02 78 sta inbuf,x
D4D5:10 F7 D4CE 19 bpl zzloop
D4D7 :4C 84 C7 80 jmp swrts2

D4DA:AD .JB OA OB 82 qtbl dfb $AO, $38, $0A, $08, $48, $77, $3E, $05
04£2 :00 05 08 DC 83 dfb $00, $05, $08, $0C, $IE; $53, $ 65, $37
D4EA: IC 07 OC 45 84 dfb $1C,$07, $0C, $45, $62,$27 ,$00, $17
D4F2: IC 01 01 05 85 dfb $IC, $07, $07, $05,$48;$60,$24,$02
D4FA:OE 45 61 32 86 dfb $OE, $45, $61, $32, $18, $02, $07, $ID
D502:53 6A 2B OC 87 dfb $53, $6A, $28, $DC, $08, $16, $53, $68
D50A:JD 06 07 IB 88 dfb $3D, $06, $07' $1B, $01, $£3
D510: 74 include aousein7 .x

.C>.
g;

33 MOUSEIN'/ ,X

D510: ooro
D600:
D600:
D600:
0600:
D600:

D600: 9C 7F 07
D603 :A2 80
D605 :AO 01 .
D607:9E 70 04
D60A:9E 7D 05
D60D:A9 IT
D60F:9D 7D 06
D612 :A9 03
D614 :9D 7D 07
D617:A2 00
D619:88
D61A:IO EB D607
D61C:20 51 D6
D61F:A9 00

0621:
D621:
0621:

0621 :AA
0622:20 46 C7
0625 :BA
D626:8D 78 04
D629:4A
D62A:OD 78 04
D62D:C9 10
D62F !BO IF 0650
0631:29 05
D633 :FO 01
0635 :58
D636:69 55

D638
D638
D638
D638
D638
D638
0638
D638
D638
D638
D638
D638
D638
D638

D638 08
D639 78
D63A BE FF 07
D63D SD 79 co

0636

Apple //C Utagnostlcs 20-0CT-86 06:41 PAGE 1ov

ds $D600-', $00
3 •uuuuuuuuuuuuuuututuuuuuuut

4 • Initmouse - resets the 110use
5 • Also clears all of. the aouse holes
6 • note that iou access fires pdlstrb ' aakes 110use happy
1 tUUUUUUtUtUUUUUtUUUtUtUUUUttU

9 i.nitmouse stz
10 ldx
11 ldy
12 xrloop . stz
13 stz
14 lda
15 sta
16 lda
17 sta
18 ldx
19 dey
20 bpl
21 jsr
22 lda

aoustat
t$80
ti
minxl,x
ainxh,x
t$FF
aaxxl,x
tOJ
aaxxh,x
to

xrloop
x.ahoae
to

;Clear status

;Miniaua • $0000

;Maxiaua • $03FF

;Clear the 110use holes
; Fall into SETMOO

24 tUUUUUUUUUUttttttttUUUUttUUUttUt

25 • XSETMOO - Sets the mouse mode to A
26 tUUUtUtttUUUUUUUUUUUUUUUUUUt

28 x.set110u tax
29 jsr a .. oveirq ;Make sure interrupt vector is right
30 txa ;Only x preserved ·by aoveirq
31 sta aoutemp
32 lsr A ; DO = 1 if 110use active
33 ora aoutemp ;D2 • I if vbl active
34 cmp t$10 ; If >=$10 then invalid 110de
35 bes sminvalid
36 and t5 ; Extract VBL ' Mouse
37 beq xsoff ;Turning it off?
38 cli ;If not, ints active
39 xsoff adc 1$55 ;Make iou byte C=O

41
42 •
43 • SETIOU - Sets the IOU interrupt modes to A
44 • Inputs: A = Bits to change
45 • D7 - Y int on falling edge
46 • D6 = Y int on rising edge
47 • D5 • X int on falling edge
48 • D4 = X int on rising edge
49 • D3 • Enable VBL int
50 • D2 = Disable VBL int
51 • DI • Enable .mouse int
52 • DO = Disable aouse int
53 •
54 '***********'******

56 setiou
57
58
59

php
sei
stx moumode
sta iouenbl

;Don't allow ints while iou enabled

; Enable iou access

J:>,. JJ MOOSEJN7.X Apple /le Oiaqnostics 20-0CT-86 06: 41 PAGE lJl JJ MOOSEJM7 .X Apple //c Oiaqnostics 20-0CT-86 06 :41 PAGE IJ2

~ 0640 :A2 08 60 ldx 18 069C:OO 7F 07 118 ora aoustat

0642 :CA 61 siloop dex 069F:29 ED 119 and 1$EO ; Button bits

064J :OA 62 asl A ;Get a bit to check 06Al :80 F4 0697 120 bra xrbut2

0644 :90 OJ 0649 6J bee sinoch ; No change if C-0
0646:90 58 co 64 sta iou,x ;Set it 06AJ: 122 ••

0649:00 F7 0642 65 sinoch bne siloop ;Any bits left in A? 06AJ: 12J • XICLAMP - Store new bounds

0648:80 78 co 66 sta ioudsbl ;Turn off iou access 06AJ : 124 • Inputs A • I for Y, 0 for X axis

064£:28 67 plp 06AJ : 125 • •inl, •inh, maxl, aaxh • new bounds

064F:l8 68 clc 06AJ: 126 tttUttttttttttttttttttttttttilltttttttttUttttttUt

0650: 60 69 sminvalid rts
06A3:6A 128 x.aclamp ror A : I -> 80

0651: 71 ttttt Utttt U ttttUtttt Utttt tt U tttttt U tttttUU 06A4:6A 129 ror A

0651: 72 • XMBCJIE- Clears aouse position ' status 06AS :29 80 IJO and 1$80

0651: 73 tttttttttttttttttUUttttttttttttUU ttt ttttttUU 06A7:AA IJI tax
06A8 :AD 78 04 IJ2 lda minl

0651 :A2 80 75 x.mhome ldx 1$80 ; Point mouse to upper left 06A8:90 70 04 IJJ sta •inxl,x

065J :80 02 0657 76 bra xmh2 06AE :AD 78 05 IJ4 lda •inh

0655 :A2 00 77 ICllhloop ldx 10 0681 :90 70 05 IJ5 sta •inxh,x

0657 :BO 7D 04 78 xmh2 lda ainxl,x 0684 :AD F8 04 IJ6 lda •axl
065A:90 7F 04 79 sta mouxl,x 0687:90 7D 06 IJ7 sta aaxxl,x

0650:80 70 05 80 ' lda minxh,x 06BA :AD F8 0 5 IJ8 lda aaxh

0660: 90 7F 05 81 sta mouxh,x 0680:90 70 07 1J9 sta 11axxh,x

066J:CA 82 dex lliCO :18 140 Cle ;Mo error

0664: 10 EF 0655 8J bpl 1C11hloop 06Cl :60 141 rts

0666 :80 DC 0674 84 bra xmcdone
06C2: 143 lllUttttttUttttttttttttttttttUUUUttttttttttttt

0668: 86 tttttttttilltttttttttttttUttttttttUUt•ttttttilltttt 06C2: 144 • XK?STIMT - Checks •ouse status bits.

0668: 87 • XICLEAR - Sets the •ouse to 0,0 06C2: 145 • U$ed for user •ouse interrupt

0668 : 88 tttttttttttfltt••·································· 06C2: 146 tttttUUU ttttUtttttttttttt Utttttttttt ttttttttt

0668 :9C 7F 04 90 x.mclear stz aouxl 06C2:48 148 x .•ts tint pha

0668:9C 7F 05 91 stz aouxh D6C3:18 149 clc

066E:9C FF 04 92 stz mouyl 06C4 :A9 OE 150 lda 1$0£

0671 :9C FF 05 9J stz mouyh 06C6:2D 7F 07 151 and •oustat

0674 :9C 7F 06 94 xmcdone stz mouant 06C9:00 01 06CC 152 bne nostat2

0677:18 95 clc 06CB:J8 15J sec

0678:60 96 rts 06CC :68 154 nostat2 pla
06CD:60 155 rts

0679 98 tttUtttttt UUUttUUtttt ttU UUUttOUU Uttt

0679 99 • XMREAD - Updates the screen holes 06CE OOJ2 157 ds $0700-', $00

0679 100 .. 0700 75 include s .execute
0700 0100 I ds $0800-',$00

0679:A9 20 102 x.mread lda lmovarm : Has mouse moved?
0678: IC 7F 07 IOJ trb moustat ;Clear moved bit in stat
067E :20 7F 06 104 and mouarm
0681 :lC 7F 06 105 trb mouan ;Clear arm bit
0684: 2C FF 07 106 bit moumode ; If 07 : 1 leave buttons alone
0687 :JO 13 069C 107 bmi xmrd2
0689:2C 6J CO 108 bit moubut ; Button pressed 1
068C :JO 02 0690 109 bmi xrbut
068£ :09 80 llO ora 1$80
0690: 2C 7F 07 Ill xrbut bit moust at ;Pressed last time?
069J : 10 02 0697 112 bpl xrbut2
0695 :09 40 llJ ora 1$40
0697:80 7F 07 114 xrbut2 sta moustat
069A: l8 115 clc
0698:60 116 rts
069C: 069C 117 xmrd2 equ ;Leave button bits alone

34 S .EXECUTE slinky execution routines 20-<X:T-86 06:41 PAGE 133 34 S • EXECUTE slinky execution routines 20-0CT-86 06:41 PAGE 134

0800: 3 08S3: 61 • returns status block for call 0
0800: 4 • execution routines. these routines must begin in the same page D8S3: 62 • 10000000
0800: S tuuuuuuuuuuuuuuuuuuuuuuutu 08S3: 63 ..

0800: 7 tUUUUUUUUUUttUttttttUtUtUUUUUttt 08S3:AS 47 6S pstatO lda pstat ;aust be call 0
0800: 8 • EXECUTE - does coaaand in ccuand 08SS:DO 17 D86E 66 bne stbad ; branch if bad
0800: 9 • inputs: a • ccuand 08S7 :SD F8 OS 67 sta yval ; set bytes read count
0800: 10 tttttttttttttttUttttttttttttUUUUUUUUttttt 08SA:AO 08 68 ldy t8

08SC:8C 78 OS 69 sty xval
0800 :BS 42 12 execute sta cmmand D8Sr:88 70 dey
D802 :AO C4 13 ldy f4+$CO 0860:91 4S 71 stOlp sta (pbuff) ,y ; save out the Os
D804 :ec re 01 14 sty sl.aslot 0862 :88 72 dey
0807:A2 C8 IS ldx f4'$10t$88 D863:DO FB D860 73 bne stOlp
0809:8£ 78 07 16 stx sl.devno ; save command and hardware index 086S :A9 01 74 lda fl
080C:A9 00 17 lda to ; clear error flag 0867 :91 4S 7S sta (pbuff) ,y
080E:8D re 04 18 sta error 0869:60 76 rts
D811:20 D3 D9 19 jsr sl. format ;do we need to format?
D814 :A4 42 20 ldy cmmand ;get command 086A: 78 ·····················•••fltttttttlttttttttttttitttt

D816:B9 80 C6 21 lda parmtbl,y ; check parameter count 086A: 79 • PCNTL - control call
D819:30 04 D81r 22 bai exec2 ; if negative, no parm check D86A: 80 • call O (reset) is iaplemented for both devices
D81B:CS 43 23 cap ppara 086A: 81 tttttttUUttttttttttttUttttttttttttttttttttttttt

081D:DO IS D834 24 bne pzcnt
08lr:A9 D8 2S exec2 lda t<xstatus ; all entry points on saae page 086A:AS 47 83 pcntl lda pstat ;call 0?
0821 :80 01 D824 26 bra exec3 ; skip around the basic patch 086C:rO OS D873 84 beq pcntok

D86E:A9 21 8S stbad lda tbadctl ;oops! bad status/control ntaber
0823: 0001 28 ds $d824-*. $00 ;break handler will correct for this D870 :8D F8 04 86 sta error

0873:60 87 pcntok rts
D824:48 30 exec3 pha
D82S :B9 9A C6 31 lda cadtbl,y 0874: 89 illtttttttt•tttt
D828 :48 32 pha D874: 90 • PSTATUS - status call for device I
0829:AC F8 07 33 ldy sl.aslot 0874: 91 • call 0, 3 supported
082C:AE 78 07 34 ldx sl.devno D874: 92 •••••.••••••••• , •••••••••••••••••••••••••••••••••••
082r:60 3S rts

0874 :A9 04 94 sl.pstatus lda 14 ; nuaber bytes for call 0
D830:A9 01 37 pzcmd lda fbadcmd ; invalid coll'll!land D876 :A6 47 9S ldx pstat
D832 :DO 02 D836 38 bne pzcnt2 0878 :rO 06 D880 96 beq pstO
0834 :A9 04 39 pzcnt lda fbadpcnt 087A:EO 03 97 cpx 13 ;is it 131
0836 :SD re 04 40 pzcnt2 sta error D87C:DO FO D86E 98 bne stbad ;branch if bad call
0839:60 41 iorts rts 087E:A9 19 99 lda t2S ; I bytes for call 3

D880:8D 78 OS 100 pstO sta xval
083A:4C 80 CS 43 pread2. z jmp sl.pread ;entry point in this page D883 :A2 00 JOI ldx to
D83D:4C r7 CS 44 pwrite2 jmp sl.pwrite ;entry point in this page 088S:8E re OS 102 stx yval
0840 :4C 4r D9 4S dosconv2 j1p dosconv ;entry point in this page 0888 :A8 103 tay
0843:4C 30 DB 46 xdiaq jmp xdiagz ;entry point in this page D889:88 104 dey

088A:B9 67 C6 !OS pstmov lda stattbl, y ;move the status info
0846: 48 •ttUUUttflttUtUHH U UUUUUUUUUUUtU D88D:91 4S 106 sta (pbuff) ,y
0846: 49 • XSTATUS - ProOOS status call D88F:88 107 dey
D846: so t••••••························ D890:IO rs D88A 108 bpl pstmov

D892:AC rs 07 109 ldy sl.mslot ;get the size
0846:B9 B8 03 52 xstatus lda numbanks,y ; size = I 64K banks I 2 D89S:B9 B8 03 110 lda n1111banks,y
D849:4A S3 lsr A 0898 :4A lll lsr A
D84A:8D re OS S4 sta yval D899:AO 02 112 l dy 12
084D:A9 00 SS lda to D89B:91 4S 113 sta (pbuff) ,y
084F:8D 78 OS S6 sta xval 0890:60 114 rts
08S2:60 S7 rts

D89E 116 ...
D8S3: 59 tUttttttUUUUttfltttttttttttttttUUttttUttttt 089£ 117 • XREAD - r ead a block
08S3: 60 • PSTATO - Status call for device 0 D89E 118 • XllRITE - write a bl ock

b

8;

A. 34 S .EXECUTE slinky execution routines 20-0CT-86 06 :41 PAGE 135 34 S • EXECUTE slinky execution routines 20- 0CT- 86 06:41 PAGE 136

8:
D89E: 119 • D8EF: 174 ..

D89E: 120 • P roDOS read ' write are changed into Protocol converter read block D8EF : 175 • here is the rest of the boot code

DB9E: 121 • and write block which are then changed into read ' write D8EF: 176 • input: a • kswh, output: v • 1 if boot fails

DB9E: 122 t ttUttttUUttttttUttttUUUUUUUUUttUUt DBEF: 177 • jumps to DOS patch if !NI from DOS
D8EF: 178 t U U U Utttt Utttt Utt Utt ttt tU ttttttUttttttttt

D89E:2C 39 DB 124 xread bit iorts ;V = I for read
OBA! :50 125 dfb $50 ; BVC never taken DBEF :AO C4 !BO boot.sl ldy f4+$CO

DBA2 :B8 126 xwri te clv ;V • 0 for write DBFI :8C F8 07 !Bl sty sl.mslot
DBF4 :A2 C8 1B2 ldx t4'$10+$BB

DBAJ :A5 47 12B xrwcnn lda block+! ;move block ' buffer pointer DBF6 :SE 78 07 1B3 stx sl.devno

D8A5 :85 4B 129 sta pblock+l DBF9 :CD FB 07 1B4 Cllp sl.mslot ;is it a INt

DBA7:A5 46 130 lda block ;be careful not to st ep 08FC:DO 09 0907 185 bne btnodos

DBA9:85 47 131 sta pblock ;on our own toes DBFE :AD 00 BF 1B6 lda proflaq ;are we in DOS?

DBAB:A5 45 132 lda buffer+! 0901 :FO 04 0907 1B7 beq btnodos ;O • Pascal

DBAD :B5 46 133 sta pbuff+l 0903 :C9 4C !BB cap 1$4C ; .J!P • ProDOS

DBAF :A5 44 134 lda buffer 0905 :DO 20 0927 1B9 bne dospatch ;qo patch DOS

DBBI :B5 45 135 sta pbuff
DBB3 :A9 00 136 lda to D907:9C 01 OB 191 btnodos stz bootbuf+l ; assume fail

DBB5 :B5 49 137 sta pblock+2 D90A: 192 ; lda power2, y ; if power up bytes not set, don't boot

DBB7 :FO 05 DBBE 13B beq xread2 ;skip past other sev ' clv D90A: 193 ; eor t$A5
D90A: 194 ; cap powerup, y

DBB9 : 140 D90A:B9 B8 06 195 lda powerup,y ;qet power up byte

DBB9 : 141 • PRDBLK - Protocol converter block read D90D:C9 A5 196 cap t$A5 ;was it set?

DBB9: 142 • PNRBLK - Prot ocol converter block wr ite D90F :DO 11 0922 197 bne btfail ;skip if no

DBB9: 143 • •• ••••••• • ••••••••••••••••••••••••••••••• •••• ••• • 09ll:AO 03 198 ldy t3
0913 :B9 23 09 199 btav lda btcmd,y

DBB9 :2C 39 DB 145 prdblk bit iorts ;V = 1 for read 0916:99 44 00 200 sta buffer,y

DBBC : 50 146 dfb $50 ; BVC never taken 0919:88 201 dey

D8BD :B8 147 pwrblk clv D91A:l0 F7 0913 202 bpl btmv
091C:AC re 07 203 ldy sl.mslot

D8BE:A5 47 149 xread2 lda pblock ; convert block into 512 bytes D91F:20 9E 08 204 jsr xread ;oo read the block and return

08CO:OA 150 asl A 0922 :60 205 btfail rts

08Cl :85 4A 151 sta paddr+l
08C3 :A5 48 152 lda pblock+l 0923 :OO 08 207 btcmd dw $800

08C5 :2A 153 rol A 0925 :OO 00 208 dw 0 ; read in block 0 @ $800

08C6 :85 4B 154 sta paddr+2
08C8 :BO IF 08E9 155 bes prbad2 ; if C=l then bad address 0927: 210 tttttUUUUttUUUUUUUUttttUttttUUUttt

D8CA:A5 49 156 lda pblockt2 ;third byte must be O 0927: 211 • OOSPATCB - patches rwts to jump to us

08CC :DO IB D8E9 157 bne prbad2 0927: 212

08CE:85 49 158 st a paddr ; low byt e of address is 0
0800 :85 47 159 sta pcount ; count = $200 0927 :A9 4C 214 dospatch lda t$4C ;JMP opcode

0802 :A9 02 160 lda 12 0929:80 00 BO 215 sta rwts

DBD4:85 48 161 sta pcount+l D92C :A9 DI 216 lda t>dosent4

D8D6:AD 14 CO 162 lda rdramwrt ; fix aux bit in address D92E:BD 01 BO 217 sta rwts+l ;make paqe 3 vector point to us

0809:70 03 D8DE 163 bvs prdread 0931 :SC 02 BO 218 sty rwtst2 ;Y = en

0808 :AD 13 CO 164 lda rdramrd 0934 :A9 CJ 219 lda t>dossyn ;patch out init command

DBDE :29 80 165 prdread and 1$80 ;07 = I if aux 0936 :80 IE 90 220 sta dosinit

DBEO :05 4B 166 ora paddr+2 D939:A9 A6 221 lda t<dossyn

D8E2 :85 4B 167 sta paddr+2 D93B:BD IF 90 222 sta dosinit +l

D8E4 :70 06 D8EC 168 bvs prbad3 ;qo do read D93E:68 223 pla ;pop off return address

D8E6 :4C F7 C5 169 jmp sl.pwrite D93F:68 224 pla

D8E9: 4C EE C5 170 prbad2 jmp prbad
0940 :FA 226 plx

D8EC :4C BO C5 172 prbad3 jmp sl.pread 0941 :FE 00 CO 227 inc $COOO, x ; restore laquaqe card
0944 :FA 228 plx : restore real x
0945 :68 229 pla
0946:68 230 pla

A.
0-
-...J

34 S .EXECUTE

0947 :A2 00
0949:A9 98
094B :4C 84 C7

094E : 60

slinky execution routines 20-0CT-86 06:41 PAGE 137

232 ldx to
233 lda 1$98 ; return a control-X
234 jmp swrts2 ; switch raa bank and return

236 dcrts r t s

34 S • EXECUTE slinky execut ion rout i nes 20-0CT-86 06:41 PAGE 138

094F: 238 •ttU•••••Atttttttt tt UflflllflttttttfltlillflflttUfllUttt

094F: 239 • DOSCONV - chanqes DOS ccuand into ours
094F: 240 • output: caamand table in zp Y • co1111and
094F: 241 tttttU Utt tt t t ttttU Utt tttilltfl tt Utttttttttt ttttt

094F:AO 02 243 dosconv l dy tibdrvn ;get drive 1 or 2
0951 :Bl 48 244 lda (iobplJ ,y
0953 :C9 01 245 cmp fl ;only 1 valid
09SS:FO 03 09SA 246 beq de!
0957 :4C 30 OB 247 dcerr jmp pzcmd ;bad drive number
09SA:AO 04 24B de! ldy tibtrk ;get track ' sector
09SC:Bl 48 249 lda (iobplJ ,y ; addr - ooooom msssss 00000000
09SE:4A 250 lsr A
09SF :66 4A 251 ror paddr+l
0961 :4A 252 lsr A
0962 :66 4A 253 ror paddr+l
0964 :4A 254 lsr A
0965 :BS 4B 255 sta paddr+2
0967:AS 4A 256 lda paddr+l
0969:6A 257 ror A
096A:29 EO 258 and f$EO
096C:CB 259 iny
0960:11 4B 260 ora (iobpl) , y ;or in sector
096F:BS 4A 261 sta paddr+l
0971 :AO OB 262 ldy tibbufp ; get pointer to user's buffer
0973 :Bl 4B 263 lda (iobpl) ,y
0975 :85 45 264 sta pbuff
0977 :CB 26} i ny
097B :Bl 48 266 lda (iobpl) ,y
097A:BS 46 267 sta pbuff+l
097C:AO OC 268 ldy tiband ; get command
097E:Bl 48 269 lda (iobpl) ,y
09BO:FO CC 094E 270 beq dcrts ; 0 • null • do nothinq
0982 :29 03 271 and t3
09B4 :FO 01 0957 272 beq dcerr ; 4 • foniat is an error
0986:09 11 273 ora m ; I -> 17 , 2 -> 19
09BB:AB 274 tay ;Y • co.a.and
0989:A2 00 275 ldx to
098B:86 47 276 stx pcount ;count • $100 bytes
09BO:B6 49 277 stx paddr
098F:E8 278 i nx
0990 :86 48 279 st x pcount+l
0992 :4C lF OB 280 jop exec2
0995: 76 include s .aakecat

.ti. g; 35 S .MAKECAT slinky miscellaneous routines 20-0CT-S6 06 :41 PAGE 139

0995:
0995:
0995:
0995:
0995: 0995
D995:A9 00
D997:9D rs Br
099A:9D F9 BF
D99D:A9 10
D99F:3S
D9AO:E9 01
D9A2 : 90 FA BF
D9A5 :BO FB BF
D9A8:4S
D9A9: DE rs BF
D9AC:A9 AS
D9AE: 90 FB BF
D9Bl :DE rs BF
D9B4 :50 FB BF
D9B7 :DE rs BF
D9BA:C9 01
D9BC:6S
D9BD: 90 FB BF
09CO : BO FA BF
o9CJ:29 or
D9C5 :FO 04 D9CB
D9C7 :BO 07 D9AO
D9C9:69 01
D9CB:99 BS 03
D9CE:4A
09CF :SD 7S 04
0902 :60

0903:
0903:
0903:

0903:
0903:
0903:
0903 :
0903: 0903
0903 :AC FS 07
0906:
0906:
0906:
0906:
0906:
0906:A9 A5
D90S :09 BS 06
090B :FO 28 OAOS
0900:99 88 06

09EO:
D9EO:
09EO :C9 05
09E2: 09E2
09E2 :OS

2 t U UttUUU U U U UU UtU Ut U UU U U U UUtU

3 • TESTSIZE - determines ramdisk size nondestructively
4 • Inputs: Y = ms lot X = devno
5 .. u ...

6 testsize equ
1 lda 10 ; Set address req
s sta addrl,x
9 sta addrm,x

10 lda 1$10 ; Start at 1 meo and qo down
11 sec
12 tsloop sbc fl ; Move down a bank
13 sta addrh,x
14 lda data,x ; Save the data that is there
15 pha
16 dee addrl,x ;Fix address
17 lda 1$A5 ; Store somethinq there
lS Sta data,x
19 dee addrl,x
20 eor data,x ; 0 if the data is there
21 dee addrl,x
22 Clip fl ;C = 0 if data ok
23 pla
24 sta data,x ; Restore what was there
25 lda addrh,x
26 and 1$0F ; Only lower 4 bits valid
27 beq tsnoram ;No ram sanehow! ! !
2S bes ts loop ;Loop until we find a bank
29 adc fl ; C • 0 from canpare
30 tsnoram sta numbanks,y
31 lsr A ; Sizetemp • < block count
32 sta sizetemp
33 rts

)5 llUttU UUUilltttttUUUttttUttUttttUUttUttt

36 • Routines for makinq a directory on the disk
37 ... u

J9 tUUUUUUUUUttttttttttttttUUttttUUUUt

40 • Format - Tests for powerup and puts cataloq on the disk if needed
41 • Inputs: Y = mslot X = devno
42 UtUUUttUttUttttUUUttttUUUUUUUUUt

43 s 1. format equ
44 ldy sl.mslot
4S ; lda power2, y ; Is power2 eor powerup = AS
46 ;eor 1$A5
47 ; cmp powerup, y
4S ; beq fmtdone
49 ; sta powerup, y
50 lda 1$A5
51 cmp power up, y
52 beq fmtdone
53 sta powerup,y

qet power up value
is it • to t he slinky power up byte?
skip if yes
it's not, but it's set now

55 ' If all screen holes spaces, someone miqht have cleared
56 ' the screen wrong so we won't reformat
57 cmp 1$05 ; Space eor $AS?
SS fmnosp equ • ; Z = 1 if all spaces
59 php

35 S .MAKECAT slinky miscellaneous routines 20-0CT-S6 06:41 PAGE 140

09£3 :20 95 09 60 jsr testsize
D9E6:2S 61 plp
09E7 :FO lF OAOS 62 beq fat done
D9£9:AD 00 BF 63 lda proflaq ; llhat type of cataloq?
09EC:FO lB OA09 64 beq fapas
09££:C9 4C 65 Cllp 1$4C ;JMP if ProDOS
09FO :DO 10 OAOF 66 bne fmdos
09F2:AO FF 67 ldy lprocat ; Do a ProDOS catalog
09F4 :20 39 DA 6S jsr makecat ; Put in all but bit map
09F7 :A9 01 69 lda 101 ; Blocks 0-6 busy
09F9:AO 20 70 fmpmapl ldy 132 ;32 rrs for each $100 blocks
09FB: 90 FB BF 71 fmpmap2 sta data,x
D9F£:09 FF 12 ora 1$FF ; Rest are FFs
OAOO :SS 73 dey
DAOl:DO F8 09FB 74 bne fmpaap2
DA03 :CE 7S 04 75 dee sizetemp
OA06 :00 Fl 09F9 76 bne fapaapl
DAOS:60 11 fatdone rts

DA09: 79 • Do a Pascal cataloq
DA09: OA09 SO fapas equ •
DA09:AO 7S Sl ldy I pas cat
DAOB:20 39 DA S2 jsr aakecat
DAOE:60 S3 rts

OAOF: S5 ' Do a DOS catalog
DAOF: OAOF S6 fados equ •
OAOF:AO 2C S7 ldy ldoscat
DAll :20 39 DA SS jsr makecat
DA14 :A9 44 S9 lda 1$44 Point to track 3 bitmap
DA16:90 F8 BF 90 sta addrl,x Meir 1 = O from makecat
DA19:AD 78 04 91 lda sizetemp Check if at least Sl2K
DAlC:AO 12 92 , ldy 1114 Assume 256K
DA1E:C9 04 93 cmp 14 At least $400 blocks
OA20 :90 02 DA24 94 blt bdbmap
DA22:AO BA 95 ldy 1186 ;M.lke 400K voluae
OA24 :BO F8 BF 96 bdllmap lda addrl,x ; Don't free catalog
DA27:C9 7C 97 Cllp 1$1C ;Track $11?
DA29 :00 05 OAJO 98 bne fmdok
DA2B :A9 1£ 99 lda 1$1E ;Skip first 16 sectors
DA20 : 90 F8 BF 100 sta addrl,x ; 1C -> 1£ so no false carry
DAJO:A9 FF 101 fmdok lda 1$FF
DA32 : 90 FB BF 102 sta data,x
DAJS:S8 103 dey
OA36 :00 EC OA24 104 bne fmdbmap
DA38 :60 lOS rts

JS S .MAKECAT slinky miscellaneous routines 20-0CT-86 06:41 PAGE 141 JS S .MAKECAT slinky miscellaneous routines 20-0CT-86 06:41 PAGE 142

DA39: 107 .. DAA7: 163 ..
DA39: 108 • MAKECAT - Creates a catalog DAA7 : 164 • The catalog tables
DA39: 109 • Inputs: X = index into catalog tables DAA7: 16S • These tables contain the catalog info cOllpacted
DA39: 110 • DAA7: 166 • in a scheme so clever it probably doesn't save
DA39: lll ************"'uuuuututuuuuuuuuutu DAA7: 167 • ae anythino
DA39: DA39 112 makecat equ • DAA7: 168 • For each bank:
DA39:A9 00 113 Ida 10 ; First bank is 0 DAA7: 169 • The first byte is the bank I. 0 = done
DA3B: 9D FB BF 114 sta addrl,x ;Start at 0 DAA7: 170 • zers,n = skip n Os
DA3E: 9D F9 BF 115 sta addrm,x DAA7: 171 • zers,O = fill rest of paoe· with Os and get new address
DA41 :9D FA BF 116 sta addrh,x DAA7: 172 • zers,O,O - All done
DA44: 9D FB BF 117 mcboct sta data,x ; Zero out first 8 blocks DAA7: 173 • skpfe = fill $FE Os
DA47 :BD F9 BF 118 Ida addrm,x ;Loop until $400 DAA7: 174 • nameflo = replace with ascii slot I
DA4A:29 FO 119 and 1$FO ;A • 0 if < $1000 DAA7: 17S • sizeflo - replace with < block size
DMC:FO F6 DA44 120 beq mcboct ;Leaves us pointing at $1000 (block 8) DAA7: 176 ttUllUttttUUUUttUUttUUUUttUUUUUUt

DME:A9 04 121 Ida 14 ;Point to $400 (block 2) DAA7: DAA7 177 cattbl equ
DASO: 9D F9 BF 122 sta addrm,x
DAS3 :CB 123 mcbyte iny DAA7: FITF 179 procat equ •-cattbl-1
DAS4 :B9 A7 DA 124 Ida cattbl,y ;Get next byte fran the table DAA7:00 00 180 dw 0 ;Prevoius pointer
DAS7:C9 FD 12S cmp lzers ; Zeros flao? DAA9:03 00 181 dw 3 ;Next block
DAS9:FO lC DA77 126 beq mcO DAAB:F4 182 dfb $F4 ; Storaqe type
DASB:C9 FE 127 cmp lskpfe ; $FE zeros? DAAC:52 41 4D 183 asc 'RN!'
DASD:FO lE DA7D 128 beq mcfe DAAF:AA 184 dfb naaeflo
DASF:C9 FC 129 cmp lsizeflo ;Block size? DABO:FD 19 18S dfb zers,$19
DA61 :DO OS DA68 130 bne mcntsz DAB2 :CJ 27 OD 186 dfb $C3. $27. $OD
DA63 :AD 78 04 131 Ida sizetemp ;Get <I blocks DABS :OO 00 187 dw 0
DA66:DO 09 DA71 132 bne mcntnm ; Better not be 0 DAB7:06 00 188 dw 6 ; Bitmap pointer
DA68:C9 AA 133 mcntsz cmp lnameflo ; Slot I for name? DAB9:00 FC 189 dfb O,sizeflo ;Number of blocks
DA6A:DO OS DA71 134 bne mcntnm DABB:FD D7 190 dfb zers, $D7
DA6C:AD FB 07 13S Ida sl.mslot ;Get sen DABD:FE 191 dfb skpfe
DA6F:49 FO 136 ear 1$FO ; $Cn -> $3n DABE:02 00 192 dw 2 ; Block 3 $600
DA71:9D FB BF 137 mcntnm sta data,x ; Stick byte in ca ta loo DACO :04 00 193 dw 4
DA74 :4C S3 DA 138 jmp mcbyte ; Go to next byte DAC2:FE FE 194 dfb skpfe,skpfe
DA77:C8 139 mcO iny DAC4 :03 00 19S dw 3 ; Block 4 $800
DA78:B9 A7 DA 140 lda cattbl,y ;Get I zeros DAC6:0S 00 196 dw s
DA7B:FO 11 DABE 141 beq mcadd ;If 0, it's an address DACB :FE FE 197 dfb skpfe, skpfe
DA7D:48 142 mcfe pha ;Save count DACA:04 00 198 dw 4 ; Block S $AOO
DA7E:A9 00 143 Ida 10 DACC :OO FE 199 dfb O,skpfe ;Get into second paoe
DASO: 9D FB BF 144 sta data,x DACE :FD 00 200 dw zers, 0, 0 ; All done left at block 6
DA83 :68 14S pla
DA84 :38 146 sec DAD4: 002C 202 doscat equ •-cattbl-1
DABS :E9 01 147 sbc II DAD4 :FD 00 20 02 203 dfb zers,0,$20,$02 ;Trk $11 Sec 0 = $022000
DA87:DO F4 DA7D 148 bne mcfe DAD8:02 204 dfb 2 ;Sec o = vroc
DA89:FO CB DAS3 149 beq mcbyte ;Always taken DAD9:11 OF 20S dfb $11,$0F ; Pointer to catalog
DA88:9D FB BF 150 mcadd2 sta data, x ;Store a 0 DADB :04 206 dfb $4 ; Dos release
DABE : DD FB BF lSl mcadd cmp addrl,x ;Finish off current paoe DADC:OO 00 207 dfb 0,0 ;Unused
DA91 :DO FB DABS 1S2 bne mcadd2 DADE :FB 208 dfb $FB ; Volume number
DA93 :CB 1S3 iny DADF:FD 20 209 dfb zers, $20
DA94 :B9 A7 DA 154 lda cattbl,y ;Get new address DAE1:7A 210 dfb $7A ;TS pairs in TS list
DA97 :FO OD DAA6 lSS beq mcdone ; If 0, all done DAE2:FD 08 211 dfb zers, 8
DA99: 90 F9 BF 1S6 sta addrm,x DAE4 : FF FF FF IT 212 dfb SIT, $FF, $FF, $FF ; Allocation mask
DA9C:C8 1S7 iny DAE8:32 213 dfb $32 : I Tracks
DA9D:B9 A7 DA 158 lda cattbl,y DAE9:20 214 dfb $20 : I Sectors
DAAO: 9D FA BF 1S9 sta addrh,x DAEA:OO 01 21S dw $100 ; I Bytes per sector
DAA3:4C S3 DA 160 jmp mcbyte DAEC:FD CB 216 dfb zers, $CB
DAA6:60 161 mcdone rts DAEE:FE 217 dfb skpfe ; Sector 1 all Os

DAEF:11 01 FE 218 dfb $11,$01,skpfe ;Next cat sector pointer
DAF2:11 02 FE 219 dfb $11,$02,skpfe
OAFS : 11 03 FE 220 dfb $11, $03, skpfe

I
.ti.
0-
<>

.t.. 35 S .HAKECAT slinky miscellaneous routines 20-0CT-86 06:41 PAGE 143

.......
0 DAF8: 11 04 FE 221 dfb $11,$04,skpfe

DAF8:11 05 FE 222 dfb $11,$05,skpfe
DAFE:ll 06 FE 223 dfb $11,$06,skpfe
D801: 11 07 FE 224 dfb $11,$07,skpfe
D804 :11 08 FE 225 dfb $11,$08,skpfe
D807:11 09 FE 226 dfb $11,$09,skpfe
DBOA:ll OA FE 221 dfb $11,$0A,skpfe
DBOD: 11 OB FE 228 dfb $11,$08,skpfe
DBlO:ll OC FE 229 dfb. $11,$0C;skpfe
DB13 :11 OD FE 230 dfb $11,SOD,skpfe
DB16:11 OE FE 231 dfb $11,SOE,skpfe
DB19:FD 00 20 02 232 dfb zers, 0, $20, $02 ;Leave pointing at VTOC
DBID:FD 00 00 233 dfb zers, O, 0 ;All done

D820: 0078 235 pascat equ •-cattbl-1
DB20 :00 00 236 dfb 0,0
DB22 :06 231 dfb 6
DB23:FD 03 238 dfb zers,3
DB25 :04. 239 dfb 4
DB26: 52 41 4D 240 asc 'RAM'
DB29:AA 241 dfb nameflg
D82A:FD 04 242 dfb zers, 4
DB2C:FC 243 dfb sizeflg
DB2D:FD 00 00 244 dfb zers, O, 0
DB30: 11 include s .diaqO .src

36 S .DIAGO .SRC

DB30:
DB30:
DB30:
DB30:
DB30: DBJO
DB30 :A2 00
DB32 :BD 00 DC
DB35:9D 00 20
DB38 :BD 00 DD
DB3B:9D 00 21
DB3E :BD 00 DE
DB41:9D 00 22
DB44 :BD 00 DF
DB47: 9D 00 23
D84A:E8
DB4B:DO E5 DB32
D84D :AE 78 07
DB50 :A9 IF
DB52 :48
DB53:A9 IT
DB55 :48

DB56:
DB56:
DB56:

DB56:4C 84 C7

slinky miscellaneous routines 20-0CT-86 06 :41 PAGE 144

2 'UUUUttUUUUttttUttttttUUHUUUHttU•

3 • XDIAGZ - Moves the slinky ·diagnostic code from $DCOO - $DFFF to
4 • main ram starting at $2000 and jumps to $2000
5
6 xdiagz equ
1 ldx to
8 xdloop lda
9 sta

10 lda
11 sta
12 lda
13 sta
14 lda
15 sta
16 inx
17 bne
18 ldx
19 lda
20 pha

;move the code diagcode,x
diaqdest,x
diagcode+$!00,x
diaqdest+$100,x
diagcode+$200, x
diaqdest+$200, x
diagcode+$300, x
diaqdest +$300, x

xdloop
sl.devno
t<diagstart

;get device number
;put start · address .on stack

21 lda f>diagstart
22 pha

24
25 • switch the main rOlll back in and go to the diagnostics via return
26 u

28 jmp swrts2.

DB59: OOA7 30 ds $0COO-', $00
OCOO:

OCOO:
OCOO:
ocoo:
OCOO: 23FA
ITFA:88 C7
ITFC:88 C1
ITFE:8E C7

78 include vectors2

tttfltttttttUttttUUUUUttttttt•UUt

' VECTORS ..
ds
dw
dw
dw

$FFFA-', $00
swreset2·
swreset2
swirq2

NM!
RESET
INT

J7 SYMBOL TABLE SORTED BY SYMBOL 20-0CT-86 06 :41 PAGE 145 J7 SYMBOL TABLE SORTED BY SYMBOL 20-0CT-86 06:41 PAGE 146

JD AlH JC AlL FE78 AlPCLP FE7F AlPCRTS C24F CCMo!PORT C24C COOUT C200 COMSLOT CF8C COMTBL
FE75 AlPC JF A2H JE A2L 41 A3H CJ48 COPYROH2 CJJ 8 COPYRCM FDED COUT FDFO COUTl

40 A3L 4J A4H 42 A4L 45 A5H FDF6 COUTZ ?FD8B CROOTl FC62 CR FEF6 CRMON
44 A5L 45 l\CC ClBJ l\COONE 04FC l\CJABOF FDSE CROOT FC85 CRRTS J7 CSllH J6 CSliL

C24E l\CJAOONE ClB4 l\CIAINT ClBA l\CIAINT2 ClC2 l\CIATST CD2A CTLADR CD54 CTLCHARO CD58 CTLCHAR CD6F CTLDCJIE
FD84 ADDINP FDDl ADD BITA ADDRH BITS ADDRL FCA4 CTLDO CD80 CTLGOl CD71 CTLGO 14 CTLNUM
BIT9 ADDRM FBF8 ADV2 ?FBF 4 ADVANCE C24C AIAUX CD91 CTI.OFF CD95 CTI.ON CD15 CTLTAB 07FB CORSOR
C24D AIEAT C208 AIEATIT C200 AINOFLSH C20A AIPASS Cl2B CVBUT Cl24 CVl«JVED Cll8 CVNOVBL 25 CV

ClDC AIPORT2 ClD6 AITST2 CO!E ALTCHARSET C91D AMOOl FDB6 DATAOOT BITB DATA D95A DC! 0957 DCERR.
C9JA AM002 C9JC AMOOJ C9JB AM004 C94A AM005 D94E DCRTS FBBC DCX FEE2 DECCH C2B6 DEFAULT
C94F AM006 CA29 AM007 CA38 AM008 ?OJF5 AMPERV C2DF DEFC()! C2C7 DEITF C2EA DEFIDX 0247 DEFIDX2
C5BB APPLE2C FB60 APPLEJJ 04J8 ASTAT C580 ATALK C2BC DEFLOOP C6D9 DEN!Bl C6D7 DENIBL C22B DEVNO

?FABA AUTOSCAN D08F BACKTOl C47J BADBITS . 20 BADBLK Cl42 DEVN02 DCOO DIAGCODE 2000 DIAGDEST D48E DIAGS
01 BADCMD 21 BADCTL C4A9 BAOOIN 04 BADPCNT lITF DIAGSTART FF8A DIG DOAD DIGLOOP DOC7 DISABLE

C480 BADPRIM C6A2 BADRDl C6DJ BADREAD C4CA BADSWTCR ?C98J DISLIN OJ56 DNIBL CBC2 DOCLR FBB4 OOCOUTl
11 BADUNIT C7Cl BANGER 2B BAS2H 2A BAS2L FBS4 OOCTL C9D8 OOINST C46E OOIT4 C9F4 DOLIN

FBC 1 BASCALC FBDO BASCLC2 FEBJ BASCCJiT 29 BASH C471 OONE4 Cl86 DONE FD20 . OONXTCUR FECE OOPRO
EOOJ BASIC2 CJ17 BASICINIT EOOO BASIC CJ24 BASICENT C462 00524 002C OOSCAT 0840 OOSCCJiV2 D 94F OOSCCJIV
0400 BASJCJN 28 BASL C47D BBITSl C4BB BBITS2 C4Dl OOSENT4 80 OOSERR 9DlE OOSJNIT C4E9 . OOSOK4
FD71 BCKSPC FASS BEEPSKIP ?FBDD BELL! FBE4 BELL2 0927 OOSPATCR C4EO OOSSLT4 A6CJ OOSSYN C566 DQUIT
FFJA BELL C5JF BIGLOOP 021S BINR 0214 BINL ?C60B DRV2ENT 0469 DVlOLOOP 0470 DV!OLT DOCS ENABLE
CJ29 BINPUT FEOO BL! FE04 BLANK FCDO BLAST C4S4 ENT4 Clll ENTRl C219 ENTR C44E ENTRY4

46 BLOCK ?C54J BLP2 CS47 BLPJ CSS6 BLP4 C9C9 ERR2 ?C9CB ERR3 04F8 ERROR F8Al ERR
D8EF BOOT .SL C40E BOOT4 ? 00 BOOTBLK 0800 BOOTBUF 9B ESC CCD7 ESCO ?CCEJ ESCl CCES ESC2

4F BOOTDEV C5FS BOOTFAIL ? 02 BODrJMP JC BOOTTMP CCCO ESC3 CDOC ESCCHAR 06J8 ESCHAR OOlJ ESCNUM
?CJ26 BPRINT CAFl BRANCH ?FA4C BREAK OJFO BRKV CCED ESCRDKEY CCF8 ESCTAB D81F EXEC2 0824 EXECJ
C4CE BSliTCHl C4D8 BSWTCH2 C4E4 BSliTCH2A C4E7 BSliTCHJ 0800 EXECUTE C27S EXIT! C27J EXITX C 6JD EXTENT!

?FC!O BS D92J BTCMD 0922 BTFAIL D91J BTMV ?C6SC EXTENT OSJ8 EXTINT OSF9 EXTINT2 F800 F80RG
0907 BTNOOOS C4J9 BTOK4 .1 C448 BTOK4. J C428 BTOK4 FBBJ F8VERS JON Cl40 FIXCH C80E FIXLC ?FA9B FIXSEV
C4JD BTOK4, 2 44 BUFFER 04 BUTMOOE C061 BUTNO 0077 FLAGJT 06B8 FLAGS ?DlEE FLUSH DA2 4 FMDBMAP
C062 BUTNl CJ8A COJ CJO 7 CJCOUT 1 ?CJOO C3ENTRY DA30 !'MOOK DAOF !'MOOS ?D9E2 FMNOSP DA09 FMPAS
CJ05 CJKEYIN FD62 CANCEL DAA7 CATTBL DODE CDCJIE D9F9 FMPMAP 1 D9FB FMPMAP2 F962 FMTl F9A6 FMT2
0148 CDCJiE2 ?CD7D CGO F9BA CHAR! F9B4 CHAR2 DA08 FMTDCJIE CD67 FNDCTL 2E FORMAT ?C648 FOGIT
0 5FE CHARBUF C2J4 CBARPTR Cl36 CHKMOU 24 CH F847 GBASCALC 27 GBASH 26 GBASL C8C9 GBBRK

OD CHARCR COCO CHK80 FBD9 CHKBELL CB4E CHKRT F856 GBCALC CJ21 GBOONE C8Cl GBNOC CJOD GBNOOVR
Cl30 CHOK FF7 A CHRSRCH FFCC CHRTBL DOAS CKDIG C8C7 GBNOTRCM CJ46 GDEAT CJJ4 GDNOLF CJ40 GDNXCJI
FC9E CLEOLZ FC46 CLEOPl CS04 CLICK CBEE CLRO CJ48 GOOK CJ9J GETALTl CJ98 GETALT2 CJ7C GETALT
CBFC CLRl CBFl CLR2 CC02 CLR3 CBC7 CLR40 C2F7 GETBUF C2FD GETBUF2 CJA6 GETCOOT CCA7 GETCURl
COOO CLR80COL COOC CLR80VID CBDA CLR80 COOE CLRALTCHAR CCAD GETCUR2 CCB7 GETCURJ CC9D GETCUR CCBF GETCURX

?COSS CLRANO ?COSA CLRANl ?COSC CLRAN2 ?C05E CLRANJ C322 GETDATA F8A5 GETFMT C9E7 GET!l FC80 GETJNDX
FEE9 CLRCH C2A5 CLRCOL FC9C CLREOL FCSD CLREOP 1 C986 GETINSTl C816 GETLC ?FD6F GETLNl ?FD6A GETLN
FC44 CLREOP2 FC42 CLREOP CBCF CLRRALF CD9B CLRIT FD67 GETLNZ FFA7 GETNUM C98F GETOP C2B2 GETSTAT2
CC99 CLRKBD CFCJ CLRKBD2 FCAO CLRLIN CC04 CLRPORT C2AC GETSTAT CB57 GETST C5B4 GETUP CEFA GETX

?CFFF CLRRCM F8J8 CLRSC2 ?F8J2 CLRSCR C481 CLRSTS ?CF06 GETY CFJ8 GKEY C82 6 GLCBNKl C829 GLCDCJiE
C491 CLRS F8JC CLRSCJ F8J6 CLRTOP 0112 CMD.C 0011 GLUIDX C5EE GOBASICIN CSA 7 GOBREAK CB2S GODDCJiE
DllB CHO.Cl DOFD CMD2FOUND 0225 CMD21IST D087 CMD2LOOP CB22 GODREG C96E GOERR C9EC GOERR2 06 GOOOF8
DOF4 CMD2L ?0068 CMD2NULL 0150 CMDB Dl2F CMDCR C278 GOREMOTE Cl9B GOSER3 C279 GOTERM FEB6 GO

BF CMDCUR Dl4C CMDD Dl39 CMDI Dl3A CMDl2 CBOD GODSP ?FD2 5 GOTKEY race GOTONE C2Cl GSTNOINT
DlJ9 CMDK 0218 CMDLJST 0091 CMDLOOP DlJ9 CMDL C2B4 GSTTST 2C R2 C4C8 BANGX C4ED BANGY '
Dl2F CHON Dl4B CMDP Dl8J CMDP2 0197 CMDQ 0489 BDOONE 0464 RDLOOP D45E BDPOS2 ?FCC9 HEADR
0188 CMDR Dl6C CMDS 0199 CMDT 0108 CMDT2 0452 HEXDEC2 0441 HEXTOOEC ?C057 HIRES ?F819 KLINE
DlEA CMDTJ D lF 5 CMDTABLE C69A CMDTBL DOA2 CMDZ2 F81C KLINE! CDA5 RCMECOR FC58 HOO CElB HOOKJTUP
0126 CMDZ DlOA CMFOUND Cl68 CMLOK Cl4B CMLOOP CE20 HOOKUP 0600 I.NJTMOOSE 08 IBBOFP OC JBCMD

42 CMMAND Cl8A CMNOINT ClAl CMNOVBL Cl8E CMNOY 02 IBDRVN ? 05 JBSECT 01 IBSLOr OD IBSTAT
Cl70 CMNTO Cl7S CMRGRT Cl82 CMROK DOEA CMSET 04 IBTRK F897 !EVEN 0200 INBUF 0084 INCMDl
ClSS CMXMOV C37F CO! 07J8 COL FCCA COLDSTART DOJC INCMDJ C705 INENT 0200 IN 0022 INCMD

JO COLOR FCE6 COM! FCF5 COM2 FCFB COM3 DOJ2 INCMD2 FF15 INDX CB05 INJTBL C740 INITMOUSE
DOBF COMJNJT DOB5 COMIN!Tl 0000 CCMo!AND ?DOll COfomND 1 FB2F !NIT ?FE8B INPORT FE8D INPRT F882 INSDSl

.b.

~ 37 Sll!BOL TABLE SORTED BY Sll!BOL 20-0CT-86 06 : 41 PAGE 147 37 Sll!BOL TABLE SORTED BY SYMBOL 20-0CT-86 06:41 PAGE 148
I\)

F88E INSDS2 F8DO INSTDSP CC12 INVERT 32 INVFLG CA06 NXTMN C9BD NXTOP FA59 OLDBRK 047B OLDCH
CClC nivx COOO IOADR 49 !08PH 48 !08PL 0679 OLDCUR 067A OLDCUR2 ?FF59 OLDRST D07F alELETTER

? 27 IOERR FEDE IOPRTl FEAB IOPRT2 FE98 IOPRT FEC2 OPRTO FEFE OPTBL OS78 OURCH OSF8 OURCV
D839 !ORTS C078 IOUDS8L C079 IOUEN8L 0009 IOUIDX C707 OUTENT ?FE9S OUTPORT FE97 OUTPRT ClDS PlERR
C058 IOU C82A IR021 C826 IR02 C834 IRQ3 C19E Pl!llJT ClAF PlREAD2 ClA8 PlREAD C9AD PlSKIP
C83E JRQ4 C848 !ROS C8SB IRQ6 C8SE IR07 ClBB PlSTATOS ClCE PlS'rRD ClCC PlSTllR ClB4 PlllRITE
C870 !ROS C88C !ROON! C88E IROON2 C8A4 IROONS C211 P2INIT C213 P2READ C217 P2S'rATOS cm P211RITE
C87F IRQDalE C804 IROENT ?03FE IRQLOC ?FA40 !RO C064 PADDLO 49 PADDR C680 PAJM'l!IL CF71 PASCALC
C896 IRQDN3 C89C IRQDN4 C882 IRQLCOK CF86 IR(1rBLE 0078 PASCA'l ?CF7F PASCLC2 CCOB PASINVERT CF3S PASREAD
FFFE IRQVECT C 663 ISMRKI C3C3 JMPDEST C32C JPINIT C850 PASSKIPl C23D P8FULL 47 PBLOCK cm P80K
C32F JPREAD C335 JPSTAT C332 JPllRITE CO!O KBDSTR8 4S P80FF F9S4 PCADJ2 F9S3 PCADJ F9S6 PCADJ3
F888 KBDllAIT COOO KBD FD18 KEYIN ?FD18 KEYINO F9SC PCADJ4 C48D PCllAD4 C489 PCOID4 C48F PCERR4

39 KSllH 38 KSllL CFEI LACR CFDE LADIG C482 PCGTP4 38 PCH CAB4 PCINC2 CAB6 PCINC3
CFE4 LAOONE COBB LCBANKl C083 LCBANK2 2F LENGTH 3A PCL D86A PCNTL D873 PCNTOK C880 PCllV

8A LFEED FC66 LF 0400 LINE! FE63 LIS'r2 CSF8 PCllVRST C494 PCalV4 47 PCOUNT C4BD PCPAJMS4
FESE LIST 2C I.l!llEM 00 LOCO 01 LOCl 11 PCREVNlll ?C48S PCSKP4 C4A8 PCSVZP4 CF19 PCTL
CFCB LOOKASC FD38 LOOKPICK COS6 LORES FE22 LT2 C918 PDOK C90D PDCll CCJD PICK! CC33 PICK2
FE20 LT C746 M •• OVEIRO ? 40 M. 40 08 M.CTL 9S PICK CCJF PICK3 CC4A PICK4 CCID PICKY

20 M.CTL2 10 M.CURSOR 08 M.GOXY 01 M.MOUSE CF41 PINIT CEBC PIORDY F800 PLOT F80E PLOT!
CF9A M. OVEIRQ 80 M.PASCAL 04 M. VMODE 44 MACSTAT CECO PNOTRDY C702 PNULL 0688 POllERUP 43 PPARM
DA3 9 MAKECAT CS8E MAKT8L 2E MASK 0202 MASK! FD92 PRAI F910 PRADRl F914 PRADR2 F926 PRADR3
D20D MASK2 OSF8 MAXH 04F8 MAXL 0770 MAXXH F92A PRADR4 F930 PRADRS D8E9 PRBAD2 D8EC PRBAD3
0670 MAXXL ?07FD MAXYH ?06FD MAXYL C700 MBASIC CSF3 PRBADZ CSEE PRBAD F94A PRBL2 ?F94C PRBL3
CSEA MBBAD DA77 !CO DABE PCADD DA8B PCADD2 F948 PRBLNK FDDA PRBYTE D889 PRDBLK CSE3 PROOllE
DA44 PCBOOT DA53 PCBYTE DAA6 !COONE DA7D PCFE D8DE PRDREAD ?F81E PREAD D83A PREAD2 • Z FB25 PREAD2
DA71 MCNTNM DA68 PCNTSZ C3DO MEMl C3D8 MEM2 ?FF2D PRERR CEF7 PRET ?FDE3 PRHEX FOES PRHEXZ
C3F3 MEM3 C3FS MEM4 C3FA MEMS C40S MEM6 C5C9 PRLAS'r C5D3 PRLOOP2 CSBS PRLOCl' CSAC PRMAIN
C4!2 MEM7 C42A MEMS C42C MEM9 C431 MEMA CSEC PRMAIN2 FBFS PRMNI F8F9 PRMN2 Cl66 PRNOll
C440 MEMB C44F MEie C4S6 MEMO C472 MEMERROR ?F94 l PRNTAX F8DB PRNT8L F8D4 PRNTOP ?F944 PRNTX
C46C MEMF OS78 MINH FE6C MINI C9C7 MINIERR F940 PRNTYX CHA PRNT FITF PROCAT C5D9 PROOD
0478 MINL OS7D MINXH 047D MINXL ?OSFD MINYH 8FOO PROFLAG ? 03 PROFORM 33 PRCJIPT ? 01 PROREAD

?04FD MINYL CFA9 MIRQLP crco MIROSTD ?C052 MIXCLR ? 00 PROSTAT ? 02 PRCl!R!T FD96 PRYX2 CF66 PSI
COS3 MIXSET 0001 lt!U!DX F9CO MNEML FAOO MNEllR CFS! PSETUP CFS4 PSETUP2 CF30 PSETX D880 PSTO
F88E MNNDXI F8C2 MNNDX2 F8C9 MNNDXJ FDAD MOD8CHK D8S3 PSTATO CEBl PSTATUS 47 PSTAT CEBE PSTERR

31 MODE FF69 MONZ FF6S MON ?FFS9 MONITOR D88A PS'!MOV ?C070 PTRIG 44 PUNJT C228 PUTBUF
067F MOUARM C063 MOU8UT C048 MOUCLR ?COSS MOUDSBL ?0438 PUTINBUF CEJB PVMODE C65A PllDONE 0488 PllDTH

?COS 9 MOUENBL 07FF MOUMODE ClOO MOUSEJNT CD9F MOUSOFF C640 PllLAST C62C PllLOOP C64A PllLOOP2 C663 PllMAJN2
CD99 MOUSCli 077F MOUSTAT 0478 MOUTF.MP C066 MOUXl C623 PllMAIN C6SO PllODD CEDD PllRl D8BD PllRBLK
OS7F MOUXH COi S MOUXJNT 047F MOUXL C067 HOUY! FAFD PllRCCli 03F4 PllREDUP CEF4 PllRET D83D PllRITE2
05FF MOUYH COl 7 MOUYINT 04FF MOUYL C972 HOVI CEC2 PllRITE CEFI PWRITERET FAA6 PllRUP FB12 PllRUP2

20 MOVARM C34 E !()VEAUX FE2C MOVE C361 MOVEC2M 0830 PZCMD 0834 PZCNT D836 PZCNT2 D4DA (1rBL
CFAO !()VEJRO C367 MOVELOOP C393 !()VERET C367 MOVESTRT CE4S QUIT CE44 OX D241 R.GETALTl D22A R.GETALT
C970 MOVINST 02 MOVMODE C 90 0 MP ADDLE 0179 MSLOOP 0246 R.GETA1T2 C484 RATS4 ?C060 RD40Sll C018 RD80COL
07F8 MSLOT D177 MSllAJT AA NAMEFLG CAFF NBRNCH COlF RD80VID C63F RDADR COl 6 RDA!TZP C6A8 RDATO
0300 NBUFl 28 NOERR FBBO NEllADVl FBAO NEllADV C6AA ROAT! C6BA RDAT2 C6BC RDAT3 C6CB RDAT4
FA47 NEllBRK FC99 NEICI FC90 NEICLEOLZ FC8D NEICLREOL C6A6 RDATA C003 RDCARDRAM ?FD3S RDCHAR C642 RDDHDR
FC73 NEICR CCCC NEllESC C803 NElllRO ?FA81 NEltlai C6S6 RDHDO C6SE RDHDl C667 RDHD2 C671 RDHD3
FC38 NEllOPI FCJS NEllOPS CAD! NEllPCL FC88 NEllVTABZ ?COID RDHIRES FDOC RDKEY con RDLCBNK2 C012 RDLCRAM
FC86 NEllVTAB C371 NEXTAI 03FB NM! CA38 NNBL C002 RDMAINRAM ?COlB RDMIX COIC RDPAGE2 C013 RDRAMRD
0020 NOCMD2 DO!F NOOID C71A NOERROR ?FD4 S NOESCl C014 RDRAMNRT C68S RDSECl C687 RDSEC2 C68F RDSEC3
FD4A NOESC2 FD4 4 NOESCAPE C2S4 NOESC FAA3 NOFIX C683 RDSECT FAE4 RDSPl COlA RDTEXT COl 9 RDVBLHAR
CSAA NOPATRN C371 NOREAD 0166 NOSHIFT D6CC NOSTAT2 ?FEFD READ FAD7 REGDSP FEBF REGZ C961 REL!
C36A NOT! Cl82 NOTACIA FDSF NOTCRl FD4D NOTCR C96B REL2 ?F938 RELADR C9S5 REL FA62 RESET
CC6B NOTINV2 CCS3 NOTINV ?CC68 NOTINVl FEA 7 NOTPRTO FABD RESET.X C3S4 RESETLC FF3F RESTORE ?FF44 RESTRl
FB94 NOllAIT C82A NTBL 0388 NUMBANKS 077E NUMBER C641 RETRY! C6S7 RETRY 0101 REVNUM FADA RGDSPl
0016 NUMOPS FCBA NXTAl FC84 NXTA4 FF98 NXTBAS FB02 RGDSP2 C866 RMESS 20 RMNEM 4F RNDH
FF90 NXTBIT FFA2 NXTBS2 C9F8 NXTCH FD7 S NXTCHAR 4E RNDL C028 ROMBANK COB! RCJ!IN C37B ROOK
FFAD NXTCHR ?F8SF NXTCOL 0778 NXTCUR FF73 NXTl'!M 0478 RCJ!STATE C473 RSLOOP4 C8S3 RSIUBL CF94 RTBL

37 S»!BOL TABLE SORTED BY S»!BOL 20-CX:T-86 06:41 PAGE 149 37 S»!llOL TABLE SORTED BY S»!BOL 20-0CT-86 06:41 PAGE 150

F80C RTMASK F87F RTMSKZ 20 RTNB ?CAD5 RTNJMP 0800 TBBDF ?FBD9 TITLE Cl5C TOOFAR FFBE TOSDB
CAD9 RTNJMP2 2C RTNL F831 RTSl FBEF RTS2B FE6F TRACE 06FF TRKEY 067C TRSER D9AO TSLOOP
F961 RTS2 FB2E RTS2D FBFC RTS3 ?FDCS RTS4C D9CB TSNORAM C3C6 TS'n!EM D4C2 TS'n!EM2 0497 TSTZPG

?FC34 RTS4 FCX:8 RTS4B FE! 7 RTS5 ?FCB3 RTS6 osrc '!WKEY DS7C '!WSER CDSD TXTCLR CDS4 TXTPAGEl
BODO RllTS ?FF4C SAVI FF4A SAVE BITB SCNTL COSS TXTPAGE2 CDS! TXTSET DSFA TYPBED DO UCSPltCE
BITA SCC11D CE58 SCRl CE5E SCR2 CE66 SCR3 CC93 OD2 43 UNIT CC70 UPDATE C399 UPSBIFTO
CE79 SCR4 CE82 SCRS CE8B SCR6 CE96 SCR7 C39B UPSBIFT FClA UP FECA USR 03F8 USRADR

?CE8D SCR8 CEAD SCR9 OSB8 SCREEN CBB9 SCRL3 ClDB UTSMSG 20 V2 C070 VBLCLR COl 9 VBL!liT
CB9B SCRLEVEN CBA2 SCRLFT CB6D SCRLIN CBBD SCRLalD DC VBI.MOOE FE36 VERIFY 067B VFltCTV FESS VFYOK
F879 SCRN2 ?F871 SCRN CE80 SCRN48 CE53 SCRN84 CE31 VllJ!OOE FCD4 VIDOUTl FBFD VIDOUT FB78 VIDllAIT
C830 SCROLLD!i C838 SCROLLIT C835 SCROLLUP ?FC70 SCROLL F828 VLINE F826 VLINEZ 04FB VMWE FC22 VTAB
BITS SDATA C61F SEEKZERO C27F SERIN enc SERISOUT FB59 VTAB23 FCJD VTAB40 FC24 VTABZ FCA8 liAIT
03B8 SERllOOE Cl8F SEROUT2 CIBA SEROUT C24F SEROUT3 FCA9 llAIT2 FCAA llAIT3 FEEB lllTBCB COOS ll!ND
C2SS SEROUT4 Cll 7 SERPORT Cl89 SERRTS ClDD SERSim CDEO l!Nl COED lllN2 CDF2 ll!N3 Cllll2 ll!N40
Cl44 SERVID COCO SET40 CDBE SET80 COOl SET8CCOL CE02 IIN4 CE18 llINS CDD4 IIN80 23 llNDB'IM
CDOD SET80VID coor SETALTCBAR C009 SETALTZP ?CD5 9 SETANO 20 llNDLFT CEOA llNDREST 22 llNDTOP 21 llNDllDTB

?CDSB SETANl ?C05D SETANZ C05F SETAN3 Cl82 SETCB COOS llRCARDRAM ?FECD llRITE C004 liRMAINRAM CD8D X.CUR .OFF
?F864 SETCOL FEEE SETCURl FEEC SETCUR CB67 SETDBAS CD89 X.CUR.Cll D6A3 X.ICLAMP 0668 X.ICLEAR 0651 X.MBCJ!E
?FB40 SETGR CE23 SETBOOKS FE86 SETIFLG FEBO SETINV 0679 X.MREAD D6C2 X.MTSTINT 0621 X.SE'!MOU CDB7 X.SI
?0638 SETICXJ CDAl SETIT FE89 SETKBD FElD SE'IMDZ COBO X.SO C3AS X.UPSBIFT FDB3 XAM FDA3 XAM8
FE18 SE'n!OOE FE84 SETNORM ?FAA9 SETPG3 FAAB SETPLP FDC6 XAMPM FEBO XBASIC C8E6 XBITKBD C8F9 XBKBl

?FB6F SETPllRC C36D SETRll! CB88 SETSRC COOS SETSTDZP C8FB XBKB2 CAA6 XBRK 06FB XCOORD 0843 XDIAG
0 !AD SETTERM ?F83 9 SETTXT C21C SETUP CB83 SETUP2 0830 XDIAGZ 083.2 XDLOOP C3BO XFERZP C397 XFER
FE93 SETVIO C82A SETV FB4B SETllNO CElA SETX CJCO XFERAZP C3AA XFERCZM CltC9 XJMPAT CltC8 XJMP
CBC! SEVl CC4C SHa!CUR C5C4 SBa!INST C28E SIDATA CAE3 XJMP ATX CltCO XJSR CAEE XJX!ICX: cscr XMBASIC
0642 SILOOP C2AC SIN<MJD C20S SIN 0649 SINOCB CSDC XMBOUT 0674 XMCOOIE C734 XMCLNIP C72E XMCLEAR
C280 S!NOKBO re SIZEFLG 0478 SIZETEMP FE SKPFE ClAD XMDOllE 06S7 XMB2 06SS XMBLOOP C73A XllJKJIE
CBA8 SKPLFT CBB4 SKPRT 0778 SL .OEVNO 0903 SL.FORMAT D69C XMRD2 C728 XMREAD C722 XMTST!liT C804 XNOKEY
0678 SL.LCSTATE 07F8 SL .MSLar CS80 SL.PREAD 0874 SL ,PSTATUS C205 XNOSBUF 93 xorr 91 XON CA98 XQl

. C5F7 SL .PllRITE 03B8 SL.SCRNl ?0438 SL.SCRN2 ?04B8 SL.SCRN3 CA9A XQ2 CA64 XQINIT CA50 XQNOBTO CA90 XQNTBRA
?0538 SL.SCRN4 ?DSB8 SL .SCRNS ?0638 SL.SCRN6 06B8 SL.SCRN7 3C XOT CA4A XOllAIT 0690 XRBUT 0697 XRBUT2
?0738 SL.SCRN8 C74C SLBOOT ? 04 SLar 2B sLarz C2F4 XRDIXllE C80S XRDKBD C2E9 XRDllOBUF C2C9 XRDSER2

Cl SLTDMY C7S2 SLXEO C86C SMESS 06SD SMINVALID C2C3 XROSER 08BE 'XREAD2 OODB XREADY D89E XREAD
cm SODONE 03F2 SOFTEV C28D SOOK C25E SORDY 46 XREG C8CC XRKBDl 0607 XRLOOP CAAC XRTI
C2AB SORTS C286 sarsT C207 SOOT · C030 SPKR CABD XRTS ?D8A3 XRIOll C71C XSETllXI 0636 xsorr

49 SPliT BIT9 SSTAT 0860 STOLP CF29 STARTXY 084 6 XSTATUS 0578 XVAL D8A2 XllRITE ?ClOD XXX
C667 STATTBL 48 STATUS D86E STBAD DlB9 STCLR 0008 YB! 47 YREG 35 YSAVl 34 YSAV
FE71 STEPZ CA43 STEP FB6S STITLE FBFD STORADV 05F8 YVAL FD ZERS FFC7 ZllWE D49B ZPl
C3B8 STORCH C3DB STORE! C3EE STORE2 ?C3F2 STORE3 D4A4 ZPZ D4B7 ZP3 D4BC ZPERROR C464 ZSAVE4
C3Cl STORE C3F9 STORES ?FEDB STOR ?C3F7 STORE4 DA ZUSED 04CE ZZLOOP D4C5 ZZNM CE4D ZZOQIT
C3B3 STORY DlF4 STRTS DlCO STSET DlC9 STllASOK
FFE3 SUBTBL C56B SUCZ C87S SUCX:ESS C22F SUDODEF
C245 SUDONE C232 SUNODEF C240 SUOUT C704 Sil. INl'n!OUSE
C6EE SI .MCLN!P C6E3 SN .MCLEAR C6F9 Sll .MBOME C608 Sil .MREAD
C6CD Sll .MTSTINT C6C2 Sll.SETllOU ?C7C7 SWATALK C7AF SllAUX
C79D SllBASICIN C4EF SllCHTST C7A9 SllCMD C806 SllCM03
C537 SllERR C7DF SllGETB C7D3 SllGETST C78E SlllR02
C7BB SllMINT ?C797 SllPCNV C7D9 SllREAD ?C788 SllRESET
C788 SllRESET2 ?C780 SllRTI2 C780 SllRTI C784 SllRTSZ
C784 SllRTS C78 7 SllRTSOP C7CD SllSER3 C6B4 SllSL.BT
C797 SllSTBX2 cm SllSTHKJ C7A3 SWST'l!I cm SllST'l!IJ
C82F SllTBLO C841 SllTBLl C4Fl SllTSTl C4F3 SllTSTZ
C4FE SllTST3 C508 SllTST4 C51A SllTST5 C521 SllTST6
C533 SllTST7 C7B5 SllXFER ?C7EB SllXFGO C7EB SllXFG02
C7E5 SllZZ?tl c79o s11zzar2 c1r6 s11zzar3 ?FB5B TABV
Cl5E TAB C592 TBLLOOP C5AD TBLLOOPZ 06F8 TEMP
04F8 TEMPI 0578 TEMPA 4A TEMPPTR 05F8 TEMPY
C27C TERM! OF TERMCUR C25E TESTKBD 0995 TESTSIZE

b
.......
c..>

.t>. J7 SYMBOL TABLE SORTED BY ADDRESS 20-0CT-86 06:41 PAGE 151 J7 SYMBOL TABLE SORTED BY ADDRESS 20-0CT-86 06:41 PAGE 152

.t>.
00 LOCO ? 00 BOOTBLK ? 00 PROSTAT 00 UCSPACE COCO CLRBOCOL COCO IOADR COCO KBD COO I SETB OCOL
01 BAOCMD 01 LOCI 01 H.l«lUSE ? 01 PROREAD C002 RDHAINRAH COOJ RDCARDRAH COO 4 llRHAINRAH COO 5 llRCARDRAH
01 JBSLar 000 I !t!UIDX ? 02 BOOTJHP 02 IBDRVN C008 SETSTDZP C009 SETALTZP COOC CLRBOV!D COOD SETBOV!D
02 PRCJIRJT 02 l«lVMOOE ? OJ PROFORH 04 IBTRK COOE CLRALTCHAR COOF SETALTCHAR COIO KBDSTRB COil RDLCBNK2
04 BUTHOOE 04 BADPCNT ? 04 SLar 04 H. VMOOE C012 RDLCRAH COIJ RDRAHRD C014 RDRAMllRT C015 KXJXJNT
05 JBSECT 06 GOODFB 08 H.CTL 08 H.GOXY C016 RDALTZP con KXJYINT COIB RDBOCOL C019 VBLINT

0008 YB! 08 IBBUFP 0009 JOOIDX OA ZUSED C0! 9 RDVBLBAR COIA RDTEXT ?COIB RDMIX COIC RDPAGE2
OC VBlllOOE OC !BOID OD !BSTAT OD CHARCR ?COID RDBJRES COIE ALTCHARSET COIF RDBOVID C028 RCl!BANK
10 H.CURSOR 11 BADUNJT OOll GLUIDX 11 PCREVNUH COJO SPKR C04 8 l«lUCLR C050 TXTCLR C051 TXTSET

0013 ESCNUH 14 CTLNUH 0016 NUl«lPS 20 iiNDLFT ?C052 HIXCLR C05J MIXSET C054 TXTPAGEI C055 TXTPAGE2
20 M.CTL2 20 l«lvm! 21 BAOCTL 21 iiNDWDTH C056 LORES ?C057 BIRES ?C058 l«lUDSBL ?C058 CLRANO
22 iiNDTOP 2J iiNDBTH 24 CB 25 CV C058 IOU ?C059 l«lUENBL ?C059 SETANO ?C05A CLRANI
26 GBASL 27 GBASB ? 27 IOERR 28 NOERR ?C05B SETANI ?C05C CLRAN2 ?C05D SETAN2 ?COSE CLRANJ
28 BASL 29 BASH 2A BAS2L 2B BAS28 C05F SETANJ ?C060 RD40Sll C061 BUTNO C062 BUTNI
2B sLarz 2C H2 002C DOSCAT 2C lllNEH C06J KXJBUT C064 PADDLO C066 l«lUXI C067 l«lUYI
2C RTNL 20 BADBLK 20 RM!IEM 20 V2 C070 VBLCLR ?C070 PTRIG C078 IOUDSBL C079 IOOENBL
20 RTNB 2E MASK 2E FORMAT 2F LENGTH COB! ROMJN COBJ LCBANK2 COBB LCBANKI CIOO SERSLOT
JO COLOR JI l«lDE J2 INVFLG JJ PROMPT ?CIOO XXX CIOO l«lUSEINT Clll ENTRI cm SERPORT
J4 YSAV J5 YSAVI J6 CSllL J7 CSllH Cll8 CVNOVBL CllC SERISOUT Cl24 CVl«lVED Cl2B CVBUT
JB KSllL J9 KSllB JA PCL JB PCB C!JO CHOK CIJ6 CBKHOO Cl40 FIXCB Cl42 DEVN02
JC AIL JC XQT JC Boor'!HP JD AIB Cl44 SERVID Cl4A PRNT Cl4B O!LOOP Cl55 O!XHOV
JE A2L JF A28 40 A3L ? 40 H.40 C!5C TOOFAR C!5E TAB C!66 PR!Klll Cl68 O!LOK
41 A38 42 O!HAND 42 A4L 4J UNIT Cl70 O!NTO cm O!RGBT Cl82 SETCB Cl82 O!ROK
4J PPARH 4J A48 44 A5L 44 HACSTAT Cl86 DONE Cl89 SERRTS CIBA SEROOT CIBA O!NOINT
44 BUFFER 44 PUNIT 45 A5H 45 PBUFF CIBE OOOY CIBF SEROOT2 Cl9B GOSER3 Cl9E PIINIT
45 ACC 46 BLOCK 46 XREG 47 YREG CIA! OOOVBL CIAB PIREAD CIAO XHDONE CIAF PIREAD2
47 PSTAT 47 PCOONT 47 PBLOCK 48 STATUS CIB2 NGrACIA CIBJ ACDONE CIB4 ACIAINT CIB4 PlllRITE
48 IOBPL 49 PADDR 49 !08PB 49 SPNT C !BA AC IAINT2 CIBB PISTATUS CIC2 ACJATST C!CC PISTllR
4A TEMPPTR 4E RNDL 4F RNDB 4F BOOTDEV CICE PISTRD CID5 PIERR C!D6 AITST2 CIDB UTSHSG

0078 PASCAT 80 DOSERR 80 H.PASCAL BA LFEED CIDC AIPORT2 C200 CCJ!SLOT C200 AINOFLSB C205 SIN
91 XON 9J XOIT 95 PICK 9B ESC C207 SOOT C208 AIEATIT C20A AIPASS C2ll P21NIT
AA NAHEFLG BF O!DCUR Cl SLTDHY OF TERHCUR C21J P2READ C2!5 P2llRJTE C217 P2STATUS C219 ENTR
re SJZEFLG FD ZERS FE SKPFE 0101 REVNUH C21C SETUP C228 PUTBUF C22B DEVNO C22F SUDODEF

0200 JN 0200 IN8UF 0214 8INL 0215 BINB C2J2 SUNODEF C2J4 CBARPTR C2J5 P80K C2JD P8FULL
OJOO N8UFI OJ56 DNI8L OJ88 SERHOOE OJ88 NUHBANKS C240 SUOOT C245 SUDONE C24C CCJ!OUT C24C AIAUX
OJ88 SL. SCRNI OJFO BRKV OJF2 SOFTEV OJF4 PllREDUP C24D AIEAT C24E ACIADONE C24F SEROUTJ C24F CO!t!PORT

?OJF5 AMPERV OJFB USRADR OJFB NH! ?OJFE JRQLOC C254 NOESC C255 SEROUT4 C25E TESTKBD C25E SORDY
0400 LINE! 04J8 ASTAT ?04J8 SL .SCRN2 0478 ROMSTATE C27J EXITX C275 EXIT! C2 7 8 GOREl«lTE C279 GOTERH
0478 SJZETOO 0478 l«lUTEHP 0478 MINL 047B OLDCH C27C TERM! C27F SERIN C280 SINOKBD c2s6 sarsT
0470 HINXL 047F l«lUXL 04B8 PllDTH ?0488 SL.SCRNJ C28D SOOK C28E SIDATA C2A5 CLRCOL C2AA SOOONE
04F8 ERROR 04F8 HAXL 04F8 TEMPI 04FB VMOOE C2AB SORTS C2AC SINOMOD C2AC GETSTAT C2B2 GETSTAT2
04FC ACJABUF ?04FD MINYL 04FF HOUYL 05J8 EXTINT C2B4 GSTTST C2B6 DEFAULT C2BC DEFLOOP C2Cl GSTNOINT

?05J8 SL.SCRN4 0578 MINH 0578 TEMPA 0578 XVAL C2CJ XRDSER C2C7 DEITF C2C9 XRDSER2 C205 XNOSBUF
057B OORCH 057C TWSER 0570 MINXH 057F HOUXB C2DF DEFClll C2E9 XRDNOBUF C2EA DEFIDX C2F4 XRDDCllE
05B8 SCREEN ?0588 SL ,SCRN5 05F8 MAXB 05F8 TEMPY C2F7 GETBUF C2FD GETBUF2 ?CJOO CJENTRY CJOS CJKEYIN
05F8 YVAL OSF9 EXTINT2 05FA TYPHED OSFB OORCV CJ07 CJCOUTI CJOD GBNOOVR CJ17 BASICINIT CJ21 GBDONE
05FC TWKEY ?05FD MINYH 05FE CHARBUF 05FF MOUYB CJ22 GETDATA CJ24 BASICENT ?CJ26 BPRINT CJ29 BINPUT
06J8 ESCHAR ?06J8 SL.SCRN6 0678 SL .LCSTATE 0679 OLDCUR CJ2C JPINIT CJ2F JPREAD CJJ2 JPllRITE CJJ4 GDNOLF
0 67 A OLDCUR2 067B VFACTV 067C TRSER 0670 HAXXL CJJS JPSTAT CJJ8 COPYROM CJ40 GONXCll CJ46 GDEAT
067F HOUARH 0688 FLAGS 06B8 POllERUP 06B8 SL.SCRN7 CJ48 GOOK CJ48 COPYROM2 CJ4E HOVEAUX CJS4 RESETLC
06F8 TEMP 06F8 XCOORD ?06FD HAXYL 06FF TRKEY CJ60 SETRlll CJ61 HOVEC2H CJ67 HOVESTRT CJ67 l«lVELOOP
0738 COL ?0738 SL ,SCRNB 0778 SL .DEVNO 077B NXTCUR CJ6A NOT! CJ71 NEXTAI CJ71 NOREAD CJ7B ROMOK
077D HAXXH 077E NUMBER 077F MOUSTAT 07F8 MSLOT CJ7C GETALT CJ7F CO! CJ8A COJ CJ9J HOVERET
07F8 SL .MSLar 07FB CURSOR ?07FD HAXYH 07FF !fJUHOOE CJ9J GETALTI CJ97 XFER CJ98 GETALT2 CJ99 UPSHIFTO
0800 TBBUF 0800 BoorBuF lITF DJAGSTART 2000 DIAGDEST CJ9B UPSBIFT CJA5 X. UP SB !FT CJA6 GETCOOT CJAA XFERC2M
9DIE DOSJNJT A6CJ DOSSYN BDOO RllTS BFOO PROFLAG CJBO XFERZP CJBJ STORY CJ88 STORCH CJCO XFERAZP
BITS ADDRL errs SDATA BIT9 SSTAT BIT9 ADDRH CJCI STORE CJCJ JHPDEST CJC6 TSTHEH CJDO HEH!
BITA ADDRB BFFA SClllD BFF8 SCNTL BITB DATA CJD8 HEH2 CJDB STORE! CJEE STORE2 ?CJF2 STORE3

37 SYMBOL TABLE SORTED BY ADDRESS 20-0CT-86 06:41 PAGE 1S3 37 SYMBOL TABLE SORTED BY ADDRESS 20-0CT-86 06:41 PAGE 1S4

C3F3 MEM3 C3FS HEM4 ?C3F7 STORE4 C3F9 STORES C93C l!MOD3 C94A l!MOOS C94F l!M006 C9SS REL

C3FA MEMS C40S MEM6 C40E BOOT4 C412 MEM7 C961 RELl C96B REL2 C96E GOERR C970 l«JVINST

C428 BTOK4 C42A MEMS C42C HEM9 C431 HEMA C972 l«lVl ?C983 D!SLIN C986 GETINSTl C98F GETOP

C439 BTOK4.1 C43D BTOK4. 2 C440 MEMB C448 BTOK4.3 C9AD PlSKIP C9BD NXTOP C9C7 MINIERR C9C9 ERR2

C44E ENTRY4 C44F MEie C4S4 ENT4 C4S6 MEMO ?C9CB ERR3 C9D8 DOINST C9E7 GET!l C9EC GOERR2

C462 DOS24 C464 ZSAVE4 C46C MEMF C46E DOIT4 C9F4 DOLIN C9F8 NXTCH CA06 NX"OOI CA29 l!M007

C471 DONE4 C472 MEMERROR C473 BADBITS C473 RSLOOP4 CA38 l!M008 CA3B NNBL CA43 STEP CMA XOllAIT

C47D BB!TSl C481 CLRSTS C484 RATS4 C489 PCCMD4 CASO XONOBTO CA64 XOINIT CA90 XONTBRA CA98 XOl

C48D PCBAD4 C48F PCERR4 C491 CLRS C494 PCOOV4 CA9A X02 CAA6 XBRK CAAC XRTI CABO XRTS

C4A8 PCSVZP4 C4A9 BAOOIN C4BO BADPRIM C482 PCGTP4 CAB4 PCINC2 CAB6 PCINC3 CACO XJSR CAC8 XJMP

?C4BS PCSKP4 C488 BBITS2 C4BD PCPARMS4 C4C8 HANGX CAC9 XJMPAT CAD! NEiiPCL ?CADS RTNJMP CAD9 RTNJMP2

C4CA BADSliTCH C4CE BSliTCHl C4Dl DOSENT4 C4D8 BSliTCH2 CAE3 XJMPATX CAEE XJXNOC CAFl BRANCB CAFF NBRNCH

C4EO DOSSLT4 C4E4 BSliTCH2A C4E7 BSliTCH3 C4E9 DOSOK4 CBOS INITBL CBOD GODSP CB22 GODREG CB2S GODDOOE

C4ED HANGY C4EF SllCHTST C4Fl SWTSTl C4F3 SWTST2 CB30 SCROLLDN CB3 S SCROLL UP CB38 SCROLLIT CB4E CHKRT

C4FE SWTST3 CS04 CLICK CSOB SWTST4 CSlA SWTSTS CBS7 GETST CB67 SETDBAS CB6D SCRLIN CB83 SETUP2

CS21 SWTST6 CS33 SWTST7 CS37 SllERR CS3F BIGLOOP CB88 SETSRC CB9B SCRLEVEN CBA2 SCRLrr CBA8 SKPLrr

?CS43 BLP2 CS47 BLP3 CSS6 BLP4 CS66 DQUIT CBBO SCRLOOD CBB4 SKPRT CBB9 SCRL3 CBCl SEVl

CS68 SOC2 CSBO ATALK CS80 SL.PREAD CS8E MAKTBL CBC2 DOCLR CBC7 CLR40 CBCF CLRHALF CBDA CLR80

CS92 TBLLOOP CSAO TBLLOOP2 CSAA NOPATRN CSAC PRMAIN CBEE CLRO CBFl CLR2 CBFC CLRl CC02 CLR3

CSB4 GETUP CSBS PRLOOP CSBB APPLE2C C5C4 SHCJIINST CCO 4 CL RP ORT CCOB PASINVERT CC12 INVERT CCIC INVX

C5C9 PRLAST CSCF XMBASIC CSD3 PRLOCP2 C5D9 PROOD CClD PICKY CC33 PICK2 CC3D PICKl CC3F PICK3

CSDC XMBOUT CSE3 PRDONE CSEA MBBAD CSEC PRMAIN2 CC4A PICK4 CC4C SHCJICUR CCS3 NOT!NV ?CC68 NOT!NVl

CSEE PRBAD CSEE GOBASIC!N CSF3 PRBADZ CSFS BOOTFAIL CC6B NOTINV2 CC70 UPDATE CC93 UD2 CC99 CLRKBD

CSF7 SL.PWRITE CSF8 PCNVRST ?C60B DRV2ENT C61F SEEKZERO CC9D GETCUR CCA7 GETCURl CCAD GETCUR2 CCB7 GETCUR3

C623 Plil!AIN C62C PliLOO!' C63D EXTENT! C63F RDADR CCBF GETCURX COCO ESC3 CCCC NEWESC CCD7 ESCO

C640 Plil.AST C641 RETRYl C642 RDDHDR ?C648 FUGIT ?CCE3 ESCI CCES ESC2 CCED ESCRDKEY CCF8 ESCTAB

C64A PllLOOP2 C6SO PllOOD C656 RDHDO C6S7 RETRY CDOC ESCCHAR CDlS CTLTAB CD2A CTLADR CDS4 CTLCHARO

C6SA PllDONE ?C6SC EXTENT C6SE RDHDI C663 PWMAIN2 CDS8 CTLCHAR CD67 FNDCTL CD6F CTLDC!iE CD71 CTLGO

C663 ISMRKl C667 RDHD2 C 667 STATTBL C671 RDHD3 ?CD7D CGO CD80 CTLGOl CD89 X.CUR.00 CD8D X.CUR.OFF

C680 PARMTBL C683 RDSECT C685 RDSECl C687 RDSEC2 CD91 CTLOIT CD9S CTLON CD99 l«JUSC!i CD9B CLRIT

C68F RDSEC3 C69A CMDTBL C6A2 BADRDI C6A6 RDATA CD9F !IJUSOFF CDAl SETIT CDAS HOOCUR COBO X.SO

C6A8 RDATO C6AA RDATl C684 SllSL.BT C6BA RDAT2 CDB7 X.SI CDBE SET80 COCO SET40 COCO CHK80

C6BC RDAT3 C6C2 Sll .SETl«JU C6CB RDAT4 C6CD Sll.MTSTINT CDD2 ll!N40 CDD4 ll!N80 CODS NINO COED ll!Nl

C 603 BAD READ C6D7 DENIBL C6D8 SN .MREAD C609 DEN!Bl COED N!N2 CDF2 ll!N3 CE02 N!N4 CEOA WNDREST

C6E3 SN .MCLEAR C6EE Sll .MCLl!MP C6F9 Sll .MHOME C700 MBASIC CE18 ll!NS CElA SETX CElB HOOKITOP CE20 HOOKUP

C702 PNULL C704 Sll. INITMOOSE C705 INENT C707 OOTENT CE23 SETHOOKS CE31 VIDMOOE CE3B PVl«JDE CE44 OX

C71A NOERROR C71C XSETl«JU C722 XMTSTINT C728 XMREAD CE4S QUIT CE4D ZZQUIT CES3 SCRN84 CESB SCRl

C72E XMCLEAR C734 XMCLl!MP C73A XMHOME C740 IN!Tl«JUSE CESE SCR2 CE66 SCR3 CE79 SCR4 CE80 SCRN48

C746 M • • OVEIRO C74C SLBOOT C7S2 SLXEO C780 SllRTI CE82 SCRS CE8B SCR6 ?CE8D SCR8 CE96 SCR7

?C780 SllRTl2 C784 SllRTS C784 SllRTS2 C787 SWRTSOP CEAD SCR9 CEBl PSTATUS CEBC PIORDY CEBE PSTERR

?C788 SWRESET C788 SllRESET2 C78E Sll!R02 C797 SllSTBK2 CECO PNOlRDY CEC2 PllRITE CEDD PllRl CEFl PllRITERET

?C797 SWPCNV C79D SWBASICIN C79D SllZZ(11"2 C7A3 SllSTTM CEF4 PNRET CEF7 PRET CEFA GETX ?CF06 GETY

C7A9 SWCMD C7AF SWAUX C785 SWXFER C7BB SllMINT CF19 PCTL CF2 9 STARTXY CF30 PSETX CF3S PASREAD

C7Cl BANGER ?C7C7 SWATALK C7CD SllSER3 C7D3 SllGETST CF38 GKEY CF41 PINIT CFS! PSETUP CFS4 PSETUP2

C7D9 SliREAD C7DF SWGETB C7E5 SllZZNM C7EB SllXFG02 CF66 PSl CF71 PASCALC ?CF7F PASCLC2 CF86 !RQl"BLE

?C7EB SllXFGO C7Fl SWSTTM3 C7Fl SllSTBK3 C7F6 SllZZ(11"3 CFBC CO!ffBL CF94 RTBL CF9A M.OVEIRO CFAO l«JVEIRO

C803 NEli!RO C804 IROENT C806 SllCMD3 C80E FIXLC CFA9 MIROLP CFCO MIROSTD CFC3 CLRKBD2 CFCB LOCKASC

C816 GETLC C826 GLCBNKl C826 IR02 C829 GLCDOOE CFDE LADIG CFEl LACR CFE4 LAOONE ?CITF CLRRCJI

C82A NTBL C82A SETV C82A IR021 C82F SllTBLO 0000 CO!t!AND ?0011 CO!IWIDl DO!F NOCMD 0020 NOCMD2

C834 IR03 C83E IRQ4 C841 SWTBLl C848 !ROS 0022 INCMD 0032 !NCMD2 D03C INCMD3 ?0068 CMD2NULL

C8SO PASSK!Pl C853 RSliTBL C85B IRQ6 C8SE IR07 0077 FLAGIT D07F OOELETTER 0084 !NCMDl D087 CMD2LOCP

C866 RMESS C86C SMESS C870 !ROS C875 SUCCESS D08F BACKTOl DO 91 CMDLOOP DOA2 CMDZ2 DOAS CKDIG

C87F IRQDOOE CBBO PCNV C882 IROLCOK C88C IRQDNl DOAD DIGLOOP DOBS ro!IN!Tl DOBF ro!INIT DOCS ENABLE

C88E IRQDN2 C896 IRQDN3 C89C IRQDN4 C8A4 IRQDNS DOC7 DISABLE DODD XREADY DODE CDOOE ODEA CMSET

C8A 7 GOBREAK CBCl GBNOC C8C7 GBNOTRCJI C8C9 GBBRK DOF4 CMD2L DOFD CMD2FOUND DlOA CMFOUND 0112 CMD.C

C8CC XRKBDl C8D4 XNOKEY C8DS XRDKBD C8E6 XBITKBD 0118 CHO.Cl 0126 CMDZ D12F CMDN Dl2F CMOCR

C8F9 XBKBl C8FB XBK82 C900 MPADDLE C90D PDOO Dl39 CMDK 0139 CMDI 0139 CMDL Dl3A CMDI2

C918 PDOK C91D l!MOOl C93A AMOD2 C93B l!M004 0148 CDOOE2 0148 CMDP Dl4C CMDD DlSO CMDB

.c..
-..J
(J'1

.c. 37 SYMBOL TABLE SORTED BY ADDRESS 20-0C'l-86 06:41 PAGE lSS 37 S»!BOL TABLE SORTED BY ADDRESS 20-0CT-86 06 :41 PAGE 1S6
0-

0166 NOSBIFT Dl6C OIDS 0177 MSllAIT 0179 MSLOOP FBD9 CHKBELL ?FBDD BELLl FBE4 BELL2 FBEF RTS2B
0183 CMDP2 0188 OIDR 0197 CMDQ 0199 CMDT FBFO STORADV ?FBF4 ADVANCE FBF8 ADV2 FBFC RTS3
DlAO SETTERM DlB9 STCLR DlCO STSET DlC9 STllASOK FBFD VIDOUT FC04 VJDOUTl ?FClO BS FClA UP
0108 CMDT2 DIEA CMDT3 ?DlEE FLUSH DlF4 STRTS FC22 vrAB FC24 vrABZ FC30 vrAB40 ?FC34 RTS4
DlFS CMDTABLE 0202 MASKl 0200 MASK2 0218 CMDLIST FC3S NEl«ilPS FC38 NElllP 1 FC42 CLREOP FC44 CLREOP 2
D22S OID2LIST D22A R.GETALT 0241 R.GETALTl 0246 R.GETALT2 FC46 CLEOPl FCS8 BOO: FCSD CLREOPl FC62 CR
0247 DEFIDX2 0400 BASJCJN ?D43B PUTINBUF 0441 BEXTOOEC FC66 LF ?FC70 SCROLL FC73 NEl«:R FC80 GETINDX
D4S2 BEXDEC2 D4SE BDPOS2 0464 BDLOOP 0469 DVlOLOOP FC8S CRRTS FC86 NEllVTAB FC88 NEllVTABZ FC8D NEl«:LREOL
0470 DV!OLT 0489 BDDONE D48E DJAGS 0497 TSTZPG FC90 NEl«:LEOL Z FC99 MEI«:! FC9C CLREOL FC9E CLEOLZ
D49B ZPl D4A4 ZP2 D4B7 ZP3 D4BC ZPERROR FCAO CLRLJN FCA4 CTLDO FCA8 llAIT FCA9 llAIT2
D4C2 TSTllEM2 D4CS ZZNM D4CE ZZLOOP D4DA (lrBL FCAA llAJT3 ?FCB3 RTS6 FCB4 NXTA4 FCBA IXTAl
0600 I.MITllOOSE 0607 XRLOOP 0621 X.SETllOO 0636 XSOFF ra:8 RTS4B ?FCC9 BEADR FCCA COLDSTART FCDO BLAST

?0638 SETIOO 0642 SILOOP 0649 SJNOCB D6SO SMJNVALID FCE6 CCJll FCFS CCJ!2 FCFB CCIC FDOC RDKEY
D6Sl X.HBCJ!E D6SS XMBLCOP D6S7 XMH2 0668 X.ICLEAR ?FD! 8 KEYlllO FDlB KEYIM FD20 DOllXTCUR ?FD2S OOTKEY
D 674 Xl!CDCli E 0679 X.HREAD 0690 XRBUT 0697 XRBUT2 ?FOOS RDCBAR FD38 LOOKPJCX FD4 4 !IOESCAPE ?FD4S llOESCl
D69C XMRD2 D6A3 X.ICW!P D6C2 X.MrSTINT D6CC NOSTAT2 FD4A !IOESC2 FD4D llO'ICR FDSF llO'ICRl FD62 CANCEL
0800 EXECUTE D81F EXEC2 0824 EXEC3 0830 PZOID FD67 GETLNZ ?FD6A GETLN ?FD6F GETLNl FD71 BCKSPC
0834 PZCNT 0836 PZCNT2 .. ~ 0839 !ORTS D83A PREAD2 • Z FD7S NXTCBAR FD84 ADDINP ?FD8B CROOTl FD8E CROOT
0830 PNRJTE2 0840 DOSCCli\12 0843 XDIAG 0846 XSTATUS FD92 PRAl FD96 PRYX2 FDA3 XAll8 FDAD !«lD8CBK
D8S3 PSTATO 0860 STOLP D86A PCNTL D86E STBAD FDB3 XAM FDB6 DATAOOT ?FDCS RTS4C FDC6 XAMPM
0873 PCNTOK 0874 SL .PSTATUS 0880 PSTO D88A PSTMOV FDOl ADD FDDA PRBYTE ?FDE3 PRBEX FOES PRBEXZ
D89E XREAD D8A2 XNRlTE ?D8A3 XRl«:MN D8B9 PRDBLK FDED COUT FDFO COOT! FDF6 COOTZ FEOO BL!
D8BD PNRBLK D8BE XREAD2 D8DE PRDREAD D8E9 PRBAD2 FE04 BLANK ?FEOB STOii FE17 RTSS FE18 SE'l'llCXlE
D8EC PRBAD3 D8EF BOOT. SL 0907 BTNODOS 0913 BTMV FElD SETllDZ FE20 LT FE22 LT2 FE2C !«lVE
0922 BTFAIL 0923 BTCMD 0927 OOSPATCB D94E DCRTS FE36 VERIFY FES8 VFYOK FESE LIST FE63 LIST2
D94F OOSCCMV D9S7 DCERR D9SA DC! D99S TESTSIZE FE6C Miii! FE6F TRACE FE71 STEPZ FE7S AlPC
D9AO TSLOOP D9CB TSllORAM 0903 SL.FORMAT ?D9E2 FllNOSP I FE78 AlPCLP FE7F AlPCRTS FE80 SETINV FE8 4 SE TN ORM
D9F9 ll!PMAPl D9FB ll!PMAP2 DA08 FMTDCME DA09 ll!PAS ' FE86 SETIFLG FE89 SETKBD ?FE8B IMPORT FE8D INPRT
DAOF ll!DOS DA2 4 ll!DBMAP DA30 ll!DOK DA3 9 MAKECAT FE93 SETVID ?FE9S OOTPORT FE97 OOTPRT FE9B !OPRT
DA44 !«:BOOT DA53 !«:BYTE DA68 ICNTSZ DA71 !CNTNM FFA7 !IOTPRTO FFAB IOPRT2 FEBO XBASIC FEB3 BASCCMT
DA77 !CO DA7D ICFE DA8B ICADD2 DABE !«:ADD FEB6 ro FEBF REGZ FEC2 OPRTO FECA USR
DAA6 !COONE DAA7 CATTBL DB30 XDIAGZ DB32 XDLOOP ?FECD llRITE FECE DOPRO FFDE !OPRTl FEE2 DECCB
DCOO DIAGCODE EOOO BASIC E003 BASIC2 F800 F80RG FEE9 CLRCB FEEB lllTBCH FEEC SETCUR FEEE SETCURI
F800 PLOT F80C RTMASK F80E PLOT! ?F819 BLINE FEF6 CRlllM ?FEFD READ FEFE OPTBL FFIS INDX
F81C BLINE! F826 VLINEZ F828 VLINE F831 RTSI ?FF2D PRERR FF3A BELL FF3F RESTORE ?FF44 RESTRl

?F832 CLRSCR F836 CLRTOP F838 CLRSC2 F83C CLRSC3 FF4A SAVE ?FF4C SAVI ?FFS 9 OLDRST ?FFS9 !«lNITOR
F847 GBASCALC F8S6 GBCALC ?F8SF NXTCOL ?F864 SETCOL FF6S l«lN FF69 l«lNZ FF73 NXTJTM FF7A CHRSRCB

?F871 SCRN F879 SCRN2 F87F RTMSKZ F882 INSDSl FF8A DIG FF90 NXTBIT FF98 NXTBAS FFA2 NXTBS2
F88E INSDS2 F897 !EVEN FSA! ERR F8AS GETF!fi FFA7 GETNUM FFAD NXTCBR FFBE TOSUB FFC7 ZMOOE
F8BE MNNDXl F8C2 MNNDX2 F8C9 MNNDX3 F8CC roTONE FFCC CBRTBL FFE3 SUBTBL FITE IRQVECT FITF PROCAT
F8DO INSTDSP F8D4 PRNTOP F8DB PRNTBL F8FS PRMNI " SUCCESS!VL ASSEMBLY := llO ERRORS
F8F9 PRMN2 F910 PRADRI F914 PRADR2 F926 PRADR3 " ASSEMBLER CREATFD ON !S-JAN-84 21 ;28
F92A PRADR4 F930 PRADRS ?F938 RELADR F940 PRNTYX " TOTAL LINES ASSEMBLED 688S

?F941 PRNTAX ?F944 PRNTX F948 PRBLNK F94A PRBL2 " FREE SPACE PAGE COONT 29
?F94C PRBL3 F9S3 PCADJ F9S4 PCADJ2 F9S6 PCADJ3
F9SC PCADJ4 F961 RTS2 F962 FMTI F9A6 ll!T2
F9B4 CBAR2 F9BA CHARI F9CO MNEML FAOO MNEMR

?FA40 !RO FA47 NEllBRK ?FA4C BREAK FA59 OLDBRK
FA62 RESET ?FA81 NElt!Cli FASS BEEPSKIP ?FA9B FIXSEV
FAA3 liOFIX FAA6 PNRUP ?FAA9 SETPG3 FAAB SETPLP

?FABA AUTOSCAN FABD RESET .X FAD7 REGDSP FADA RGDSPI
FAE4 RDSPI FAFD PNRCCli FB02 RGDSP2 ?FB09 TITLE
FB12 PNRUP2 ?FBIE PREAD FB2S PREAD2 FB2E RTS2D
FB2F !NIT ?FB39 SETTXT ?FB40 SETGR FB4B SETNND
FBS4 DOCTL FBS9 vrAB23 ?FBSB TABV FB60 APPLEII
FB6S STITLE ?FB6F SETPNRC FB78 V!DNAIT FB88 KBDNAIT
FB94 liOllAIT FBAO NEllADV FBBO NENADVI FBB3 F8VERS ION
FBB4 DOCOUTI FBBC DCX FBCI BASCALC FBDO BASCLC2

.b.,

......,

SOURCE FILE 101 =>PC
INCLUDE FILE 102 •>PC.EQUATES
INCLUDE FILE 103 =>PC .BOOTSPACE
INCLUDE FILE 104 •>PC .BOOT
INCLUDE FILE 105 •>PC.PACKET
INCLUDE FILE 106 =>PC .CREAD
INCLUDE FILE 107 •>PC .MAIN

0000: 0101 1 version
0000: 0101 2
0000: 3

0000:

equ $101
X6502
MSB ON

1st on, vsym,asym

;vl.0 . 1

01 PC

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

Protoool Converter Code for Tiger 20-0CT- 86 . 06 :29 PAGE 2

7 pppp Rm 000 TTTTT 000 CCC 000 L
8 p p R R 0 0 T 0 0 c c 0 0 L
9 PPPP RRRR 0 0 T 0 0 c 0 0 L

10 p RR 0 0 T 0 0 c c 0 0 L
11 p R R 000 T 000 CCC 000 LLLLL
12
13 CCC 000 N NV V EEEEE RRRR TTTTT EEEEE RRRR
14 c c 0 0 NN NV VE R R T E R R
15 c 0 ONNNV V EEEE RRRR T EEEE RRRR
16 c c 0 ONNNVVE RR T E RR
17 CCC 000 N N v EEEEE R R T EEEEE R R

19 u
20 •
21 • UniDi sk 3.5 Driver Fi rmware Version 1.0.1
22 •
23 • Written by Michael Askins May 15, 1985
24 • Revised by M. Askins and R. Chiang April 10 , 1986
25 •
26 •Copyr ight Apple Computer, Inc. 1985,1986
27 • All Ri ghts Reserved
28 •
29

.b. 01 PC Protocol Converter Code for Tiger 20-0CT-86 06:29 PAGE 3 01 PC Protocol Converter. Code for Tiger 20-0CT-86 06:29 PAGE 4
'-I
O> 0000: 31 , uuuuuuuuuuuuuuuuuuuuuuuuu 0000: 89 • 10 Apr 86 RC removed reference. to AppleTalk

0000: 32 • • 0000: 90 • 10 Apr 86 RC forgot to add hi byte of auxptr in
0000: 33 • Modification History: • 0000: 91 • divide? routine
0000: 34 • • 0000: 92 • 10 Apr 86 RC returns write protect fran old Lirons
0000: 35 ' Rel Date ilho Action· . 0000: 93 10 Apr 86 RC RELEASE VERSION I. 0 .1
0000: 36 • ------------------------------------ ----------------- • 0000: 94 • RC vl.0.1 is to be used with Tiger only
0000: 37 18 Dec 84 MSA RELEASE VERSION 0.02 (Sony) . 0000: 95 •
0000: 38 • 10 Jan 85 MSA Added II c support : • 0000: 96 •••

0000: 39 • General conditional assembly overhead •
0000: 40 • 16 Jan 85 MSA Added retries and timeouts
0000: 41 • MSlot handled correctly
0000: 42 • Finished Boot code
0000: 43 • Altered ProDOS errors - add $27 catchall •
0000: 44 • 18 Jan 85 MSA Remove call to liAIT in monitor •

I
--- NEXT OBJECT FILE Nl\ME IS PC.O

0000: 45 • Add Boot failure messages • C500: C500 98 org scsoo
0000: 46 • 22 Jan 85 MSA Add IllM reconfigure for /le version • C500: 99 include pc.equates
0000: 47 • 23 Jan 85 MSA Move Canm routines to · $C800 ($C900)
0000: 48 • Fixed zero page preservation
0000 : 49 23 Jan 85 MSA RELEASE VERSION 0.03 (Apple)
0000: 50 • 25 Jan 85 MR Swap slot dep read and boot code (/le)
0000: 51 • Add other /le differences •••
0000: 52 • 30 Jan 85 MSA Add auxtype byte
0000: 53 • Fix comm error on receive packet
0000: 54 • Fix checks\lll to include MSBs of overhead. •
0000: 55 • 07 Feb 85 MSA Add COUT support on boot fail
0000: 56 08 Feb 85 MSA RELEASE VERSION L OOA (alpha)
0000: 57 • 22 Feb 85 MSA Add bytecount in X, Y on PC calls
0000: 58 • Change hard reset time to 1 ms (was 83) •
0000: 59 • Crunched code by adding ClrPhases •
0000: 60 • Add zeroing of . third block byte (ProDOS) •
0000: 61 • 06 Mar 85 MSA Fixed slot 7 goof (stack screw up)
0000: 62 • No clear phases on retries
0000: 63 • Bard reset time to 4 0 ms
0000: 64 • Pass tparms instead of unitt and no chk •
0000: 65 • !nit code (all reset vs·. conm reset)
0000: 66 • Add 2 bytes to pass a full 9 byte· cmd
0000: 67 • 16 Mar 85 MSA Fix byterount on retries
0000: 68 • Boot block must be · $800=$01, $801<>$00
0000: 69 • 17 Mar 85 MSA Remove llRREQ while waiting for motor TO .
0000: 70 • Remove glitch on /ENBL2 in · Assign!D
0000: 71 • 20 Mar 85 MSA Add interrupt on/off/poll support
0000: 72 • Reset pulse to 80 ms
0000: 73 • /le delay of 100 ms on initial Assign!D •
0000: 74 • ID bytes changed
0000: 75 • Retransmit implemented (RecPack)
0000: 76 • Add send data packet retries (5)
0000: 77 • Rearrange .PC stack adjust
0000: 78 • Add II c Appletalk vector
0000: 79 • 24 Mar 85 MSA Add II c millisecond wait each call
0000: 80 25 Mar 85 MSA RELEASE VERSION 1.008 (beta) (/le)
0000: 81 • 18 Apr 85 MSA Clear decimal mode
0000: 82 • Eight bytes are returned on stat unittO •
0000: 83 • Stat UnittO scode<>O is rejected
0000: 84 • X and Y set to 0008 on status unittO
0000: 85 • Enable interrupts done .correctly
0000: 86 • Add unittO parameter count checking
0000 : 87 22 Apr 85 MSA RELEASE VERSION 1.0IB
0000: 88 15 May 85 MSA RELEASE VERSION I. 0

02 PC.EQUATES Equates 20-0CT-86 06:29 PAGE 5 02 PC. EQUATES Equates .20-0CT-86 06 :29 PAGE 6

C500; 2 • 005C; 60 •
C500: OOBF 3 PDIDByte equ $BF ; ProDOS attributes byte 005C; OO!C 61 ZPSize equ •-zeropaqe
C500; 0000 4 PCID2 equ $0 ;This means a Liron card 005C; 62 •
C500; 5 • 005C; 63 •
C500; 6 HtUtUHUHUHUUUU C500; 64 dend
C500; 7 • • C500; 65 •
C500; 8 • Zero Paqe (temps) • C500; CITF 66 Clear!ORCJ!s equ $CFIT
C500; 9 • • C500: 0100 67 stack equ $100
C500; 10 C500; 68 •
C500; 11 • C500: 69 •
0000: 12 dsect C500: 70 **'''*''**''*''*****'*'**
0000: 0040 13 zeropaqe equ $0040 C500: 71 • •
0040: 0040 14 orq zeropaqe C500; 72 • Screenhole Storaqe •
0040: 15 • C500; 73 • •
0040 :00 16 checksum dfb 0 C500; '74 UtttttUUUUtttUtUU

0041 :OO 17 topbits dfb 0 C500; 75 •
0042 :00 18 CMDCode dfb 0 ; ProDOS parameter ·passinq area C500; 76 • The screenhole layout is as follows:
0043: 0043 19 CMDPCount equ • C500; 77 •
0043 :OO 20 CMDUnit dfb 0 C500; 78 • /le /le
0044: 0044 21 CMDBuffer equ • C500; 79 • ---------------------------
0044 :OO 22 CMDBuffer 1 dfb 0 C500; 80 • ProFlaq $478+n $478
0045 :00 23 CMDBufferh dfb 0 C500; 81 • Retry $4F8+n $4F8
0046: 0046 24 CMDSCode equ • C500: 82 • SHTempl $578+n $578
0046: 0046 25 CMDBlock equ • C500; 83 • SHTempX $5F8+n $5F8
0046:00 26 CMDBlockl dfb 0 C500: 84 • SHTempY $678+n $678
0047:00 27 CMDBlockh dfb 0 C500; 85 • Power! $6F8+n
0048 :00 28 CMDBlocks dfb 0 C500: 86 • Power2 $778+n
0049:00 29 CMDSparel dfb 0 C500; 87 • NumDevices $7F8+n $6FE
004A:OO 30 CMDSpare2 dfb 0 C500; 88 • SvBcL $6F8 $6F8
004B: 004B 31 rcvbuf equ • C500; 89 • SvBcH $778 $778
004B:OO 32 qrp7ctr dfb 0 C500; 90 •
004C:OO 33 oddbytes dfb 0 C500; 0473 91 scholes equ $473 ; Use the slot 0 sholes for temps
004D: 0040 34 statbyte equ • C500; 92 •
0040: 0040 35 · bytecount equ • C500; 0473 93 ProFlaq equ scholes
0040: 0040 36 bytecountl equ • C500; 04F3 94 Retry equ scholes+$80
0040: 0040 37 next equ • C500; 0573 95 SHTempl equ scholes+$100
0040:00 38 next! dfb 0 C500; 0573 96 Retry2 equ SHTempl
004E: 004E 39 AuxType equ • C500; 05FJ 97 SHTempX equ scholes+$180
004E: 004E 40 bytecounth equ • C500; 0673 98 SHTempY equ scholes+$200
004E:OO 41 next2 dfb 0 C500; 06F9 99 NumDevices equ $ 6F9 ; Actually in slot 6
004F: 004F 42 RPacketType equ • C500; 100 •
004F:OO 43 next3 dfb 0 C500: 06F8 101 SvBcL equ $6F8
0050: 0050 44 Oevice!D equ • C500; 0778 102 SvBcH equ $778
0050:00 45 next4 dfb 0 C500; 103 •
0051: 0051 46 Bost!D equ • C500; 0025 104 CV equ $25
0051 :OO 47 next5 dfb 0 C500; 0024 105 ch equ $24
0052: 0052 48 pointer equ . C500; FC22 106 vtab equ $FC22
0052:00 49 next6 dfb 0 C500; FDEO 107 cout equ $FOEO
0053:00 50 next? dfb 0 C500: 07DB 108 bootscrn equ $7DB
0054 :00 00 51 buffer dw 0 C500; 07F8 109 MSlot equ $7F8
0056: 0056 52 auxptr equ • C500; FE93 110 setvid equ $FE93
0056:00 00 53 buffer2 dw 0 C500: FE89 111 setkbd equ $FE89
0058:00 54 slot dfb 0 C500: FABA 112 AutoScan equ $FABA
0059: 0059 55 temp equ • C500; EOOO 113 Basic equ $EOOO
0059:00 56 tbodd dfb 0 C500; 0000 114 loco equ $0 ;Boot parms
005A:OO 57 Unit dfb 0 ;Current tarqet unit C500; 0001 115 locl equ $1
005B:OO 58 WPacketType dfb 0 C500: 116 •
005C; 59 • C500; C797 117 SWPROTO equ $C797 ; II c bank switch to $C800

~
-0

.b 02 PC.EQUATES Equates 20-0CT-86
CX>

06;29 PAGE 1 02 PC. EQUATES Equates 20-0CT-86 06:29 PAGE 8

0 csoo: C784 118 SllRTS2 $C784 ; RTS to bank 1 CSOO : 0010 176 csumerr $10 equ equ

CSOO: 119 • CSOO : 0020 177 nopackend equ $20
CSOO: 120 • CSOO: 0040 178 boshog equ $40
CSOO: 121 CSOO: 179 •

CSOO: 122 • • CSOO: 180 • Ce11mand Codes
CSOO: 123 • General Equates • CSOO: 181 •

C500: 124 • • CSOO: 0000 182 StatusCmd equ $00
CSOO: 125 •uututttUUUUUUtt C500: 0001 183 ReadCmd equ $01
CSOO: 126 • CSOO: 0002 184 llriteClnd equ $02
C500: OOAS 127 PBBValue equ $AS ; Powerup Byte Base Value CSOO: 0003 185 FormatCmd equ $03
csoo: OOFF 128 PBCValue equ $FF ; Powerup Byte Complement Value CSOO: 0004 186 ControlClnd equ $04
CSOO; 129 • CSOO: 0005 187 InitCmd equ $05

C500: 0000 130 PowerReset equ $00 CSOO; 188 •
CSOO; 0080 131 CommReset equ $80 CSOO: 189 •
CSOO: 132 • CSOO: 0040 190 Soft equ \01000000 ; The soft error bit in statbyte

CSOO: 0032 133 bsytol equ 50 ;(.55 ms) T/0 on /BSY before send CSOO; 191 •

CSOO: OOOA 134 bsyto2 equ 10 ; (.12 ms) T/O on /BSY after send CSOO; 0001 192 BadOnd equ $01
CSOO; OO!E 135 statmto equ 30 ; 30 bytes stat •ark timeout CSOO: 0004 193 BadPCnt equ $04

CSOO: 0009 136 cmdlength equ 9 ;Co1111and packet length CSOO: 0006 194 BusErr equ $06
CSOO: OOC3 137 packetbeg equ $CJ ;Hark at beginning of packet CSOO; 0011 195 BadUnit equ $11

CSOO: OOC8 138 packetend equ $C8 ; End of packet aark CSOO; OOlF 196 Nolnt equ $1F
CSOO; 0080 139 cmdmark equ $80 ;Command packet identifier CSOO ; 0021 197 Badctl equ $21
CSOO; 0081 140 statmark equ $81 ; Status Packet identifier C500; 0022 198 Bad ct lP arm equ $22
CSOO; 0082 141 datamark equ $82 ;Data Packet identifier CSOO: 0027 199 IOError equ $27
CSOO; 142 • CSOO: 0028 200 HoOrive equ $28
C500; 0007 143 i111ttmode equ $07 ;No timer, asynch, latch CSOO: 002B 201 llriteProt equ $2B
CSOO: 144 • C500; 0020 202 BadBlock equ $20
CSOO; 0000 145 SCDeviceStat equ 0 Get Device Specific Status CSOO; 002F 203 OffLine equ $2F

CSOO: 0001 146 SCGetDCB equ 1 Get Dev ctrl Block (modebits) C500; 0068 204 LastOne equ Soft+NoDrive

csoo: 0002 147 SCRetNLStat equ 2 Return Newline Status CSOO; 0067 205 SoftError equ Soft+IOError

C500: 0003 148 SCGetDevlnfo equ 3 Get Device Info Block CSOO: 206 •

CSOO: 149 • CSOO: 0010 207 SVMaskl equ $10
CSOO: COBO 150 illltt equ $COBO C500; 208 •

CSOO: 151 • CSOO : OBBB 209 RC! equ 3000 ; Send a ce11mand pack 3000 times (3 sec)

CSOO: COBO 152 reqclr equ iwm+O CSOO: 0005 210 RC2 equ 5 ;Data Packs get tried only 5 tilles

CSOO: C081 153 reqset equ ha+! CSOO; 211 •

CSOO: C082 154 calclr equ hn+2 CSOO: 212 •

CSOO: C083 155 calset equ il8+3 CSOO: 100 include pc.bootspace

CSOO: C084 156 ca2clr equ i•+4
CSOO: COBS 157 ca2set equ i1111+5
C500: C086 158 lstrbclr equ iwm+6
CSOO: C087 159 lstrbset equ i111tt+7
CSOO: COBB 160 monclr equ i111tt+8
CSOO: C089 161 monset equ i111tt+9
csoo: COBA 162 enable! equ i111tt+lO
csoo: COBB 163 enable2 equ iwm+ 11
csoo: COBC 164 16clr equ iwm+l2
CSOO: C08D 165 16set equ iwm+l3
csoo: COSE 166 l 7clr equ iwm+ 14
csoo: COBF 167 17set equ iwm+l5
CSOO: 168 •
CSOO: 169 •
CSOO: 170 • ErrorO codes
C500; 171 •
csoo: 0001 172 noanswer equ
CSOO: 0002 173 nomark equ
CSOO: 0004 174 wasreset equ
csoo: 0008 175 bytecmp equ

.t>.
O>

03 PC.BOOrSPl\CE Boot Space 20-0C'l-B6 06:29 PAGE 9

C500: 0060
C500:
C500:
C500 :
C500:
C500: C500
C500:
C500:
C500:
C500:
C500 :A2 20
C502 :A2 00
C504 :A2 03
C506:
C506 :C9 00
C50B :BO 11 C521
C50A:
C50A:
C50A:
C50A: C50A
C50A:
C50A:
C50A:
C50A:3B
C50B:BO OJ C50E
C50D:
C50D:
CSOD:
C50D: CSOD
C50D:IB
C50E :A2 05
C510:1E 73 04
C513:1B
C514:
C514:
C514:
C514: C514
C514 :A2 C5
C516:BE FB 07
C5!9:A2 05
C51B:AD FF CF
C51E:
C51E:4C 97 C7
C521: C521
C521 :A2 05
C523:

2 The Off equ $ 60 ;On I le 1111 in slot 6
3 •
4 • Here beginneth that code which resideth in the boot space
5 • at the time the card resteth in slot the fifth.
6 •
7 C500org equ
B •
9 • Auto Boot signature bytes

JO • This is also the boot (auto ' PRf5) entry point.
11 •
12
13
14
15 •
16
17
lB •

ldx
ldx
ldx

Cllp
bes

1$20
f$00
1$03

to
Boote

; Flag that this is a boot

19 • Here is the ProDOS normal entry point
20 •
21 ProDOSEntry equ •
22 •
23 • Set up so that ProFIAG will have the top bit set
24 •
25
26
27 •

sec
bes *+3 ; Skip the clear

2B • This is the ML!xface entry point
29 •
30 ML!Entry equ
31 clc
32 ldx 1$05
33 ror ProFLAG,x
34 clc
35 •

;Only use this label in I le version

;ProFIAGl7J=l if ProDOS, =0 if ML!
;This is not a boot entry

36 • Now save mslot and clear all $CBOO ROMs
37 •
3B bootcase5 equ
39 ldx
40 stx
41 ldx
42 Ida

f$C5
MS lot
1$05
ClearIOROMs

43 •
44 jmp SllPROTO
45 Boote
46

101

equ •
ldx 1$05
include pc.boot

; Load value for MSLCYr

;Clear all $CBOO latches but ours

;Need slot number

04 PC.BOOr

C523:
C523: C523
C523:B6 5B
C525:
C525 :A9 C5
C527 :BO FB 07
C52A:20 76 C5
C52D:
C52D:AO 05
C52F:B9 70 C5
C532: 99 42 00
C535 :BB
C536:10 F7 C52F
C53B:
C53B:
C53B:
C53B :20 DA C5
C53B:BO 15 C552
C53D:
C53D:AE 00 OB
C540:CA
C541 :DO OF C552
C543:
C543 :AE 01 OB
C546:FO OA C552
C54B:
C54B:
C548:
C54B :A5 5B
C54A:OA
C54B:OA
C54C:OA
C54D:OA
C54E:AA
C54F:4C 01 OB
C552:
C552:
C552:
C552:
C552:
C552 :A2 10

C554 :BO SF C5
C557:9D DB 07
C55A:CA
C55B:l0 F7 C554
C55D:BO FE C550

C55F:C3 EB E5 E3
C570: 0011
C570:
C570:01 50 00 OB
C576:
C576:
C576:
C576:
C576:

Service Boot Request

2 •
3 Bootcode equ
4 stx slot
5 •
6 Ida 1$C5
7 sta MSlot
B jsr reset
9 •

JO
11 be!
12
13
14
15 •

ldy
Ida
sta
dey
bpi

15
boottab,y
cmdcode,y

be!

20-0CT-B6 06:29 PAGE 10

;Copy a canmand table

16 • Now do the read frOll block zero
11 •
IB
19
20 •
21
22
23
24 •
25
26
27 •

jsr
bes

ldx
dex
bne

ldx
beq

ProDOSEntry
boot fail

$BOO

bootfail

$BO!
boot fail

; If fail, check Joe

; If ($BOO)<>! this is no Al I boot disk

; If $BO! is zero, no boot

2B • It all looks okay. Jump to the code with NO in X.
29 •
30 Ida Slot
31 asl a
32 asl a
33 asl a
34 asl a
35 tax
36 jmp $BO! ;Jump to it
37 •
3B • Do this code if the boot can't be done.
39 • If this was an autoboot (loc=$CN00), continue the slot scan.
40 • If not, drop into basic after issuing appropriate message
41 •
42 bootfail ldx f>bmsglen-1

44 morchrs Ida bootmsg,x
45 sta bootscrn,x
46 dex
47 bpi •orchrs
4B cana bra can a ; He's dead Jim.

50 bootmsg asc 'Check Disk Drive.•
51 bmsglen equ *-bootmsg
52 •
53 boottab dfb ReadCMD,$50,0,B,0,0 ;Read from !st; blk0->$B01
54 •
55 •
56 • this routine is called fran the /le reset code. it forces a
57 • reset of the PC Bus. location 0 and I are being used by the
5B • autostart people .

.t.
CX>
I\)

04 PC.BOOT Service Boot Request

C576 : C576 60 Reset equ
C576 :A2 OB 61 ldx
C578: C578 62 rst 1 equ
C578 :BO 83 C5 63 lda
C57B:95 02 64 sta
C57D :CA 65 dex
C57E : IO rs C578 66 bpl
C580 :4C 02 00 67 jmp

C583: C583 69 rcode equ
C583 :20 OD C5 70 jsr
C586 :05 71 dfb
C587:09 00 72 dw
C589:60 73 rts

C5BA:Ol 00 75 cmdlist dfb

-- -- - NEXT OBJECT FILE NAME JS PC. l
C5F5 : C5F5 103 orq
C5F5:4C 52 C5 104 jmp
C5FB:4C 76 C5 105 jmp
C5FB :00 106 dfb
C5FC :OO 00 107 dw
C5FE:BF 108 dfb
C5FF:OA 109 dfb

---- NEXT OBJECT FILE NAME JS PC . 2
C880 : C880 111 orq
C880:4C 4C CD 112 illP

18
•
rcode,x
loc0+2, x

rstl
loc0+2

ML I Entry
InitClll
$0009

1,0

$C5F5
boot fail
reset
PCID2
0
PDIDByte
>ProDOSEntry

$C880
Entry

C883
C883
C883

114 include pc.packet
1 1st eye
2 •

20-0CT-86 06: 2 9 PAGE 11

;One parm - the unit $00

;Jump to the boot failure messaqe
; Reset vector

;The /le bank switch jumps here

05 PC.PACKET Send a CBus Packet 20-0CT- 86 06:29 PAGE 12

C883 :
C883:
C883:
C883:
C8B3 :
C883 :
C883:
CBB3 :
C883:
C883 :
C883:
C883:
C883:
C883:
C883:
CB83:
C883:
CBB3:
C883:
CBB3:
C883:
C883:
C883:
C883:
C883:
C883:
C883:
C883:
C883:
C883:
CBBJ:
C883:
C883: C883
C883:
CBB3 :
C883:
C883:20 61 CB (6)
C886:
CB86:
C886:
C886:20 70 CA (6)
C889:AO 07 (2)
C88B:20 20 CC (6)
C88E:
C88E:
C88E:
CBBE:BD BB CO (4)
C891 :BO 89 CO (4)
C894:
C894:
C894:
C894 :AO 32 (2)
C896:BD BE CO (4)
C899:30 07 C8A2(3)
CB9B:88 (2)
C89C:DO rs C896(3)
C89E :
C89E:38 (2)

4 u
5 • •
6 • SendOnePack Send a CBus Packet
7 •
8 • This routine sends a packet of data across the
9 ' bus. The protocol is as follows:

10 •
11 ' REQ
12 •

12 51 __ _

13 ' /BSY II 41 __ _
14 •
15 •
16 •
17 •
18 •
19 •
20 •
21 •
22 •
23 •
24 •
25 •

1) Device siqnals ready for data
2) Bost siqnals data iminent
3) Packet is transmitted (sync, command mark,

ids, contents, checksum (msb=l])
4) Device signals packet recieved
5) Bost finishes send data cycle

The bytes are sent in slow llOde (32 cycles/byte) '
and the timing is cri tical. Branches which should •
not cross page boundaries are marked.

26 • Input: buffer (2 bytes)
byte count (2)
packettype (1)
CMDUnit (1)

<- ptr to data to send
27 •
28 •
29 •
30 •

<- lenqth (bytes) of data •
<- command or data packet •
<- I of device to receive •

31 • Output: carry set- handshake error
32 • clr- bytes sent
33 •
34 ,
35 •
3 6 SendOneP ack equ •
37 •
38 • Prep for the transmission
39 •
40
41 •

jsr WritePrep

42 • Enable PC chain.
43 •
44
45
46
47 •

jsr
ldy
jsr

enablechain
liwmaode
Set!llMode

48 • Turn on the Hill
49 •
50
51
52 •

lda
lda

enable2,x
monset , x

;Does a bunch of stuff

This sets X req
This is the mode value
Don't mess unless we gotta

;Don't disturb /le internal drive

53 • Loop until the chain becanes unbusy
54 •
55 ldy
56 ubsyl lda
57 bmi

dey
bne

58
59
60 •
61 sec

lbsytol
17clr,x
chainunbsy

ubsyl

Each loop is 11 microseconds
Test if /BSY is hi or lo
If hi, bus is not busy

;Keep trying

OS PC.PACKET Send a CBus Packet 20-0CT-86 06:29 PAGE 13 OS PC.PACKET Send a CBus Packet 20-0CT-86 06:29 PAGE 14

C89F:4C CC C9 (3) 62 jmp sd!O C8El:AO FF (2) 120 ldy 1$FF
C8A2: 63 • C8E3 :AS S9 (3) 121 Ida tbodd ;Get the odd bytes 1sb' s (A(7]=1)
C8A2: 64 ' Tell the bus that data is cominq and send the sync bytes C8ES: 122 •
C8A2 : 6S • Sync is qroups of eiqht 2' s separated by a 6 (mies cell) C8ES:IE 8C CO (7) 123 sob! asl 16clr,x ;Do a write handshake
C8A2: 66 • (111111110011111111001111111100 •••) eaE8:90 FB C8ES (3) 124 bee sob!
C8A2 : 67 • C8EA:9D 80 CD (S) m sta 16set,x
C8A2: C8A2 68 chainunbsy equ • eaEO:C8 (2) 126 iny
C8A2 :BO 81 CD (4) 69 Ida reqset,x ;Raise REQ C8EE:Bl S4 (S) 127 Ida (buffer),y ;Get the data byte
C8AS: 70 • C8FO :09 80 (2) 128 ora 1$80 ; Flip on the hi bit
C8AS :AD OS (2) 71 ldy IS ; Sync plus packet beqin eaF2:C4 4C (3) 129 cpy oddbytes ; Are we done?
C8A7: 72 • C8F4 : 9D EF C8ES (3) 130 bit sob!
C8A7 :A9 FF (2) 73 Ida 1$FF ; Send out the !st byte sync C8F6 : 131 •
C8A9:90 8F CD (S) 74 sta 17set,x C8F6 : 132 • Nov send over the qroups of seven contents
C8AC: 7S • C8F6: 133 • Currently assUle there must be at least one group of 'em
C8AC:B9 03 C9 (4) 76 ssb Ida preamble,y C8F6: 134 •
C8AF: 77 • C8F6 : C8F6 13S sob2 equ •
C8AF: 78 • ear6:AS 4B (3) 136 Ida qrp7ctr ;Check if there are groups to send
C8AF:IE 8C CD (7) 79 ssd asl 16clr,x ;llait 'til buffer empty C8F8:DD 03 C8FD(3) 137 bne sob3 ; => At least one oroup
C8B2:9D FB C8AF(3) 80 bee ssd earA: 4C 96 C9 (3) 138 j1p datdone ; Skip to send checksum
C8B4: 81 • earn: 139 •
C8B4 :90 80 CD (S) 82 sta 16set,x earn: C8FD 140 sob3 equ •
C8B7 :88 (2) 83 dey earn:EA (2) 141 nop ;llaste 2 cycles
C8B8: ID F2 C8AC(3) 84 bpi ssb ; Back for more bytes eaFE:AO 00 (2) 142 ldy ID
C8BA: as • C9DD:AS 41 (3) 143 start Ida topbits
C8BA: 86 • Send over the desination ID C9D2 : 90 80 CD (S) 144 sta 16set,x
C8BA: 87 • C9DS: 14S •
C8BA:AS SA (3) 88 Ida Unit C90S: 146 • Send first byte
C8BC :09 80 (2) 89 ora 1$80 ;Hake the device ID C9DS: 147 •
C8BE: 20 SD CA (6) 90 jsr sendbyte C90S:AS 40 (3) 148 Ida next!
C8Cl: 91 • C907 :09 80 (2) 149 ora 1$80
C8Cl: 92 • Send the source ID (that's us. • • we' re an $80) C909 :84 S9 (3) !SD sty temp ; Swap Y for short handshake
C8Cl : 93 • C90B: BC 8C CD (4) !SI ache! ldy 16clr,x ;llait 'til buffer ready
C8Cl :20 4E CA (6) 94 jsr send8D C9DE:IO FB C9DB(3) !S2 bpi ache!
C8C4: 9S • C9!0:9D 80 CD (S) IS3 sta 16set,x ; Send the byte
C8C4: 96 • Send over the packet type (command or data) C913 :A4 S9 (3) !S4 ldy tesp ;Get back y
C8C4: 97 • C9!S : !SS '
C8C4:AS SB (3) 98 Ida llpackettype C9!S: !S6 • Prep the next •Jst • byte for next time
C8C6:2D SO CA (6) 99 jsr sendbyte C91S : IS7 •
C8C9 : !DO ' C9!S :Bl S6 (S) IS8 Ida (buffer2), y
C8C9: !DI • Send the Auxilliary Type byte (an $80 from this rev PC) C917:8S 40 (3) !S9 sta next!
C8C9 : 102 • C9!9:DA (2) 160 asl a
C8C9:2D 4E CA (6) 103 jsr send8D C91A:26 41 (S) 161 rol topbits ; Store the top bit
C8CC: 104 • C91C:C8 (2) 162 iny ;Next byte
C8CC: IDS • Send the status byte (null for us), and length bytes C91D: 163 •
C8CC: 106 • C91D: 164 • It's possible that we' re at a paqe boundary now. If so, bump the
C8CC:2D 4E CA (6) 107 jsr send80 C9!D: 16S • hi order part of the pointer.
C8CF:AS 4C (3) 108 Ida oddbytes C91D: 166 •
C8Dl :09 80 (2) 109 ora 1$80 C9!D:DD OS C924 (3) 167 bne skip!
C803 :20 SD CA (6) 110 jsr sendbyte C91F :E6 S7 (S) 168 inc buffer2+1
C806 :AS 4B (3) 111 Ida qrp7ctr C92!:4C 26 C9 (3) 169 jmp skip2
C808 :09 80 (2) 112 ora 1$80 C924 :48 (3) 170 skip! pha ; Equalize the cases
C8DA:20 SD CA (6) 113 jsr sendbyte C92S:68 (4) 171 pla
C8DD: 114 • C926: 172 •
C800: llS • Nov send the "oddbytes" part of the packet contents C926: 17 3 • Push us ahead by an additional 8 cycles for margin reasons
C8DD: 116 • C926: 174 • Plus I gotta qet the topbits MSB set somehow •••
eaoo :AS 4C (3) 117 Ida oddbytes ;Get I of "odd" bytes C926: 17S •
C8DF:FO IS C8F6 (3) 118 beq sob2 ; Skip if no odd bytes C926: C926 176 skip2 equ
CSE!: 119 • C926 :A9 02 (2) 177 Ida l\DDDDDOIO ; Flip what will be MSB

.ti.
co
U>

.t>.
05 PC.PACKET Send a CBus Packet 20-0CT-86 06:29 PAGE 15 05 PC.PACKET Send a CBus Packet 20-0CT-86 06 :29 PAGE 16 O>

.t>.
C928 :05 41 (3) 178 ora topbits C971: 236 • Send the sixth byte
C92A:85 «! (3) 179 sta topbits C971: 237 •
C92C: 180 • C971:A5 52 (3) 238 lda next6
C92C: 181 • Send the second byte C973:09 80 (2) 239 ora 1$80
C92C: 182 • C975:9D 80 CO (5) 240 sta 16set,x ; Send the byte
C92C:A5 4E (3) 183 lda next2 C978:Bl 56 (5) 241 lda (buffer2), y
C92E:09 IO (2) 184 ora 1$80 C97A:85 52 (3) 242 sta next6
C930: 90 ID CO (5) 185 sta 16set,x ; Send the byte C97C:OA (2) 243 asl a
C933 :Bl 56 (5) 186 lda (buffer!), y C97D:26 41 (5) 244 rol topbits ; Store the top bit
C935 :85 IE (3) 187 sta next2 C97F:C8 (2) 245 iny ;Next byte
C937 :OA (2) 188 asl a C980: 246 •
C938:26 U (5) 189 rol topbits ; St ore the top bit C980: 247 • Send the last byte of the group
C93A:C8 (2) 190 iny ;Next byte C980: 248 •
C93B: 191 • C980:A5 53 (3) 249 lda next7
C93B: 192 • Send the third byte C982:09 80 (2) 250 ora 1$80
C93B: 193 • C984:9D 80 CO (5) 251 sta l6set,x ; Send the byte
C93B:A5 IF (3) 194 lda next3 C987:Bl 56 (5) 252 lda (buffer2), y
C93D :09 10 (2) 195 ora 1$80 C989:85 53 (3) 253 sta next7
C93F:9D ID CO (5) 196 sta 16set,x ; Send the byte C98B:OA (2) 254 asl a
C942 :Bl 56 (5) 197 lda (bufferil , y C98C:26 41 (5) 255 rol topbits ;Store the top bit
C944 :85 IF (3) 198 sta next3 C98E:C8 (2) 256 iny ;Next byte
C946 :OA (2) 199 asl a C98F: 257 •
C947:26 U (5) 200 rol topbits ; Store the top bit C98F: 258 • Now see if we have sent enough groups of seven
C949:CB (2) 201 iny ;Next byte C98F: 259 •
C94A: 202 • C98F:C6 4B (5) 260 dee grp7ctr
C94A: 203 • Send the fourth by.., C99l:FO 03 C996(3) 261 beq datdone
C94A: 204 • C993: 262 •
C94A:A5 W (3) 205 lda next4 C993: 263 • otherwise, back to do more. Note it's too far for a branch.
C94C:09 l<l (2) 206 ora 1$80 C993: 264 •
C94&:9D ID CO (5) 207 sta 16set,x ; Send the byte C993:4C 00 Ct (3) 265 jmp start
C951 :Bl 56 (5) 20B lda (bufferZl , y C996: 266 •
C953 :85 iO (3) 209 sta next4 C996: 267 • lihew ! Now send the damn checksum as two FM bytes
C955:0A (2) 210 asl a C996: 268 •
C956:26 U (5) 211 rol topbits ; Store the top bit C996: C996 269 datdone equ •
C958 :CB (2) 212 iny ;Next byte C996:A5 40 (3) 270 lda checksum ;c7 c6 c5 c4 c3 c2 cl cO
C959: 213 • C998:09 AA (2) 271 ora l$AA ; 1 c6 1 c4 1 c2 1 co
C959: 214 • After the first 256 bytes, we will cross pages ha::e. If we did C99A:BC 8C CO (4) 272 semi ldy 16clr,x
C959: 215 • cross, bump the buffer pointer. If oot, equalize the CiSes with C990:10 FB C99A(3) 273 bpl semi ; Bandshake this byte
C959: 216 • seven cycles of tme wastinq. C99F:90 80 CO (5) 274 sta 16set,x ;These are even bits
C959: 217 • C9A2: 275 •
C959 :DO rs r.960(3) 21B bne skip3 C9A2:A5 40 (3) 276 lda checksum ;c7 c6 c5 c4 c3 c2 cl cO
C95B:E6 57 (5) 219 inc buffer2tl C9A4:4A (2) 277 lsr a ; 0 c7 c6 c5 c4 c3 c2 cl
C95D:4C l2 C9 (3) 220 jmp skip4 C9A5:09 AA (2) 27B ora 1$AA ; 1 c7 1 c5 1 c3 1 cl
C960 :4B (3) 221 sk ip3 pha C9A7 :20 50 CA (6) 279 jsr sendbyte
C961 :6B (4) 222 pla C9AA: 2BO •
C962: t962 223 skip4 equ • C9AA: 2Bl • Send the end of packet mark
C962: 224 • C9AA: 282 •
C962: 225 • Send the fifth byte C9AA:A9 CS (2) 283 lda lpacketend
C962: 226 • C9l\C:20 50 CA (6) 2B4 jsr sendbyte
C962:A5 l>1 (3) 227 lda next5 C9AF: 2B5 •
C964 :09 EO (2) 228 ora 1$80 C9AF: 2B6 • Wait until write underflow
C966:9D ID CO (5) 229 sta 16set,x ; Send the byte C9AF: 2B7 •
C969:Bl 56 (5) 230 lda (buffer2;1,y C9AF:BD SC CO (4) 2BB sd7 lda 16clr,x
C968:85 51 (3) 231 sta next5 C9B2:29 40 (2) 2B9 and 1$40
C96D:OA (2) 232 asl a C9B4:DO F9 C9AF(3) 290 bne sd7 ; Still writing data
C96E:26 41 (5) 233 rol topbits ; Store the top bit C9B6: 291 •
C970 :CB (2) 234 iny ;Next byte C986: 90 SD CO (5) 292 sta 16set,x ;Back to sense mode (dummy write)
C971: 235 • C9B9: 293 •

.b.
CX>
en

05 PC.PACKET Send a CBus Packet 20-0CT-B6 06:29 PAGE 17

C9B9: 294 • Now wait until the drive acknowledges reciept of the
C9B9: 295 • string or until timeout
C9B9: 296 '
C9B9 :AO OA (2) 297 ldy fbsyto2
C9BB:BB (2) 29B patch! dey
C9BC :DO OB C9C6 (3) 299 bne sd9
C9BE: 300 '

;Load timeout to see bsy low
;A little closer to an error

;There's still time

C9BE: 301 • Too much time has elapsed. Drive didn't get string.
C9BE: 302 '
C9BE :A9 01 (2) 303 lda fnoanswer
C9CO: C9CO 304 dberror equ •
C9C0:20 97 CA (6) 305 jsr SetXNO
C9C3 :JB (2) 306 sec
C9C4 :BO 06 C9CC(3) 307 bes sdlO
C9C6: JOB '

; Report error in comm error byte

; For dberror entry
; Signal a problem

C9C6: 309 • See if drive has acknowledged the bytes yet
C9C6: 310 '
C9C6:BD BE CO (4) 311 sd9
C9C9 :30 FO C9BB (3) 312
C9CB: 313 '

lda
bmi

17clr,x
patch!

C9CB: 314 • Finish the sequence
C9CB: 315 •
C9CB :1B (2) 316 clc
C9CC:BD BO CO (4) 317 sdlO lda reqclr,x
C9CF:BD BC CO (4) 31B lda 16clr, x
C9D2: 319 '

; llait 'til /BSY lo

This is a normal exit
Set REQ lo
Back into read mode

C9D2: 320 • Pull back the bytecount in all cases
C9D2: 321 '
C9D2:60 (6) 322 rts
C9D3 : 323 '
C9D3: 324 '
C9D3: 325 • This table, when sent in reverse order, provides a
C9D3: 326 • sync pattern used to synchronize the drive !NM with
C9D3: 327 • the data streilll. The first byte (last sent) is the
C903: 32B • packet beqin mark.
C903: 329 •
C9D3 :CJ 330 preamble dfb packetbeq
C9D4:FF re F3 CF 331 synctab dfb SIT,SFC,$F3,$CF,$3F
C9D9: 332 '
C9D9 : 333 •

05 PC.PACKET Send a CBus Packet 20-0CT-B6 06:29 PAGE lB

C9D9: 335 •
C9D9: 336 • These routines are for wasting specific amounts of tiae
C9D9: 337 • This code segment should not cross page boundaries .
C9D9: 33B •
C9D9:20 DE C9 (6) 339 waste32 jsr waste14
C9DC:EA (2) 340 wastelB nop
C9DO:EA (2) 341 wastel6 nop
C9DE:EA (2) 342 waste14 nop
C9DF:60 (6) 343 waste12 rts
C9EO: 344 '
C9EO: 345 •
C9EO: C9EO 34 6 markerr equ •
C9EO :4C CO C9 (3) 347 jap dberror

.b. OS PC.PAC!l£T Receive a CBus Packet 20-0CT-S6 06:29 PAGE 19 OS PC.PACKET Receive a CBus Packet 20-0CT-S6 06:29 PAGE 20
O>
0- C9E3: 349 HUhUUUHU••HHHHHHUUHH111•H•tUHtUtHt4- C9FD: 407 • liait for a byte from Liron or timeout

C9E3: 3SO • . C9FD: 40S •

C9E3: 3Sl • Recei vePack Get a packet from bus resident .. C9FD:AO IE (2) 409 ldy tstatmto ;Max bytes 'til stat mark

C9E3: 3S2 • .. C9FF: BD SC CO (4) 410 rdh2 lda 16clr,x

C9E3: 3S3 • . CA02:10 FB C9FF(3) 411 bpl rdh2 ; '** No Page Cross ***
C9E3: 3S4 • Rill 12 51 .. CA04:SS (2) 412 dey

C9E3: 3SS • --- --- . CAOS:30 09 C9EO (3) 413 bmi markerr ;Didn't find a packet in time

C9E3: 3S6 ' /BS! 11 3 41 • CA07: 414 •

C9E3: 3S7 • - • CA07: 41S • Is it the beqinninq of the packet?

C9E3: 3SS • 1) Drive siqnals ready to send packet .. CA07: 416 •

C9E3: 3S9 • 2) Host siqnals ready to recieve data . CA07:C9 CJ (2) 417 cmp tpacketbeq ; Find the packet beqin mark

C9E3: 360 • 3) Packet is transmitted (sync, mark, !Os, data, • CA09:DO F4 C9FF(3) 418 bne rdh2 ; Back aqain - no timeout for now

C9E3: 361 • checksum jmsb=l]) • CAOB: 419 •

C9E3: 362 • M Drive siqnals packet dispatched .. CAOB: 420 • Okay load up the table with this stuff

C9E3: 363 • 5) Host acknowledges reciept of packet . CAOB: 421 •

C9E3: 364 • • CAOB: CAOB 422 rdhS equ

C9E3: 36S • The bytes are sent in slow mode (32 cycles/byte) .. CAOB: 423 •

C9E3: 366 • anit the timinq is critical. Branches which should • CAOB:AO 06 (2) 424 ldy f6 ; Seven bytes of overhead

C9E3: 367 • not cross paqe boundaries are marked. . CAOD: BO 8C CO (4) 425 rdh3 lda 16clr,x ; If byte ready, qrab it

C9E3: 36S • • CAIO:IO FB CA00(3) 426 bpl rdh3 : ** • No Page Cross ***
C9E3: 369 • Input: buffer <- address where packet guts left • CAl2:29 7F (2) 427 and no1111111 . ; Strip start bit

C9E3: 370 • • CA14:99 4B 00 (S) 428 sta rcvbuf,y

C9E3: 371 • output: carry set- handshake error . CA17:49 80 (2) 429 eor 1$80 ; Pop MSB back on for checksum

C9E3: 372 • clr- bytes recieved . CA19:4S 40 (3) 430 eor checksum

C9E3: 373 • A <- errorO if carry set . CA1B:8S 40 (3) 431 sta checksum

C9E3: 374 • • CAID:88 (2) 432 dey

C9E3: 375 u, UUUHUU'llitUUatu CAlE:lO ED CA00(3) 433 bpl rdh3

C9E3: 376 • CA20: 434 •

C9E3: C9E3 377 qrabstatus equ • CA20: 43S • Set qroups of seven buffer pointer buffer2

C9E3: C9E3 378 ReceivePack equ • CA20: 436 •

C9E3: 379 • CA20:AS 4C (3) 437 lda oddbytes

C9E3: 380 • !nit the checksum CA22:FO 27 CA4B(3) 438 beq start2 ; Skip alteration if no oddbytes

C9E3: 381 • CA24:18 (2) 439 clc

C9E3 :A9 00 (2) 3S2 lda 1$00 CA2S :6S S4 (3) 440 adc buffer

C9ES :8S 40 (3) 383 sta checksum CA27 :SS 56 (3) 441 sta buffer2

C9E7: 384 • CA29:AS SS (3) 442 lda buffer+ 1

C9E7: 3S5 • Copy over buffer -> buffer2 CA2B:69 00 (2) 443 adc to

C9E7: 3S6 • CA20:8S S7 (3) 444 sta buffer2+1

C9E7 :AS S4 (3) 3S7 lda buffer CA2F: 44S •

C9E9:8S S6 (3) 388 sta buffer2 CA2F:AO 00 (2) 446 ldy 10

C9EB :AS SS (3) 389 lda buffer+! CA31: 447 •

C9E0:85 57 (3) 390 sta buffer2tl CAJI: 448 • Now receive the odd bytes

C9EF: 391 • CA31: 449 •

C9EF: 392 • Set up the indirect pointer for jump to 2nd part of co<le CA31 :BO SC CO (4) 4SO startO lda 16clr,x ;Read in the odd bytes topbits

C9EF: 393 • CA34:10 FB CA31(3) 4SI bpl startO

C9EF:20 70 CA (6) 394 jsr enablechain ; Set X reqister to $NO CA36:0A (2) 4S2 asl a ; Pop off the start bit

C9F2: 39S • CA37:SS 41 (3) 4S3 sta topbits

C9F2 :BO 80 CO 14) 396 lda 16set ,x ; Prep for sense mode CA39: CA39 4S4 start! equ •
C9FS: 397 • CA39:BD 8c co (4) 4SS lda 16clr,x ;Get an odd byte

C9FS: 39S • Now wait for BSY to qo hi, siqnallinq 'ready w/ status' CA3C:10 FB CA39(3) 456 bpl start!

C9F5: 399 • CA3E:06 41 (5) 457 asl topbits ;Get an MSB

C9F5 :BO SE CO (4) 400 rdhl lda 17clr,x ;Read sense CMO:BO 02 CA44 (3) 458 bes gob! ; If MSB set, leave start bit

C9FS:IO FB cm (3) 401 bpl rdhl ;liait til a hiqh CA42:49 SO (2) 459 eor 1$80 ;MSB clear- flip start bit

C9FA: 402 • CA44: 91 54 (6) 460 qobl sta (buffer), y ; Squirrel it away

C9FA: 403 • Signal Liron we' re ready to recieve CA46:C8 (2) m iny ;Next spot

C9FA: 404 • CA47:C4 4C (3) 462 cpy . oddbytes ; Are we done?

C9FA:BD 81 CO (4) 405 lda reqset, x ;Raise /REQ CA49:90 EE CA39(3) 463 blt start! ; If more, branch

C9FD: 406 • CA4B: 464 •

. .b.
CX>,

OS PC.PACKET Receive a CBus Packet

CA4B: CA4B 46S start2 equ
CA4B :4C 73 cc (3) 466 jmp SlotOepRd
CA4E: 467 •
CA4E: CA4E 468 Send80 equ
CA4E :A9 80 (2) 469 lda 1$80
CASO: CASO 470 SendByte equ •
CASO:BC8CCO -(4) 471 ldy 16clr, x
CAS3 :10 FB CA50(3) 472 bpl SendByte
CASS:90 80 CO (S) 473 sta 16set,x
CAS8:45 40 (3) 474 eor checksum
CASA:85 40 (3) 41S sta checksum
CASC:60 (6) 476 rts
CASO: 477 •
CASO: 478 •
CASO: . 479 '
CASO: 480 •
CASO: CASO 481 reset chain equ •
CAS0:20 87 CA (6) 482 jsr .ClrPhases
CA60:BO 81 CO (4) 483 lda reqset,x
CA63:BO 8S CO (4) 484 lda ca2set,x
CA66:AO SO (2) 48S ldy 180
CA68 :20 10 CA (6) 486 j sr Yl!Sllait
CA6B: 487 •
CA6B:20 87 CA (6) 488 jsr ClrPhases
CA6E: 489 •
CA6E :AO OA . (2) 490 ldy no
CA70: 491 •
CA70: CA70 02 n!Sliait equ •
CA70:20 .n CA (6) 493 jsr OneMS
CA73:88 (2) 494 dey
CA74:00 FA CA70(3) 49S bne YMSllait
CA76:60 (6) 496 rts
CA77: 497 •
CA77: CA77 498 OnEf!S equ
CA77:A2 CS (2) 499 ldx 1200
CA79:CA (2) soo OnEllSl dex
CA7A:OO FD CA79(3) SOI bne onemsl
CA7C:60 (6) S02 rts
CA7D: S03 •
CA7D: S04 •
CA7D: CA7D SOS enablechain equ •
CA70:20 97 CA (6) S06 jsr SetXMO
CA80:BO 83 CO (4) S07 lda calset,x
CA83 :BO 87 CO (4) SOS lda lstrbset,x
CA86:60 (6) S09 rts

.CA87: SlO •
CA87: Sil *
CA87: CA87 S12 ClrPhases equ '
CA87:20 97 CA (6) S13 jsr SetXNO
CA8A:BO 80 CO (4) S14 lda reqclr,x
CA8D:BD 82 CO (4) S15 lda calclr,x
CA90 :BO 84 CO (4) S16 lda ca2clr,x
CA93:BO 86 CO · (4) S17 lda lstrbclr,x
CA96:60 (6) Sl8 rts
CA97: S19 •
CA97: S20 •
CA97: CA97 S21 SetXNO equ
CA97 :A2 60 (2) S22 ldx 1$60

20-0CT-86 06:29 'PAGE 21

; Bard reset for 80 as

; About 10 11S reset time!

05 PC.PACKET

CA99:
CA99:60

.CA'IA:
CA'IA:
CA'IA:
CA9A:
CAM: 80 80 80 80
CAA2:00 00 00 00
CAAA: 80 80 80 80
CAB2:80 80 80 80
CABA:80 80 00 00
CAC2:8o 8·0-oo oo
CACA:80 00 80 00

.CAD2:80 00 80 00
CAM:
CADA:

Receive a CBus Packet 20-0CT-86 0_6:29 PAGE 22

S23 •
(6) S24 rts

S2S •
S26 • Shift tables for use when readinq. Each table should not

· S27 • straddle paqes.
S28 •
S29 shift! dfb
S30 dfb
S31 shift2 dfb
S32 dfb
S33 shift3 dfb
S34 dfb
S3S shift4 dfb
S36 dfb
S37 •
S38 ·•

$80' $80' $80' $80' $80' $80' $80. $80
0,0,0,0,0,0,0,0
$80' $80' $80' $80' 0' 0. 0' 0
$80, $80,$80, $80, 0, 0, 0, 0
$80. $80. 0' 0' $80' $80' 0' 0
$80' $80' 0' 0' $80' $80. 0. 0
$80, 0, $80, 0, $80, 0, $80, 0
$80. 0 ,$80' 0, $80' 0' $80' 0

b 05 PC.PACKE?
CX>

Receive a CBus Pacl:et 20-0C?-86 06:29 PAGE 23 05 PC.PACKE? Receive a CBus Packet 20-0C?-86 06:29 PAGE 24

CX>
CADA: 540 • CB32 :A9 05 (2} 598 lda l>RC2
CADA: CADA 541 SendData equ •
CADA:A9 05 (2} 542 lda l>RC2
CADC:AO 00 (2} 543 ldy l<RC2
CADE :20 FD CA (6} 544 jsr SendPile
CAE! :90 05 CAE8 (3} 545 bee sdoubt
CAEJ:A9 80 (2) 546 Ida IC:O..Reset
CAE5 :20 98 CF (6) 541 jsr Ass ion ID
CAE8: CAE8 54 8 sdoubt equ .
CAE8:60 (6} 549 rts
CAE9: 550 •

CB34: 99 F3 04 (5} 599 sta Retry,y
CB37: CB37 600 rpkl equ .
CB31 :20 E3 C9 (6) 601 jsr ReceivePack
CB3A:9o or CB4B(3) 602 bee rpout
CBJC:AO 01 (2) 603 ldy n
CB3E:20 70 CA (6) 604 jsr YMSllait
CB41 :20 CO C9 (6) 605 jsr dberror ; Recycle handshake and set carry
CB44:A6 58 (3) 606 ldx Slot
CB46:DE F3 04 (1) 607 dee Retry,x
CB49:DO F£ CB37(3) 608 bne rpkl ;carry set still

CAE9: 551 • CB4B: CB4B 609 rpout equ .
CAE9: CAE9 552 SendPack equ •
CAE9:20 FD CA (6) 553 jsr SendPile ;?ry to send a pack
CAEC:90 FA CAE8 (3} 554 bee sdoubt

CB4B:60 (6) 610 rts
CB4C: 611 •
CB4C: 612 •

CAEE:A9 80 (2} 555 lda IC:O..Reset ;This is a communications failure
CAFO :20 98 CF (6) 556 jsr AssionID ; Reset to try aoain
CAF3: 557 •
CAF3 :AD rs 06 (4} 558 lda SvBcL ;Get back the packetlenoth
CAF6:85 40 (3} 559 sta bytecountl
CAF8 :AD 78 07 (4} 560 lda SvBcB
CAFB:85 4E (3) 561 sta bytecounth
CAFD: 562 •
CAFD: CAFD 563 SendPile equ •
CAFD:A9 BB (2) 564 lda l>RC! ;Retry count (bio!l
CAFF:AO OB (2) 565 ldy l<RC!
CBOl: 566 •
CBOI: CBOI 567 AltSendPile equ •
CBO! :A6 58 (3) 568 ldx slot
CB03:9D F3 04 (5} 569 sta Retry,x
CB06:98 (2} 570 tya
CB07:9D 73 05 (5) 571 sta Retry2,x
CBOA: 572 •
CBOA: 573 • SendPack destroys the bytecount
CBOA: 574 •
CBOA: CBOA 575 spilel equ
CBOA:A5 40 (3) 576 lda bytecountl
CBOC:BD rs 06 (4) 577 sta SvBcL
CBOF:A5 4E (3} 578 lda bytecounth
CBll :80 78 07 (4) 579 sta SvBcB
CB14: 580 •
CB14 :20 83 CS (6} 581 jsr SendOnePack ; Send the packet
CB17: 582 •
CB17 :AD F8 06 (4} 583 lda SvBcL
CB!A:85 40 (3} 584 sta bytecountl
CB!C :AD 78 07 (4) 585 lda SvBcB
CB1F:85 4E (3) 586 sta bytecounth
CB21: 587 •
CB21: 90 OC CB2F (3) 588 bee spilout
CB23 :A6 58 (3} 589 ldx slot
CB25 :DE F3 04 (7) 590 dee Retry,x
CB28 :DO EO CBOA(3) 591 bne spilel
CB2A:DE 73 05 (7} 592 dee Retry2, x
CB2D:10 DB CBOA(3) 593 bpl spilel ; If all fails , carry is set
CB2F: 60 (6} 594 spilout rts
CB30: 595 •
CB30: CB30 596 RecPack equ .
CB30 :A4 58 (3) 597 ldy Slot

.b.
CD
-0

OS PC.PACKET Divide by 7 routine 20-0CT-86 06:29 PAGE 2S

CB4C: 614 **
CB4C: 61S • .
CB4C : 616 • Divide? Do DIV and HOO 7 and set auxptr .
CB4C: 617 • .
CB4C: 618 • This routine divides the bytecount by seven. The .
CB4C: 619 • quotient qi ves the number of groups of seven bytes to .
CB4C: 620 • be sent, and the remainder gives the number of "odd" .
CB4C: 621 • bytes. .
CB4C; 622 • .
CB4C: 623 • Input; bytecountl,h <- t of bytes to write .
CB4C: 624 • buffer <- pointer to data .
CB4C: 62S • output: auxptr <- pointer to speed up csumminq .
CB4C: 626 • oddbytes <- bytecoun t MOO 7 .
CB4C: 627 • grp7ctr <- bytecount DIV 7 .
CB4C: 628 • .
CB4C; 629 u uuuuuuuu

CB4C; 630 •
CB4C;OO 24 49 631 pdiv7tab dfb 0,36, 73
CB4F;OO 04 01 632 pmod7tab dfb 0,4,J
CBS2 :00 01 02 04 633 di v7tab dfb 0,1,2,4,9,18
CBS8 :OO OJ 02 04 634 mod7tab dfb O, J,2,4, l , 2
CBSE : 63S •
CBSE:OO 7F FF 636 auxptrinc dfb 0,$7F,$FF
CB61; 637 •
CB61; CB61 638 Wr itePrep equ •
CB61: CB61 639 Divide? equ .
CB61; 640 •
CB61: 641 • Set up auxptr <- buffert$80 if $OFF < bytecount < $200
CB61: 642 • or auxptr <- buffer+$100 if $!FF < bytecount
CB61: 643 •
CB61 :A6 4E (3) 644 ldx bytecounth ;O, 1 or 2
CB63 :FO 17 CB7C(3) 64S beq noauxptr ; Auxptr used only for full pages
CB6S: 646 •
CB6S :AS SS (3) 647 lda buffertl
CB67 :SS S7 (3) 648 sta auxptrtl ;Copy over hi order part
CB69: 649 •
CB69 ;A9 80 (2) 6SO lda 1$80 ; Anticipate smaller bytecount
CB68 :EO 01 (2) 6Sl cpx ti ; Check bytecoun t
CB6D;FO 04 CB73(3) 6S2 beq sap! ; => $OFF < byte count < $200
CB6F; 6S3 •
CB6F:E6 S7 {S) 6S4 inc auxptrtl ; Add $100 to bytecount instead
CB71 :A9 00 (2) 6SS lda to ;Hake sure lo order unaltered
CB73; 18 (2) 6S6 sap! clc
CB74;6S S4 (3) 6S7 adc buffer
CB76 ;8S S6 (3) 6S8 sta auxptr
CB78;90 02 CB7C(3) 6S9 bee noauxptr ; skip if no carry
CB7A:E6 S7 (S) 660 inc auxptrtl ; don' t forget me
CB7C: 661 •
CB7C; 662 • Now look up the first order guess for DIV and MOD. X still has
CB7C: 663 • bytecount DIV 2S6.
CB7C: 664 •
CB7C: CB7C 66S noauxptr equ •
CB7C:BD 4C CB (4) 666 lda pdiv7tab, x
CB7F:8S 48 (3) 667 sta qrp7ctr
CBS! :BO 4F CB (4) 668 Ida pmod7tab, x
CB84:8S 4C (3) 669 sta oddbytes
CB86: 670 •
CB86: 671 • Now add in the mods and divs for each of the five hi order

OS PC.PACKET Divide by 7 routine 20-0CT-86 06:29 PAGE 26

CB86; 672 • bits in the lo order bytecount, correcting each time MOD becomes
CB86: 673 • bigger than 6 •
CB86: 674 •
CB86:A2 OS (2) 67S ldx ts ;Do for five bits
CB88 :AS 4D (3) 676 lda bytecountl
CB8A:8S S9 (3) 677 sta temp ; Store lo order for shifting
CB8C:29 07 (2) 678 and OOOOOOlll ; Save lo three for later
CB8E:A8 (2) 679 tay
CB8F: 680 •
CB8F; CB8F 681 divide3 equ .
CB8F:06 S9 (S) 682 asl teap ;C <- next from bytecountl
CB91 ;90 IS CBA8 (3) 683 bee divide2 ;If clear, no effect on DIV,MOO
CB93 :BO SS CB (4) 684 lda aod7tab,x ;Get M007 for 2'n
CB96; CB96 68 S di vide4 equ •
CB96;18 (2) 686 clc
CB97:6S 4C (3) 687 adc oddbytes ;Got new MOD value
CB99:C9 07 (2) 688 cmp t7 ; Is it too big?
CB9B:90 02 CB9F{3) 689 blt divide! ;=> NO leave MOD - 0->C
CB9D:E9 07 (2) 690 sbc t7 ;Bring MOD under 7 - C still set
CB9F: CB9F 691 divide! equ .
CB9F;8S 4C (3) 692 sta oddbytes
CHAI :BO S2 CB (4) 693 lda div7tab,x ;Get DIV for this 2'n
CBA4 ;6S 4B (3) 694 adc grp7ctr ;Add to DIV along with correction {C)
CBA6 ;SS 4B (3) 69S sta grp7ctr ;Update the DIV
CBA8; CBA8 696 di vide2 equ .
CBA8 :CA (2) 697 dex ;One less bit to deal with
CBA9:30 06 CBBI (3) 698 bmi divides ;Escape after 6 tiaes through loop
CBAB:DO E2 CB8F{3) 699 bne divide3 ;Take brnch !st S loops
CBAD; 700 •
CBAD;98 (2) 701 tya ;Get back the last three bits
CBAE:4C 96 CB (3) 702 jmp divide4 ; Sixth pass add in remains
CBBJ; 703 •
CBBI ; CBBI 704 divides equ .
CBBJ; 70S •
CBBI: 706 •

.b. 05 PC.PACKET Checksum Prepass 20-0CT-86 06:29 PAGE 27 05 PC.PACKET Get topbits byte for odds 20-0CT-86 06:29 PAGE 28

8
CBBI: 708 u uuuuuuuuuuuuuuuu CBE2: 766 ...

CBBI: 709 • • CBE2: 767 • •
CBBI: 710 • PreCheck Does the checksumming prepass • CBE2: 768 ' DetTopBits Get topbits for odd bytes •
CBBI: 711 • . CBE2: 769 • •
CBBI: 712 • Input: bytecount <- bytes in buffer • CBE2: 770 • Also sets buffer2 pointer to pointer at groups of •

CBBI: 713 • buffer <- pointer to data to send • CBE2; . 771 • seven bytes. •
CBBI: 714 • auxptr <- extra pointer to speed process • CBE2: 772 •

CBBI: 715 • output: checksum <- 8 bit XOR of data to be sent • CBE2: 773 • Input: oddbytes <- I of "odd" bytes

CBBI: 716 • • CBE2: 774 • buffer <- pointer to data

CBBI: 117 ••tttttttt•tt•tt•t•tttt•ttttUUttU•tUUUUUttttttttttttU CBE2: 775 • output: tbodd <- topbits for odd bytes

CBBI: 718 • CBE2: 776 • buffer2 <- buffer+oddbytes

CBBI: CBBI 719 PreCheck equ • CBE2: 777 •

CBBI: 720 • CBE2: 118 u

CBBI: 721 • Checksum any full pages CBE2: 779 •

CBBI : 722 • CBE2: CBE2 780 DetTopBits equ •

CBBl:AS 55 (3) 723 lda buffer+! CBE2: 781 •

CBBJ :48 (3) 724 pha ; Preserve buffer pointer CBE2:A4 4C (3) 782 ldy oddbytes

CBB4:A9 00 (2) 725 lda 10 CBE4 :88 (2) 783 dey

CBB6:A6 4E (3) 726 ldx bytecounth CBE5:A9 00 (2) 784 lda 10
CBB8 :FO 16 CBDO (3) 727 beq lastpass ; If no complete pages, skip this CBE7:85 59 (3) 785 sta tbodd

CBBA: CBBA 728 xor2 equ • CBE9; 786 •

CBBA:BC SE CB (4) 729 ldy auxptrinc, x ; Get nullher of bytes each ptr CBE9:Bl 54 (5) 787 gtbob lda (buffer), y

CBBD: CBBD 730 xorl equ • CBEB:OA (2) 788 asl a
CBBD:Sl 54 (5) 731 eor (buffer) ,y CBEC:66 59 (5) 789 ror tbodd

CBBF:Sl 56 (5) 732 eor (auxptr) ,y CBEE:88 (2) 790 dey
CBC! ;88 (2) 733 dey ;One less CBEF:IO F8 CBE9(3) 791 bpl gtbob

CBC2:DO F9 CBBD(3) 734 bne xorl CBF1:38 (2) 792 sec
CBC4:51 54 (5) 735 eor (buffer) ,y CBF2:66 59 (5) 793 ror tbodd
CBC6:51 56 (5) 736 eor (auxptr) ,y ; Have to deal with O case CBF4: 794 •

CBC8: 737 • CBF4:A5 4C (3) 795 lda ' oddbytes

CBC8: 738 • Now move the buffer up for next section CBF6:18 (2) 796 clc
CBC8; 739 • CBF7:65 54 (3) 797 adc buffer
CBCS:EO 01 (2) 740 cpx fl CBF9:85 56 (3) 798 sta buffer2
CBCA:FO 02 CBCE(3) 741 beq xorS ; If 256 and up bytes, bump xi CBFB:AS 55 (3) 799 lda buffer+!

CBCC:E6 55 (5) 742 inc buffer+! ; otherwise x2 CBFD:69 00 (2) 800 adc 10
CBCE:E6 55 (5) 743 xorS inc buffer+! CBIT:85 57 (3) 801 sta buffer2+1

CBDO: 744 • CCOI: 802 •

CBDO: CBDO 745 lastpass equ • CCOI: 803 •
CBDO; 746 •
CBDO: 747 • Do the remaining less than a page with a single pointer
CBDO: 748 •
CBDO:A4 40 (3) 749 ldy bytecount
CBD2 :FO 09 CBDD(3) 750 beq xor4
CBD4:51 54 (5) 751 eor (buffer) ,y ;Compensate for nth byte
CBD6:51 54 (5) 752 xor3 eor (buffer) ,y
CBD8:88 (2) 753 dey
CBD9:DO FB CBD6(3) 754 bne xor3
CBDB:Sl 54 (5) 755 eor (buffer) ,y ;Last damn (0th) byte
CBDD: 756 •
CBDO: 757 • Store result away . Retrieve old buffer value.
CBDD: 758 •
CBDD: CBDD 759 xor4 equ
CBDD:85 40 (3) 760 sta checksum
CBDF:68 (4) 761 pla
CBEO :85 55 (3) 762 sta buffer+!
CBE2: 763 •
CBE2: 764 •

05 PC.PACKET Prime write pump 20-ocT- B6 06 :29 PAGE 29 05 PC. PACKET Set the Ilfj aode req 20-0CT-B6 06:29 PAGE 30

CCOI: 805 ·· •t•• ·· ·· ·· ········ CC20: B49 •

CCOI: B06 • . CC20: B50 • X is slot•!6, Y is the desired aode

CCOI: B07 • sun Set up next buffer a.~d topbits . CC20: B51 •

CCOI: BOB • . CC20: B52 • Set up the Iitj mode reqi ster • Extreme care should be taken

CCOI: B09 • Primes the pipe for the qroup of seven bytes routine • CC20: B53 • here. Setti nq the mode byte with indexed stores causes a

CCOI: BIO • settinq the topbits byte and the •next• buffer. . CC20: B54 • false byte to be written a cycle before the real value is

CCOI: Bll • The routine also advances the buffer pointer by 7 to . CC20: B55 • written . This false value, if it enables the tilller, causes

CCOI: B12 • prepare for the qroups of seven transfer. . CC20: B56 • the Ilfj Rev A to pop the ootor on, inhibitinq the setti nq

CCOI : B13 • . CC20: 857 • of the llOde until the aotor tiaes out! lie avoid this by

CCOI: B14 • Input: buffer2 <- points to qroups of 7 data . CC20: B5B • settinq the aode byte only when it is not what we want, and if

CCOI: 815 • Output: next!, 7 <- first 7 bytes in buffer . CC20: B59 • it's not we stay here unt il we see that it is what we want •

CCOI: B16 • topbits <- MSBs of f i rst 7 bytes . CC20: B60 •

CCOI: B17 • . CC20: CC20 B61 Setilfjode equ •

CCOI: 818 ttttttUttU tt tttttt ttU ttttttttttttttttUUtttttttttttttt CC20 :BO BB CO (4) B62 lda monclr,x ;Motor must be off

CCOl : B19 • CC23 :BO 80 CO (4) 863 lda 16set,x ; Set up to access mode register

CCOI: CCOI B20 Sun equ . CC26:4C 20 CC (3) B64 jmp careful ;Don't aess unless we qotta

CCOl : B21 • CC29:9B (2) 865 biz tya

CCOI: B22 • Copy first seven bytes into the pipeline CC2A: 90 IF CO (5) B66 sta 17set,x ;Try storinq the llOde value

CCOI : B23 • CC2D: CC20 867 carefUl equ .
CCOl :AO 06 (2) B24 ldy 16 CC2D:9B (2) B6B tya ;Get back the tarqet value

CC03:3B (2) B25 sun2 sec CC2£:5D BE CO (4) B69 eor 17clr,x ;Compare with observed value

CC04 :Bl 56 (5) B26 lda (buffer2) , y CC31:29 IF (2) B70 and 1$1F ;can only read low 5 bits

CC06:99 40 00 (5) B27 sta next,y CC33:DO F4 CC29(3) 871 bne biz ;If not riqht, back to try aqain

CC09:30 01 ccoc (3) B2B bmi sun! CC35:60 (6) 872 rts

CCOB:IB (2) B29 clc CC36: B73 •

CCOC:66 41 (5) B30 sun! ror topbits CC36: BH •

CCOE :BB (2) B31 dey CC36: CC36 B75 llaitIIMlff equ •

CCOF:IO F2 CC03 (3) B32 bpl sun2 CC36: B76 •

CC11 :3B (2) B33 sec CC36: B77 • Make sure you' re i n read mode and wait 'til Disk II aotor is off

CC12 : 66 41 (5) B34 ror topbits CC36: B7B •

CCl4: B35 • CC36:20 97 CA (6) B79 jsr SetXliO ;Set x
CC l4: B36 • Advance the pointer CC39:BD BE CO (4) BBO lda 17clr,x

CCl4: B37 • CCJC:BD BO CO (4) BB! lda 16set,x

CC14 :A5 56 (3) B3B lda buffer2 CC3F: CCJF BB2 wi111! equ .
CCl6:1B (2) B39 clc CC3F :BO SE CO (4) BB3 lda 17clr,x

CC17 :69 07 (2) B40 adc 11 CC42:29 20 (2) 884 and l\00100000

CC!9 :B5 56 (3) B41 sta buffer2 CC44:DO F9 CC3F(3) BB5 bne wiwl

CC1B:90 02 CCIF(3) B42 bee sun3 CC46 :BO 8C CO (4) 886 lda 16clr,x

CCID :£6 51 (5) B43 i nc buffer2 +1 CC49: BB7 •

CCIF: CCIF B44 sun3 equ . CC49: BBB 'llait an additional 700 usec to allow 12V on Disk II to decay

CCIF:60 (6) B45 rts CC49: BB9 •

CC20: B46 • CC49:5A (3) B90 phy

CC20: B47 • CC4A:AO 8C (2) 891 ldy 1140
CC4C:88 (2) B92 wi1112 dey
CC4D:DO FD CC4C(3) B93 bne wiw2
CC4F :7A (4) B94 ply
CC50 : 895 •
CC50:60 (6) 896 rts
CC51: 897 •
CC51 : 89B •
CC51: B99 • This takes qrp7ctr and oddbytes and calculates 7•qrp7ctr+oddbytes.
CC51: 900 • The results are in Y(hi) and A(lo). This is the nuaber of bytes
CC51: 901 • that were received in the last ReceivePack.
CC51: 902 •
CC51: CC51 903 Rcvcount equ •
CC51 :A5 4B (3) 904 lda qrp7ctr
CC53 :AB (2) 905 tay
CC54:A2 00 (2) 906 l dx 10

~

~

.ti. 05 PC.PACKET Set the 1111 mode reg 20-0CT-86 06 :2 9 PAGE 31 06 PC.CREAD Set the liiM mode reg 20-0CT-86 06:29 PAGE 32

iS CC56:86 4B (3) 907 stx grp7ctr CC9F: 39 • loop. Update the buffer pointer if it occurred.
CC5B:A2 03 (2) 908 ldx 13 CC9F: 40 •
CC5A:OA (2) 909 times? asl a CC9F:DO 02 CCA3(3) 41 bne '+4
CC5B:26 4B (5) 910 rol grp7ctr CCAl:E6 57 (5) 42 inc buffer2+1
CC5D:CA (2) 911 dex CCA3: 43 •
CC5E:DO FA CC5A(3) 912 bne ti.lies? CCA3: 44 • Now the second byte
CC60:18 (2} 913 clc CCA3: 45 •
CC61:65 4C (3) 914 adc oddbytes CCA3 :AD EC CO (4} 46 lda 16clr+The0ff
CC63 :90 02 CC67(3) 915 bee t71 CCA6:10 FB CCA3(3) 47 bpl •-3 Back 1 instruction
CC65:E6 4B (5) 916 inc grp7ctr CCA8:5D AA CA (4) 48 eor shift2,x Recombine the MSB with data
CC67:84 4C (3) 917 t71 sty oddbytes CCAB:91 56 (6) 49 sta (buffer2), y Store it away
CC69:38 (2) 918 sec CCAD:45 40 (3) 50 eor checksum Md it to the checksua
CC6A:E5 4C (3) 919 sbc oddbytes CCAF:85 40 (3) 51 sta checksum
CC6C:BO 02 CC70(3) 920 bes t72 CCBl:CB (2) 52 iny
CC6E:C6 4B (5) 921 dee grp7ctr CCB2: 53 •
CC70:A4 4B (3) 922 T72 ldy grp7ctr CCB2: 54 • Jiow the third byte
CC72:60 (6) 923 rts CCB2: 55 •
CC73: 924 • CCB2 :AD EC CO (4) 56 lda 16clr+The0ff
CC73: 925 • CCB5:10 FB CCB2(3) 57 bpl •-3 : Back 1 instruction
CC73: 115 include pc. cread CCB7 :50 BA CA (4) 58 eor shift3,x : ReOOllbine the MSB with data
CC73: CC73 1 SlotDepRd equ • CCBA:91 56 (6) 59 sta (buffer2), y : Store it away
CC73: CC73 2 start25 equ . CCBC:45 40 (3) 60 eor checksum ;Md it to the checksum
CC73:AO 00 (2) 3 ldy 10 CCBE:B5 40 (3) 61 sta checksum
CC75:A5 4B (3) 4 lda grp7ctr CCCO:CB (2) 62 iny
CC77:48 (3) 5 pha : Save groups of seven counter CCC!: 63 •
CC7B:DO 03 CC7D(3) 6 bne start35 CCC!: 64 • Now the fourth byte
CC7A: 4C OA CD (3) 7 jmp done5 : Go get the checksum CCC!: 65 •
CC7D: 8 • CCC! :AD EC CO (4} 66 lda 16clr+The0ff
CC7D: 9 • Okay, get the groups of seven CCC4:10 FB CCC1(3) 67 bpl •-3 : Back 1 instruction
CC7D: 10 • Start by getting the topbits for this group of seven CCC6:5D CA CA (4} 68 eor shift4,x ;Recombine the MSB with data
CC7D: 11 • CCC9:91 56 (6) 69 sta (buffer2), y : Store it away
CC7D: CC7D 12 start3 5 equ . CCCB :45 40 (3) 70 eor checksua : Md it to the checksum
CC7D :AD EC CO (4) 13 lda 16clr+The0ff ;Get topbits CCCD :85 40 (3) 71 sta checksua
CC80:10 FB CC7D(3) 14 bpl start35 CCCF:CB (2) 72 iny
CC82 :85 59 (3) 15 sta temp : Just a second CCDO : 73 •
CC84: 16 • CCDO: 74 • The first Y turn over occurs at this point in the loop. Update
CC84: 17 • Split up the seven bits into two indices for topbit tables CCDO: 75 • the buffer pointer if it occurred .
CCB4: 18 • CCDO: 76 •
CC84:4A (2) 19 lsr a :O 1 dl d2 d3 d4 d5 d6 CCDO :DO 02 CCD4 (3) 77 bne '+4
CC85 :4A (2} 20 lsr a ;O 0 1 dl d2 d3 d4 d5 CCD2 :E6 57 (5) 78 inc buffer2+1
CC86:4A (2) 21 lsr a :O 0 0 1 dl d2 d3 d4 CCD4 : 79 •
CCB7:29 OF (2) 22 and noooo1111 ;O 0 0 0 di d2 d3 d4 CCD4 :A6 59 (3) 80 ldx temp : How we need the other index
CC89:M (2) 23 tax : First index into the tables CCD6: 81 •
CCBA:A5 59 (3) 24 lda temp ;I di d2 d3 d4 d5 d6 d7 CCD6: 82 • Now the fifth byte
CCBC:29 07 (2) 25 and f\00000111 :O 0 0 0 0 d5 d6 d7 CCD6: 83 •
CCBE:B5 59 (3) 26 sta temp : Keep for last three bytes CCD6 :AD EC CO (4) 84 lda 16clr+The0ff
CC90 : 27 • CCD9:10 FB CCD6(3) 85 bpl •-3 : Back 1 instruction
CC90: 28 • Read the !st byte, reunite its msb, store and checksum it CCDB :5D AA CA (4} 86 eor shift2,x ;Recombine the MSB with data
CC90: 29 • CCDE:91 56 (6) 87 sta (buffer2) ,y : Store it away
CC90 :AD EC CO (4) 30 lda 16clr+The0ff CCEO :45 40 (3) 88 eor checksum : J\dd it to the checksum
CC93:10 FB CC90 (3) 31 bpl •-3 : Back 1 instruction CCE2 :85 40 (3) 89 sta checksum
CC95 :5D 9A CA (4) 32 eor shiftl,x ;Recombine the MSB with data CCE4 :CB (2) 90 iny
CC98: 91 56 (6) 33 sta (buffer2), y : Store it away CCE5: 91 •
CC9A:45 40 (3) 34 eor checksum : Md it to the checksum CCE5: 92 • Now the sixth byte
CC9C:85 40 (3) 35 sta checksum CCE5: 93 •
CC9E:CB (2) 36 iny CCE5 :AD EC CO (4) 94 lda 16clr+TheOff
CC9F: 37 • CCEB: JO FB CCE5 (3) 95 bpl •-3 : Back I instruction
CC9F: 38 • Now, the second Y turn over occurs at this point in the CCEA:5D BA CA (4) 96 eor shift3, x ; Recombine the MSB with data

06 PC.CREAD Set the lit! mode reg 20-0CT-86 06:29 PAGE 33

CCED:91 56 (61 97 sta (buffer2) , y ; Store it away
CCEF:45 40 (31 98 eor checksum ; Add it to the checks111
CCFl :85 40 (3) 99 sta checksum
CCF3:C8 (21 100 iny
CCF4: 101 •
CCF4: 102 • And, finally, the seventh byte
CCF4: 103 •
CCF4 :AD EC CO (41 104 lda 16clr+The0ff
CCF7:10 F8 CCF4(31 105 bpl *-3 ;Back 1 instruction
CCF9:5D CA CA (41 106 eor shift4,x ; Recombine the MSB with data
CCFC:91 56 (61 107 sta (buffer2), y ; Store it away
CCFE:45 40 (31 108 eor checksum ; Add it to the checksum
cooo :85 40 (31 109 sta checksum
CD02 :CS (21 llO iny
C003: lll •
C003: ll2 • Now see if this is the last group of seven to receive
C003: ll3 •
C003 :C6 4B (51 ll4 dee grp7ctr
COOS :FO 03 COOA(31 115 beq done5 ; Go to get the checksum etc
C007:4C 70 CC (3) ll6 jmp start35 ; Another topbits
COOA: ll7 •
COOA: ll8 • Get and reconstruct the checksum
COOA: ll9 •
COOA: CDOA 120 done5 equ
COOA:AD EC CO (41 121 lda l 6clr+The0ff
COOD:lO FB CDOA(3) 122 bpl *-3
COOF:85 59 (31 123 sta temp ; 1 c6 1 c4 1 c2 1 co
COll: 124 •
COll:68 (41 125 pla ; Restore groups of 7 counter
C012:85 4B (31 126 sta grp7ctr
C014 :AD EC CO (41 127 lda 16clr+The0ff ; 1 c7 1 c5 1 c3 1 cl
CD17:10 FB CD14 (31 128 bpl •-3
C019:38 (21 129 sec
C01A:2A (21 130 rol a ; c7 1 c5 1 c3 1 cl 1
COlB :25 59 (3) 131 and temp ;c7 c6 c5 c4 c3 c2 cl cO
COlD :45 40 (31 132 eor checksum ;llhen we' re done, should be zero
COIF: 133 •
COIF: 134 • Get the packet end mark. Is it correct?
COIF: 135 •
CDlF:AC EC CO (41 136 rdha5 ldy 16clr+The0ff ;Preserve A
C022 :10 F8 C01F(31 137 bpl rdha5
C024: 138 •
CD24 :CO C8 (21 139 cpy tpacketend
C026:00 lC CD44 (3) 140 bne npenderr5
C028: 141 •
C028: 142 • Didn't have time before to checksum oddbytes. Do it now
CD28: 143 • A still has the partial checksum
CD28: 144 •
CD28 :A6 4C (31 145 ldx oddbytes
CD2A:FO 08 CD34 (3) 146 beq icbtl5
CD2C:AO 00 (21 147 ldy to
CD2E :51 54 (51 148 icbt5 eor (buffer) ,y
CD30 :C8 (21 149 iny
CD31 :CA (21 150 dex
CD32 :DO FA CD2E(31 151 bne icbt5
C034: 152 •
CD34: 153 • Okay, checksum oughta be zero. If not, checksum error.
C034: 154 •

~

"° (I.)

06 PC .CREAD Set the Jlf! mode reg

C034:
C034:AA
CD35 :DO ll
CD37;
CD37:
am :

CD34
(21

CD48 (31

CD37; CD37
CD37 :AD ED CO (4)
CD3A:AD EE CO (4)
CD3D:30 F8 CD3A(3)
CD3F:

155 icbtl5 equ
156 tax
157 bne cserror5
158 •
159 • liait for /BSY to go low
160 •
161 lstbsywait5 equ •
162 lda 16set+The0ff
163 rdh45 lda l 7clr+The0ff
164 bmi rdh45
165 •

20-0CT-86 06:29 PAGE 34

CD3F: 166 • Got the bytes, now acknowledge their receipt
C03F:
CD3F :AD EO CO
C042:
CD42 : 18
CD43:60
CD44:
CD44 :A9 20
CD46:DO 02
CD48 :A9 10
CD4A:38
CD4B:60
CD4C:
CD4C:

167 •
(41 168

169 •
(21 170
(61 171

172 •

lda reqclr+TheOff ; lower REO

clc
rts

(21
CD4A(3)

(21
(21
(6)

173 npenderr5 lda fnopackend
174 bne gserror5
175 cserror5 lda fcsumerr
176 gserror5 sec
177 rts
178 •
ll6 include pc.main

J:>, 07 PC .MAIN Protocol Converter I CBus Driver 20- 0CT-86
-0

06:29 PAGE 3S 07 PC.MAIN Protocol Converter I CBus Driver 20-0CT-86 06 :29 PAGE 36

J:>,
C04C : 2 • C07C: 60 •

CD4C: 3 • C07C:84 SB {3) 61 sty Slot

C04C: CD4C 4 Entry equ • C07E: 62 •

C04C:90 03 COS! {3) s bee bentry ; If non-boot, skip jump to boot C07E: 63 •

CD4E: 4C 23 CS (3) 6 jmp boot code C07E: 64 • Now map any ProDOS unit references to our sequential ones .

COS!: 7 • C07E: 6S • The method is bizzare and maqicians never reveal their secrets.

COS!: 8 • X is still set to slot number. C07E: 66 •

COS!: 9 • CD7E: CD7E 67 allset equ •
COS!: CDS! 10 bentry equ • C07E :AS 43 (3) 68 lda CMIJUnit ; 76S43210 7'6 specify unit

CDS!: 11 • COBO : 2A (2) 69 rol a ; 6S43210X C<-7

COS! :A9 40 (2) 12 lda . 1\01000000 COS! :08 (3) 70 php ;Save. drive num

COS3 :IC 78 04 (6) 13 trb ProFlaqtS ;ProFlaq is fixed in /le C082:2A (2) 71 rol a ;S43210X7 C<-6

COS6: 14 • C083:2A (2) 72 rol a ;43210X76 (6 is qrp of 2)

COS6: COS6 IS atentry equ • C084 :28 (4) 73 plp ;C<-7

COS6: 16 • C08S:2A (2) 74 rol a ; 3210X767

COS6:08 (2) 17 cld ;Don't want decimal mode!! C086:29 Ol (2) 7S and 1\00000011 . ;ProOOS only installs up to 4

COS7:8A (2) 18 txa C088:49 02 (2) 76 eor 1\00000010 ;000000/67; 6 was /qrpoftwo

COSS :AS (2) 19 tay ;Really want it in Y .. , no ROR ABS, Y! COBA:CO 04 (2) 77 cpy 14 ; If in slot 1,2,orl reverse qrps of two

COS9: 20 • COSC:BO 02 C090(3) 78 bqe allsetl

COS9: 21 • If this is a PC call, then qet the address of the parm table C08E:49 02 (2) 79 eor 1\00000010

CDS9 : 22 • C090:AA (2) 80 allsetl tax

COS9 :B9 7l 04 (4) 23 lda ProFlaq,y C091 :ES (2) 81 inx

CDSC :lO 11 C06f(l) 24 bmi noplay C092 :86 43 (l) 82 stx CMIJUnit ;You qot it

COSE: 2S • C094: 83 •

COSE: 68 (4) 26 pla ; Get lo order C094: 84 • Now if this is throuqh the ML! xface, qotta copy stuff into the

COSF:99 fl OS (S) 27 sta SRTempX,y ; Keep lo parm address-I C094: BS • send buffer from the parameter list.

CD62 :18 (2) 28 clc C094: 86 •

C063:69 Ol (2) 29 adc ll C094 :B9 7l 04 (4) 87 lda ProFlaq,y

C06S :AA (2) lO tax ; Lo order new return address C097:10 Ol C09C(3) 88 bpl darnit

C066:68 (4) ll pla ; Get hi order address C099:4C 40 CE (l) 89 jmp skipcopy

C067:99 7l 06 (S) l2 sta SRTempY,y ; Keep hi parm addr-1 C09C: 90 •

C06A:69 00 (2) 3l adc 10 C09C: 91 • Get the address of the in-line parameter table

C06C:48 (l) 34 pha ; Push back new return address hi C09C: 92 •

C060:8A (2) 3S txa C09C: C09C 9l darnit equ •
C06E:48 (l) l6 pha ; Push new return address lo C09C:B9 fl OS (4) 94 lda SRTempX,y ;Get back the low part buff addr

C06f: l7 • C09f:8S S4 (3) 9S sta buffer

C06f: C06f l8 noplay equ • COAi :B9 7l 06 (4) 96 lda SRTempY,y ; and the hi Part
C06f: 39 • COA4 :SS SS (l) 97 sta buffer+!
'C06f: 40 • On the //c, it . is important to have the Disk // enable lines COA6: 98 •

C06f: 41 • off for as lonq as possible before usinq the Hill (phases, COA6: 99 • Now pull out the command code, and the address of the parameters.

C06f: 42 • /liRREQ lines) • Wait here • til the Disk II motors are off. COA6: 100 •

C06f: 4l • COA6:AO 01 (2) IOI ldy II ; Stacked address is EA- I

CD6f:20 l6 CC (6) 44 jsr Waitlit!Off ;Must preserve Y! ! COAS :Bl S4 (S) 102 lda (buffer) , y

CD72: 4S • COAA:8S 42 (l) 103 sta cmdcode ;Nice

CD72: 46 • lie can't tolerate ints in most of the code, so disable CDAC:CS (2) 104 iny

CD72: 47 • CDAD:Bl S4 (S) !OS lda (buffer) ,y ;Get lo part of parmlist address

CD72 :08 (l) 48 php ; Save interrupt status CDAf:AA (2) 106 tax ;Save it

CD7l :78 (2) 49 sei ;No interrupts please COBO :CB (2) 107 iny

C074: so • COB! :Bl S4 (S) 108 lda (buffer) ,y ;Get hi part

CD74: S l • Preserve the zero paqe work area COBl:BS SS (l) 109 sta buffer+!

CD74: S2 • COBS:86 S4 (l) 110 stx buffer

CD74 :A2 lB (2) Sl ldx IZPSize-1 COB?: 111 •

C076 :BS 40 (4) S4 pzp lda ZeroPaqe,x COB?: 112 • Now buffer points to parmlist

C078 :48 (l) SS pha COB7: 113 • Check command type, and pidqeonhole the parmlist lenqth

C079:CA (2) S6 .dex COB?: 114 •

CD7A:IO FA C076(3) S7 bpl pzp COB? :A9 01 (2) llS lda IBadCmd

C07C: SB • CDB9 :A6 42 (3) 116 ldx cmdcode

C07C: S9 •Okay, we're safe ... now it's all riqht to store in zero paqe COBB :ED OA (2) 117 cpx 1$A ;Only valid codes are 0-9

01 PC.MAIN Protocol Converter I CBus Driver 20-0CT-S6 06:29 PAGE 37 01 PC.MAIN Protocol Converter I CBus Driver 20-0CT-S6 06:29 PAGE JS

CDBD:90 OJ CDC2(J) 118 blt noeh ;=> at least he qot that riqht CEOS:91 44 (6) 116 sta (CHDBufferl),y ;Stick it where they want i t

CDBF:4C 11 CF (3) 119 Errorhitch jmp Error ;Gee, maybe we should promote this quy ••• CEOA:CS (2) 111 iny

CDC2: CDC2 120 noeh equ . CEOB: 11S •

CDC2:AO 00 (2) 121 ldy 10 ; Set for indct compare CEOB :AD F9 04 (4) 119 lda $4F9 ; II c Port 1 interrupt status

CDC4 :Bl S4 (S) 122 lda (buffer) ,y ;Get I of par1s? CEDE: 180 •

CDC6:SS SA (J) 123 sta Onit CEOE :91 44 (6) !Sl sta (O!DBufferl), y ;Store PC interrupt status

CDCS: 124 • CE!O: 1S2 •

CDCS: 12S • Now copy the bytes CElO :A9 OS (2) 1S3 lda 18

CDCS: 126 • CE12 :SS (2) 184 dey ;A, Y has 0008; I bytes status

CDC8: CDC8 127 otaycnt equ . CEl3 :20 ro CF (6) 18S jsr squirrel

CDC8 :AO OS (2) 128 ldy l>cmdlenqth- 1 ;Always copy the maximum CEl6: 186 • .

CDCA: COCA 129 copyloop equ • CEl6:4C FD CD (3) 187 jmp Aokay ; Skip down (op) with no error

CDCA:Bl S4 (S) 130 lda (buffer) , y ;Pull it out of their hat CE19: CE19 18S maybectrl equ •

CDCC:99 42 00 (S) 131 sta cmdcode, y ; Stuff it into mine CEl9 :C9 04 (2) 189 ap IControlCllJ

CDCF:SS (2) 132 dey CEIB:DO OB CE2S (3) 190 bne BUnit ; Unit 10 was a bad one

CDDO :DO rs CDCA(3) 133 bne copy loop ;Copy 'em all CEID: 191 •

CDD2: 134 • CEID:A6 46 (3) 192 ldx CMDSCode ;lie allow two control calls for UnitlO

CDD2: !3S • Oltay. The caller of the PC could be makinq one of three calls CElF:FO OB CE2C(J) 193 beq enabint ;O means enable interrupts

CDD2: 136 • with a unit number of $00, Control, !nit or Status. Check for CE21 :CA (2) 194 dex

CDD2: 137 • these and do what is appropriate. CE22 :FO 14 CEJS(3) 19S beq dis ab int ; I 11ea11s disable interrupts

CDD2: 13S • CE24 :A9 21 (2) 196 lda lbadctl

CDD2 :AS 43 (3) 139 lda CMDOnit CE26: CE26 197 ErrorHitch2 equ •

CDD4 :DO 6A CE40 (3) 140 bne skipcopy ;Never mind CE26:DO 97 CDBF(3) 19S bne ErrorHitch ;No other codes allowed

CDD6: . 141 • CE2S: 199 •

CDD6: 142 • Check the parameter count for this call to unitlO CE2S: CE2S 200 BUnit equ •
CDD6: 143 • CE2S :A9 11 (2) 201 lda lbadUni t ;Only certain calls can have UnitlO

CDD6 :A6 42 (3) 144 ldx CMDCode CE2A:DO 93 CDBF(3) 202 bne ErrorHitch ; Branch always

CDDS :BD SE CF (4) 14S lda parmctab,x ;Get the lenqth t his comand CE2C: 203 •

CDDB:29 7F (2) 146 and 1$7F ; Force 0 -> HSB CE2C: CE2C 204 enabint equ .
CDDD:A8 (2) 141 tay ;Banq on CE2C:A9 CO (2) 20S lda . ISCO

CDDE:A9 04 (2) 148 lda IBadPCnt ; Antic bad count CE2E:8D F9 OS (4) 206 sta $SF9

CDEO:C4 SA (3) 149 cpy Unit ;User's pcount is currently here CE31 :A9 OF (2) 207 . lda ISOF

CDE2:DO DB CDBF(3) !SO bne Error Hitch ;What a baby! CE33 : OC 9A CO (6) 208 tsb $C09A

CDE4: ISi • CE36:DO OS CEJD(3) 209 bne aokayhitch

CDE4: 1S2 • Now service one of the three comL111ds CE38: 210 •

CDE4: !SJ • CE38: CE38 211 disabi nt equ •

CDE4 :EO OS (2) 1S4 cpx IInitCHD CE38 :A9 01 (2) 212 lda 1$01

CDE6:DO OA CDF2(3) !SS bne notinit ;Not an Init call CEJA: lC 9A CO (6) 213 trb $C09A

CDE8 :A9 00 (2) 1S6 lda IPowerReset ;Just like powerup or reset key(/lc) CE3D :4C FD CD (3) 214 aokayhitch jmp AOkay

CDEA:20 98 CF (6) 1S7 j sr AssiqnID ; Do a reset cycle CE40: 21S •

CDED:A9 00 (2) 1S8 l\okay lda 10 ;No error allowed CE40: 216 •

CDEF:4C 39 CF (3) IS9 jmp sa2 CE40: 211 • Okay, everythinq's all qroovy. ProDOS re-enters here.

CDF2: 160 • CE40: 218 • Check Unit number to be sure there is a correspondinq device

CDF2:SA (2) 161 notinit t xa ;Equiv to 'cnp IStatusCllJ' CE40: 219 •

CDF3 :DO 24 CE19(3) 162 bne maybectrl CE40: CE40 220 skipcopy equ •

CDFS: 163 • CE40 :A9 28 (2) 221 lda INoDrive ;Anticpate bad unit · number

CDFS:A9 21 (2) 164 lda IBadCtl ; Antic a non zero stat code CE42 :A4 S8 (3) 222 ldy slot

CDF7:A6 46 (3) 16S ldx CMDSCode ; Stat unitlO can only be codezO CE44 :BE F9 06 (4) 223 ldx NumDevices, y

CDF9:DO C4 CDBF(3) 166 bne ErrorHitch CE47 :E4 43 (3) 224 cpx CMDUnit

CDFB! 167 • CE49 :90 DB CE26(3) 22S blt ErrorBitch2 ; safe- If C clr then z i s clr

CDFB:8A (2) 168 txa ;Equiv to 'lda IO' CE4B: 226 •

CDFC:A6 S8 (3) 169 ldx Slot CE4B: 221 • Set buffer and bytecount in anticpation of the inevitable. SendPack.

CDFE:AO 07 (2) 110 ldy 11 CE48: 228 •

CE00:91 44 (6) 111 ninl sta (OndBufferl), y ;Clear some space CE4B:A9 09 (2) 229 Ida l>cmdlenqth

CE02:88 (2) 112 dey CE4D:8S 4D (3) 230 sta bytecount l

CE03 :DO FB CEOO (3) 113 bne ninl CE4F:A9 00 (2) 231 l da l<cmdlenqth

CEOS: 114 • CESl:SS 4E (3) 232 sta bytecounth

CEOS :BD F9 06 (4) 115 lda NumDevices, x CES3 :8S SS (3) 233 sta buffer+!

J:>.
-0
01

.ti. 07 PC.MAIN Protocol Converter I CB us Driver 20-0CT-86 06:29 PAGE 39 07 PC.MAIN Protocol ·converter I CBus Driver 20-0CT-86 06:29 PAGE 40

'° 0-
CESS :A9 42 (2) 234 lda l>cmdcode CE96: 292 • The buffer address and bytecount depend on the call type;

CES7 :8S S4 (3) 23S sta buffer CE96: 293 •

CES9: 236 • CE96:EO 04 (2) 294 cpx IControlC!lld

CES9: 237 • If it's a PC call, omit the next two steps CE98:DO 18 CEB2(3) 29S bne NOControl

CES9: 238 • CE9A: 296 •

CES9:A6 SS (3) 239 ldx Slot CE9A: 297 • In the case of control, bytecount: • (buffer)

CESB:BD 73 04 (4) 240 lda ProFlag,x ; Is it a call from ProDOS? CE9A: 298 • and buffer := buffert2

CESE:lO 13 CE73 (3) 241 bpl not stat ; •> Stat code already set ... CE9A: 299 •

CE60: 242 • CE9A:AO 01 (2) 300 ldy n
CE60: 243 • Need to generate a parameter count for a ProDOS call CE9C:Bl S4 (S) 301 lda (buffer) ,y ; Get Hi order bytecount

CE60: 244 • CE9E:AA (2) 302 tax
CE60:A6 42 (3) 24S ldx CMDCode CE9F:88 (2) 303 dey

CE62 :BD SE CF (4) 246 lda ParaCTab,x CEAO :Bl S4 (S) 304 lda (buffer) ,y

CE6S:29 7F (2) 247 and 1$7F CEA2:48 (3) 30S pha ; Keep for later

CE67:8S SA (3) 248 sta Unit CEA3:18 (2) 306 clc
CE69: 249 • CEA4 :A9 02 (2) 307 lda 12

CE69: 2SO • ProDOS always needs the highest blockno byte zeroed CEA6:65 S4 (3) 308 adc buffer

CE69: 251 • CEA8 :BS S4 (3) 309 sta buffer

CE69:A9 00 (2) 2S2 lda 10 CEAA:68 (4) 310 pla ;Get back Lo order bytecount

CE6B:85 48 (3) 2S3 sta CMDBlockS CEAB:90 13 CEC0(3) 311 bee seconds end ; Skip hi ord increment

CE6D: 254 • CEAD:E6 SS (S) 312 inc buffer+!

CE6D: 2SS • If this is a ProDOS status call, set stat code to zero CEAF:4C CO CE (3) 313 jmp secondsend ;Skip to store bytecount

CE6D: 256 • CEB2: 314 •

CE6D:AS 42 (3) 2S7 lda CMDCode CEB2: CEB2 31S NOControl equ •

CE6F:DO 02 CE73 (3) 2S8 bne not stat :=> Not status so forget it CEB2:EO 02 (2) 316 cpx IWriteClll ;Check for a writeblock

CE71: 2S9 *lda ISClleviceStat ;A is already zero CEB4 :DO 06 CEBC(3) 317 bne NOOlock ;Must be control or write

CE71 :SS 46 (3) 260 sta CMDSCode ; Store in command table CEB6: 318 •

CE73: 261 • CEB6: 319 • In the case of WriteBlock, the length is Sl2 and the buffer

CE73: 262 • Okay, finally send over the damn command CEB6: 320 • address is at buffer in the couand table

CE73: 263 • CEB6: 321 •

CE73: CE73 264 notstat equ . CEB6:A9 00 (2) 322 lda 10

CE73 :AS SA (3) 265 lda Unit CEB8 :A2 02 (2) 323 ldx 12

CE7S :A6 43 (3) 266 ldx CmdPCount ;Swap the Parmcount ' unitl CEBA:DO 04 CEC0(3) 324 bne secondsend

CE77 :86 SA (3) 267 stx Unit CEBC: 32S •

CE79:8S 43 (3) 268 sta CMDPCount ;Now they' re correct CEBC: 326 • For FileWrite, the buffer address is at Olllbuffer

CE7B: 269 • CEBC: 327 • and the length is at OIDblock.

CE7B:A9 80 (2) 270 lda ICllldmark CEBC: 328 •

CE7D :85 SB (3) 271 sta WPacketType CEBC: CEBC 329 NOOlock equ *

CE7F: 272 • CEBC:A6 47 (3) 330 ldx CMDBlockh
CE7F: 20 87 CA (6) 273 jsr ClrPhases ;Bring all phases off for Quark CEBE:AS 46 (3) 331 lda CMDBlockl

CE82: 274 • CECO: 332 •

CE82 :20 £9 CA (6) 27S jsr sendPack CECO: CECO 333 secondsend equ •

CEBS :BO 46 CECD(3) 276 bes behitch ; If not okay, skip to bus error CEC0:86 4£ (3) 334 stx bytecounth

CE87: 277 • CEC2 :SS 40 (3) 335 sta bytecountl

CE87: 278 • Now copy over the buffer address for any data xfer. CEC4: 336 •

CE87: 279 • CEC4 :A9 82 (2) 337 lda ldatamark
CE87 :AS 44 (3) 280 lda CMDBuffer CEC6: 8S SB (3) 338 sta WPacketType ; Identify this as a data packet

CE89:8S S4 (3) 281 sta buffer CEC8: 339 •

CE8B :AS 45 (3) 282 lda CMDBuffert 1 CEC8 :20 DA CA (6) 340 jsr SendData

CE8D:8S SS (3) 283 sta buffer+! CECB:90 04 CED1(3) 341 bee noxtrasend
CE8F: 284 • CECO: CECO 34 2 behitch equ .
CE8F: 28S • Now for some commands, we have to send over a packet of data, too. CECD:A9 06 (2) 343 lda IBusErr ;This is the bus error hitch

CE8F: 286 • See if this command is one of THOSE. CECF:DO 46 CF17(3) 344 bne Error

CE8F: 287 • CED!: 345 •

CE8F :A6 42 (3) 288 ldx cmdcode CED!: 346 • On ProDOS status call, we've got to point the buffer pointer

CE91 :BO BE CF (4) 289 lda parmctab,x CED!: 347 • correctly to zero page ... it's the only case special case

CE94: JO 3B CE01(3) 290 bpl noxtrasend ; Encoded in top bit CED!: 348 • (on Write, Format and Control no data comes back) •

CE96: 291 • CED!: 349 •

01 PC.MAIN Protocol Converter I CBus Driver 20-0CT-86 06: 29 PAGE 41 01 PC.MAIN Protocol Converter I CBus Driver 20-0CT-86 06:29 PAGE 42

CED!: CED! 350 noxtrasend equ • CF15: 408 •
CED! :A4 58 (3) 351 ldy Slot CF15: CF15 409 noerror equ .
CED3 :B9 13 04 (4) 352 lda ProFlag,y CF15:A5 40 (3) 410 lda statbyte
CED6:10 OC CEE4 (3) 353 bpl getresults CF11 : CF11 411 Error equ .
CED8 :AS 42 (3) 354 lda e11dcode CF11 :A4 58 (3) 412 ldy Slot Need access to screenholes
CEDA:DO 08 CEE4(3) 355 bne getresults CF19:99 F3 04 (5) 413 sta Retry,! Keep unadulterated error in shale
CEDC: 356 • CFlC:AA (2) 414 tax Set the Z flag
CEDC:A9 45 (2) 351 lda l>CMIJBufferh ;llant status in these four CFlD:FO lA CF39(3) 415 beq sa2 Special case the zero
CEDE:A2 00 (2) 358 ldx l<CMDBufferh CFlF: 416 •
CEEO :85 54 (3) 359 sta buffer CFlF:BE 13 04 (4) 411 ldx ProFlaq,y ; Set N to P roDOS call or not
CEE2 :86 55 (3) 360 stx buffer+! CF22:10 15 CF39(3) 418 bpl sa2 ; If PC call, no mapping occurs
CEE4: 361 • CF24: 419 •
CEE4: 362 • Please to be calling ReceivePack CF24 :A2 00 (2) 420 ldx 10 : Asswie a soft error
CEE4: 363 • CF26:C9 40 (2) 421 Clip l\01000000 : Soft error check
CEE4: CEE4 364 qetresults equ • CF28 :BO OE CF38(3) 422 bqe storeaway : If $40 or bigger, map to zero
CEE4 :20 30 CB (6) 365 jsr RecPack ;Get status byte (maybe read data too) CF2A: 423 •
CEE7:BO E4 CECD(3) 366 bes behitch CF2A:A2 21 (2) 424 ldx IIOError ;Now anticipate ProDOS 1/0 error
CEE9: 361 • CF2C:C9 2B (2) 425 Cllp lllriteProt
CEE9: 368 • Figure ho11 many bytes were sent and put that in X, I temps CF2E:FO 09 CF39(3) 426 beq sa2 ;OK to return llrite Protect
CEE9: 369 • CF30 :C9 28 (2) 421 Cllp INoDrive
CEE9:20 51 CC (6) 310 jsr Rcvcount ;Do the tins 1 ... CF32 :FO 05 CF39(3) 428 beq sa2 ;OK to return Drive disconnected
CEEC :20 FO CF (6) 311 jsr squirrel : Store away count in SHTEMPs CF34 :C9 2F (2) 429 Cllp fOffLine
CEEF: 312 • CF36:FO 01 CF39(3) 430 beq SA2
CEEF: 313 • For the ProDOS status call, we've got to look at the status byte CF38: 431 •
CEEF : 314 • returned and return a DIP error if appropriate. Also overwrite CF38: CF38 432 storeaway equ •
CEEF: 375 • the X, I temps with I blocks if this is a ProDOS Stat call. CF38:8A (2) 433 txa : Use the default value
CEEF: 316 • CF39: CF39 434 sa2 equ .
CEEF:A5 42 (3) 311 lda CMDCode : Is it a ProOOS status call CF39:A4 58 (3) 435 ldy Slot
CEF! :DO 22 CF15(3) 318 bne noerror CF3B:99 13 05 (5) 436 sta SHTe11pl,y ;Keep in screenhole
CEF3 :A6 58 (3) 319 ldx Slot CF3E: 431 •
CEFS :BO 13 04 (4) 380 lda ProFlaq,x CF3E: 438 • If this is the //c version, we need to reset the 1111 to its
CEF8:10 lB CF!S (3) 381 bpl noerror CF3E: 439 • former disk II state. This is done by setting the mode register
CEFA: 382 • CF3E: 440 • to a little known (and less dociaented) aode which speeds up the
CEFA:A5 46 (3) 383 lda CMDBlockl ;This'll get loaded into the XI regs later CF3E: 441 • internal aotor tilleout. llhen the motor enable has timed out, the
CEFC:9D F3 05 (5) 384 sta SHTempX,x CF3E: 442 • aode can be set back to zero. This aethod is necessary because
CEFF:A5 41 (3) 385 lda ClllBlockh CF3E: 443 • if the timer is enabled within the tiaeout period, the 110tor on a
CF01:9D 13 06 (5) 386 sta Sl!Te11pY,x CF3E: 444 • Rev A 1111 pops on for the full tilleout period (since mode changes
CF04: 381 • CF3E: 445 • are disabled when the aotor is on. It's bizzarre. Bl<11e Mac.
CF04 :AS 45 (3) 388 lda ClllBufferh ;Check status byte CF3E :AD EB CO (4) 446 lda aonclr+$60 ;lt>tor off
CF06:4A (2) 389 lsr a CF41 :2C ED CO (4) 441 bit 16set+$60 : Into aode reg access aode
CF07:4A (2) 390 lsr a CF44:A9 2B (2) 448 lda 1$2B ;This is the aagic •speed up• value
CF08:4A (2) 391 lsr a CF46:8D EF CO (4) 449 sta 11set+$60 ;Throw into mode register
CF09:90 04 CFOF (3) 392 bee ChlOffLn ; no error, go check off line CF49:EA (2) 450 nop ; You' re supposed to wait a while
CFOB:A9 28 (2) 393 lda tWriteProt ;else set WPRar error CF4A:EA (2) 451 nop
CFOD:BO 08 CF11 (3) 394 bra error CF4B:EA (2) 452 nop
CFOF: CFOF 395 ChkOffLn equ * CF4C:EA (2) 453 nop
CFOF:4A (2) 396 lsr a CF4D: CF4D 454 waitoff equ •
CFI0:4A (2) 391 lsr a CF4D:AD EE CO (4) 455 lda l 1clr+$60 ;llait 'til motor off
CF!l:A9 2F (2) 398 lda IOffLine ; Assume error CF50 :29 20 (2) 456 and 1$20
CFIJ: 90 02 CF11 (3) 399 bee error CF52 ;DO F9 CF4D (3) 451 bne waitoff
CF15: 400 • CF54 :AO 00 (2) 458 ldy 10 ;Now set the reg back to $00
CF15: 401 • Now it's tine to think about returning to the caller CF56:A2 60 (2) 459 ldx 1$60 ; !Iii!' s in slot 6
CFlS: 402 • Remember that ProDOS doesn't want to know about soft errors, CF58 :20 20 CC (6) 460 jsr Set!Wllode
CF15: 403 • only fatal ones. If this is a ProDOS call, and the soft error CFSB :AD EC CO (4) 461 lda 16clr+$60
CF15: 404 • bi t in the statbyte is set, there IS NO error (statbyte is CFSE:AD E2 CO (4) 462 lda calclr+$60
CF15: 405 • cleared) . Also, ProDOS wants only 1/0, Wr i te Protect, No Device, CF61 :AD E6 CO (4) 463 lda lstrbclr+$60
CFlS: 406 • Offline. If any other hard error comes from the device CF64 :A4 58 (3) 464 ldy Slot ;Need Slot in Y
CF15: 401 • on a ProDOS call, map it to an 1/0 Error. (Gross ae out.) CF66: 465 •

b
-<>
'-I

b 07 PC.MAIN Protocol Converter I CBus Driver 20-0CT-S6 06:29 PAGE 43 07 PC.MAIN ID Assiqnment Cycle 20-0CT-S6 06:29 PAGE 44

'° 00
CF66: 466 • Now, restore our zero paqe area. CF9S: 515 •

CF66: 467 • CF9S: CF9S 516 AssignID equ •

CF66:A2 00 (2) 46S ldx fO CF9S :4S (3) 517 pha ;Save the init code

CF6S :6S (4) 469 rzp pla CF99:20 50 CA (6) 51S jsr reset chain ;Reset all of those things

CF69 :95 40 (4) 470 sta zeropaqe,x CF9C:6S (4) 519 pla

CF6B:ES (2) 471 inx CF9D:AA (2) 520 tax ;Save InitCode

CF6C:EO lC (2) 472 cpx fZPSize CF9E: 521 •

CF6E:90 FS CF6S (3) 473 blt rzp CF9E: 522 • Save the canmand code, unit, and init code

CF70: 474 • CF9E: 523 • 'cause we'll trample 'em;

CF70: 475 • We're into the stretch! Restore interrupt mask, load X, Y, CF9E: 524 •

CF70: 476 • and A and set the carry if the error byte is non-zero. CF9E:A5 42 (3) 525 lda CMDCode

CF70: 477 • CFA0:4S (3) 526 pha

CF70 :2S (4) 47S plp ; Restore interrupt flaq CFAl:A5 43 (3) 527 lda CMDPCount

CF71 :B9 F3 05 (4) 479 lda SBTeapx,y ;Get X value CFA3:4S (3) 528 pha
CF74 :AA (2) 4SO tax CFA4 :A5 46 (3) 529 lda OOSCode

CF75 :B9 73 05 (4) 4S'l lda SBTempl,y ;Grab the error result code CFA6:4S (3) 530 pha

CF7S :4S (3) 4S2 pha CFA7 :S6 46 (3) 531 stx CMDSCode ; Store away the type of !NIT

CF79 :B9 73 06 (4) 4S3 lda SBTempy,y ;Pull out the Y value CFA9: 532 •

CF7C:AS (2) 4S4 tay ;No more access to screenholes CFA9: 533 • Set up to send Def!D canmand packets

CF7D:lS (2) 4S5 clc ; Anticipate zero result code CFA9: 534 •

CF7E:6S (4) 4S6 pla ; Pull back result code CFA9:A9 OS (2) 535 lda f!nitClnd

CF7F:FO 01 CFS2 (3) 4S7 beq finalskip ; Return with carry clear CFAB:S5 42 (3) 536 sta Cl!llCode
CFS! :38 (2) 4S8 sec ; Solle type of error CFAD:A9 00 (2) 537 lda fO

CFS2: CFS2 4S9 finalskip equ • CFAF:S5 5A (3) 53S sta Unit

CF82: 490 • CFBl :A9 02 (2) 539 lda f2 ; f parms in !nit call

CFS2 :08 (3) 491 php ; save carry and Z flaq CFB3 :S5 43 (3) 540 sta CMDPCount

CFS3 :2C 7S 04 (4) 492 bit ProFlag+5 ; !ck - ProFlag is fixed in /le CFB5: 541 •

CFS6 :70 04 CFSC(3) 493 bvs ickl ; If bit 6=1, then return to alt RCM CFB5: 542 • Point the buffer pointer

CFSS :2S (4) 494 plp ;Vclr so return across RCM bank bdy CFB5: 543 •

CFS9 :4C S4 C7 (3) 495 jmp SllRTS2 CFB5 :A9 42 (2) 544 lda f>CMDCode

CFSC : CFSC 496 ickl equ • CFB7 :85 54 (3) 545 sta buffer

CFSC:2S (4) 497 plp CFB9:A9 00 (2) 546 lda f<CMDCode

CFSD :60 (6) 498 rts ;Flaqs set correctly aqain CFBB:S5 55 (3) 547 sta buffer+!

CFSE: 499 • CFBD:A9 80 (2) 54S lda fcmdmark

CFSE: 500 • CFBF:S5 58 (3) 549 sta llPacketType

CFSE: CFSE 501 parmctab equ • CFC!: 550 •

CFSE :03 502 dfb \00000011 Status: 3 parms/no data send CFC! :20 S7 CA (6) 551 jsr ClrPhases ;Make sure phases are off for Quark

CFSF :03 503 dfb \00000011 Read: 3 parms/no data send CFC4: 552 •

CF90 :S3 504 dfb \10000011 Write: 3 parms/data send CFC4 : 553 • Send an ID for the next device in the chain

CF91:01 505 dfb \00000001 Forwat: 1 parm /no data send CFC4: 554 •

CF92 :S3 506 dfb \10000011 Control: 3 parms/data send CFC4: CFC4 555 mordevices equ •

CF93 :01 507 dfb \00000001 !nit: 1 parm /no data send CFC4 :E6 5A (5) 556 inc Unit

CF94 :01 50S dfb \00000001 Open: 1 parm I no data send CFC6:A9 09 (2) 557 lda f>cmdlenqth

CF95 :01 509 dfb \00000001 Close: 1 parm /no data send CFCS :S5 40 (3) 55S sta bytecountl ;ReceivePack scrambles count

CF96:03 510 dfb \00000011 Char Read: 3 parms/ data send CFCA:A9 00 (2) 559 lda f<cmdlenqth

CF97:S3 511 dfb \10000011 CharNrite: 3 parms/data send CFCC:S5 4E (3) 560 sta bytecounth

CF9S: 512 • CFCE: 561 •

CF9S : 513 • CFCE:20 S3 CS (6) 562 jsr SendOnePack ; Send the command
CFDl :90 05 CFDS(3) 563 bee adev2 ; If okay, skip to qet response
CFD3: 564 •
CFD3:C6 5A (5) 565 dee Unit
CFD5 :4C OF CF (3) 566 jmp mdevl
CFDS : 567 •
CFDS :20 E3 C9 (6) 56S mdev2 jsr Recei vePack ; Get the response
CFDB:A5 40 (3) 569 lda statbyte
CFDD:FO E5 CFC4 (3) 570 beq mordevices
CFDF: 571 •
CFDF: 572 • Okay, we done last device . Squirrel away the number of devices.

07 PC.MAIN ID Assiqnment Cycle 20-0CT-86 06:29 PAGE 4S 07 SYMBOL TABLE SORTED BY SYMBOL 20-0CT-86 06:29 PAGE 46

CFDF: S73 • C90B ACHE! ?CD7E ALLSET CD90 ALLSETl ?CBO 1 AL TS EN DP ILE

CFDF:AS SA (3) S74 mdevl lda Unit COED AOKAY CE3D AOKAYHITCH CF98 ASSIGNID ?CDS6 ATENTRY

CFEl :A4 S8 (3) 575 ldy slot ?FABA ADTOSCAN S6 AUXPTR CBSE AUXPTRINC ? 4E AUXTYPE

CFE3: 99 F9 06 (S) S76 sta NumDevices, y ; Devices out there ? 20 BADBLOCK 01 BAIJCMD ? 22 BADCTLPARM 21 BAOCTL

CFE6: S77 • 04 BADPCNT 11 BADUNIT ?EOOO BASIC CS2F BC!

CFE6: S78 • Recover the scrambled ProDOS parms CECO HEBITCB CDS! BENTRY CC29 BIZ 0011 BMSGLEN

CFE6: S79 • cm BOOTc ?CS 14 BOOTCASES CS23 BOOTCODE CSS2 BOOTFAIL

CFE6:68 (4) S80 pla CSSF BOOl'MSG 07DB BOOTSCRN CS70 BOOTTAB 32 BSYTOl

CFE7:8S 46 (3) S81 sta CMDSCode OA BSYT02 S4 BUFFER S6 BUITER2 CE28 BUNIT

CFE9:68 (4) S82 pla 06 BUSERR ? 40 BUSHCXi ? 08 BYTEOO 40 BYTECOUNT

CFEA:8S 43 (3) S83 sta CMDPCount 4E BYTECOUNTH 40 BYTECOUNTL ?CSOO CSOOORG C082 CAlCLR

CFEC:68 (4) S84 pla C083 CAlSET C084 CA2CLR COSS CA2SET CC2D CAREFUL

CFED:8S 42 (3) S8S sta CMDCode CFOF CBKOITLN ? 24 CB C8A2 CBAINUNBSY 40 CHECKSUM

CFEF: S86 • CITF CLEARIORQ!S CA8 7 CLRP HAS ES 4 7 CMDBLOCKB ? 4 6 CMDBLOCK

CFEF:60 (6) S87 rts 4 6 CMDBLOCKL 4 8 CMDBLOCKS 4 S CMDBUFFERB 44 CMDBUFFERL

CFFO: S88 • 44 CMDBUFFER 42 CMDCOOE 0 9 CMDLENGTB ?CS8A CMDLIST

CFFO: S89 • 80 CMIJ!ARK 43 CMDPCOUNT 46 CMDSCODE ? 4 9 CMDSPAREl

CFFO: CFFO S90 squirrel equ • ? 4A CMDSPARE2 43 CMDUNIT CSSD COMA 80 CO!t!RESET

CFFO:A6 S8 (3) S91 ldx Slot 04 CONTROLCMD COCA COPYLOOP ?FDED COUT CD48 CSERRORS

CFF2 :90 F3 OS (S) S92 ' sta SHTempX,x 10 CSUMERR ? 2S CV CD9C DARNIT 82 DATAMARK

errs :98 (2) S93 tya C996 DATDCJIE C9CO DBERROR ?CBE2 DETTOPBITS ? SO DEVICEID

CFF6:9D 73 06 (S) S94 sta SHTempY,x CE38 DISABINT CBS2 DIV7TAB CB9F DIVIDEl CBA8 DIVIDE2

CFF9:60 (6) S9S rts CB8F DIVIDE3 CB96 DIVIDE4 CBBl DIVIDES ?CB61 DIVIDE7

CFFA: S96 • CDOA DONES CE2C ENAB INT ?C08A ENABLE! C088 ENABLE2

CFFA: S97 • CA7D ENABLECBAIN CD4C ENTRY CDBF ERRORBITCB CF17 ERROR
CE26 ERRORBITCB2 CF82 FINALSKIP ? 03 FORMATCMD CEE4 GETRESULTS
CA44 GOB! ?C9E3 -GRABSTATUS 48 GRP7CTR CD4A GSERRORS
CBE9 GTBOB ? Sl HOSTID CD34 ICBTlS CD2E ICBTS
CF8C !CK! OS INITCMD 27 IOERROR C080 Hill

07 Ililt!OOE C08C L6CLR C08D L6SET COSE L7CLR
C08F L7SET ? 68 LASTCJIE CHOO LASTPASS 00 LOCO

? 01 LOCI ?CD37 j,STBSYllAITS C08 6 LSTRBCLR C087 LSTRBSET
C9EO MARKERR CEl 9 MAYBECTRL crnr MDEVl crns MDEV2
CSOD MI.JENTRY CBS8 !«lll7TAB C088 lllNCLR C08 9 lllNSET
CSS4 lllRCHRS CFC4 lllROEVICES 07F8 MSLO'r 40 NEXT!

4E NEXT2 4F NEXT3 SO NEXT4 Sl llEXTS
S2 NEXT6 S3 llEXT7 40 NEXT CEOO 111111
01 NOANSllER CB7C NOAUXPTR CEB2 NOCONTROL 28 NODRIVE

CDC2 NOEB CF! S NOERROR ? lF NOINT ? 02 llOMARK
20 NOPACKEND CD6F NOPLAY CDF2 NOTINIT CE73 NOTSTAT

CEBC NOllBLOCK CED 1 NOXTRASEND CD44 NPENDERRS 06F9 NUMDEVICES
4C OODBYTES 2F OFFLINE ?CDC8 OKAYCNT CA79 CJIEHSl

CA77 CJIEHS C3 PACKETBEG C8 PACKETEND CF8E PARMCTAB
C988 PATCH! ? AS PBBVALUE ? FF PBCVALUE 00 PCID2

BF PDIDBYTE C84C PDIV7TAB CB4F PH007TAB ? S2 POINTER
00 POliERRESET C903 PREAMBLE ?CBBl PRECHECK CSOA PROOOSENTRY

0473 PROFLAG CD76 PZP 0888 RC! OS RC2
CS83 RCOOE 48 RCVBUF CCS l RCVCOUNT C9FS ROB!
C9FF ROH2 CAOD ROB3 CD3A ROH4S ?CAOB ROBS
CDlF ROBAS 01 READCMD C9E3 RECEIVEPACK CB30 RECPACK
C080 REOCLR C081 REQSET CS76 RESET CASO RESETCHAIN
04F3 RETRY OS73 RETRY2 ? 4F RPACKETTYPE CB37 RPKl
CB48 RPOUT CS78 RSTl CF68 RZP CF39 SA2
CB73 SAP! ? 00 SCDEVICESTAT ? 01 SCGETDCB ? 03 SCGETDEVINFO
0473 SCHOLES C99A SCHl ? 02 SCRETNLSTAT C9CC SDlO
C9AF SD7 C9C6 SD9 CAE8 SDOUBT CECO SECONDSEND
CA4E SEND80 CAS 0 SENDBYTE CADA SENDDATA C883 SENDCJIEP ACK
CAE9 SEllDPACK CAPO SENDPILE CC20 SETiit!OOE ?FE8 9 SETKBD

I
~

:8

8 07 SYMBOL TABLE SORTED BY SYMBOL 20-0CT-86 06:29 PAGE 47 07 SYMBOL TABLE SORTED BY ADDRESS 20-0CT-86 06:29 PAGE 48

?FE93 SETVID CA97 SETXHO CA9A SHIFT! CMA SH!FT2 ? 00 STATUSOID ? 00 SCDEVICESTAT 00 PCID2 00 LOCO
CABA SHIFT3 CACA SH!FT4 OS73 SHIT.MP! OSF3 SHTF.MPX 00 POllERRESET ? 01 LOCI 01 BAOCMD ? 01 SCGETDCB
0673 SHTEMPY C924 SKIP! C926 SKIP2 C960 SK!P3 01 READOIO 0 1 MOAN SllER ? 02 liOOll 02 llRITECMJ
C962 SKIP4 CE40 SKIPCOPY CC73 SLGrDEPRD S8 sLor ? 02 SCRE'lliLSTAT ? 03 FOllMATOID ? 03 SCGETDEV!lil'O ? 04 llASRESET
C8ES SOB! C8F6 SOB2 C8FD SOB3 40 sorr 04 CONTROLCMD 04 BADPCHT OS RC2 OS !liITOID

? 67 SOFTERROR CBOA SPILEl CB2F SP !LOOT CITO SQUIRREL 06 BUSERR 07 IlilllOOE ? 08 BYTEOO 09 OIDLENGTH
C8AC SSB C8AF SSD ?0100 STACK CA31 STARTO OA BSrr02 10 CSUMERR ? 10 SVMASKl 0011 BMSGLEll
CA39 START! CA4B START2 ?CC73 START2S CC7D START3S 11 BADOllIT lC ZPS!ZE lE STAMO ? lF llO!liT
C900 START 40 STATBYTE ? 81 STATMARK lE STAMO 20 llOPACKEMD 21 BADCT1 ? 22 BADCTLPARM ? 24 CH

? 00 STATUSOID CF38 STOREAllAY CC03 SUll2 ?CCOl SUll ? 2S CV 27 IOERROR 28 llOORIVE 2B llRITEPROT
CCOC SU!ll CClF SUN3 0778 SVBCH 06F8 SVBCL ? 20 BADBLOCK 2F a'FLillE 32 BSrrOl 40 ZEROPAGE

? 10 SVMASKl C797 SllPRGrO C784 SllRTS2 ?C904 SYNCTAB ? 40 BUSHOO 40 CHECKSUM 40 SOFT 41 TOPBITS
CC67 T71 CC70 T72 S9 TBOOD S9 Tr.MP 42 OIDCOOE 43 OIDPCOUllT 43 OIDUllIT 44 OIDBUFFER

60 THEOIT CCSA T!HES7 41 TOPB!TS C896 UBSYl 44 OIDBUFFERL 4S OIDBUFFERH 46 OIDSCODE ? 4 6 OIDBLOCK
SA UllIT ?0101 VERSION ?FC22 vrAB CC3 6 llAIT llll«lIT 4 6 OIDBLOCKL 4 7 OIDBLOCKB 48 OIDBLOCKS ? 49 OIDSPAREl

CF4D llAITOFF ? 04 llASRESET ?C9DF llASTE12 C9DE llASTE14 ? 4A OIDSPARE2 4B RCVBUF 4B GRP7CTR 4C OODBrrES
?C9DD llASTEl 6 ?C9DC llASTE18 ?C9D9 llASTE32 CC3F lllltll 40 llEXTl 40 BYTECOUllTL 40 llEXT 40 STATBYTE
CC4C 1illtl2 SB llPACKETTYPE 02 llRITECMIJ CB61 llRITEPREP 40 BYTECOUllT 4E llEXT2 4E BYTECOUllTH ? 4E AIJXTYPE

2B llRITEPROT CBBD XOR! ?CBBA XOR2 C806 XOR3 ? 4F RPACKETTYPE 4F llEXT3 SO llEXT4 ? SO DEVICEID
CBDD XOR4 CBCE XORS CA70 YMSllA!T 40 ZEROPAGE ? Sl BOSTID Sl llEXTS S2 llEXT6 ? S2 PO!liTER

lC ZPSIZE S3 llEXT7 S4 BUFFER S6 AIJXPTR S6 BOFFER2
SB S10T S9 TBOOD S9 TEMP SA UllIT
SB llPACKETTYPE 60 THEOFF ? 67 SOFTERROR ? 68 LASTCJiE
80 CCHIRESET 80 Olll!ARK ? 81 STATllARK 82 DATAMARK
AS PBBVALUE BF PDIDBYTE C3 PACKETBEG CB PACKETEND
FF PBCVALUE ?0100 STACK ?0101 VERSION 0473 PROFLAG

0473 SCHOLES 04F3 RETRY OS73 RETRY2 OS73 SHTEMPl
OSF3 SHTEMPX 0 67 3 SHTEMPY 06F8 SVBCL 06F9 llUKlEVICES
0778 SVBCH 07DB BOorSCRN 07F8 MSLOT OBB8 RC!
COBO REQCLR COBO Hill COB! REQSET C082 CAlCLR
C083 CAlSET C084 CA2CLR COBS CA2SET C08 6 LSTRBCLR
C087 LSTRBSET C088 l«l!ICLR C089 l«lllSET ?COBA ENABLE 1
COBB ENABLE2 C08C L6CLR COBO L6SET COSE L7CLR
COBF L7SET ?CSOO CSOOORG CSOA PROOOSENTRY CSOD MLIEllTRY

?CSU BOorCASES cm BOorC CS23 BOO?CODE CS2F BC!
CSS2 BOorFAIL CSS4 l«>RCBRS CSSD COO CSSF BOOlMSG
CS70 BOorTAB CS76 RESET CS78 RSTl C583 RCOOE

?CSBA OIDLIST C784 SVRTS2 C797 SllPRorD C883 SElllXJIEPACK
C896 UBSYI C8A2 CHAillUllBSY C8AC SSB C8AF SSD
C8ES SOB! C8F6 SOB2 C8FD SOB3 C900 START
C90B ACHE! C924 SKIP! C926 SK!P2 C960 SKIP3
C962 SKIP4 C996 DATDC!iE C99A SCMl C9AF SD7
C9BB PATCH! C9CO DBERROR C9C6 SD9 C9CC SD!O
C 903 PREAMBLE ?C 904 SYNCTAB ?C909 llASTE32 ?C9DC llASTE18

?C9DD llASTE16 C9DE liASTE14 ?C9DF llASTE12 C9EO MARKERR
cm RECEIVEPACK ?C9E3 GRABSTATUS C9F5 RDHl C9FF RDH2

?CAOB ROHS CAOD RDH3 CA31 STARTO CA39 START!
CA44 GOB! CA4B START2 CA4 E SEllD80 CASO SEllDBYTE
CASO RESETCHA!li CA70 YMSllA!T CA77 CllEMS CA79 CllEMSl
CA7D ENABLECHAIN CA87 CLRPHASES CA97 SETXNO CA9A SHIFT!
CMA SHIFT2 CABA SH!FT3 CACA SHIFT4 CADA SEllDDATA
CAE8 SDOUBT CAE9 SEllDPACK CAFD SEllDPILE ?CBOl ALTSENDPILE
CBOA SP!LEl CB2F SP !LOUT CB30 RECPACK CB37 RPKl
CB4B RPOUT CB4C PDIV7TAB CB4F PM007TAB CBS2 DIV7TAB
CBS8 l«>D7TAB CBSE AUXPTRillC CB61 llRITEPREP ?CB61 DIVIDE7
CB73 SAP! CB7C llOAUXPTR CB8F D!VIDE3 CB96 DIVIDE4
CB9F DIVIDE! CBA8 DIVIDE2 ?CBBl PRECBECK CBBl DIVIDES

?CBBA XOR2 CBBD XOR! CBCE XORS CBDO LASTPASS

9

01 SYMBOL TABLE SORTED BY ADDRESS

CB06 XOR3
?CCOl SUN
CC20 SETlltlODE
CC3F lllltll
CC67 T71
CC7D START3S
CD34 ICBTlS
CD48 CSERRORS

?CDS 6 ATENTRY
CD90 ALLSETl

?CDC8 OKAYCNT
CEOO NIU
CE2C ENAB INT
CE73 MOTSTAT
CECO BEBITCB
ens NO ERROR
CF4D llAITOFF
CF8E PARHCTAB
CFDF MDEVl

?FABA AUTOSCAN
?FE93 SETVID

CBOD XOR4
CC03 SUN2
CC29 BIZ
CC4C lllltl2
CC10 T72
CDOA DONES

?CD37 LSTBSYllAITS
CD4A GSERRORS
CD6F NOPLAY
CD9C DARNIT
COCA COPYLOOP
CE! 9 MAYBECTRL
CE38 DI SABINT
CEB2 NOCONTROL
CED 1 llOXTRASEND
CF17 ERROR
CF68 RZP
CF98 ASSIGNID
CITO SOU I RREL

?FC22 VTAB

tt SUCCESSFUL ASSEMBLY :• HO ERRORS
" ASSDIBLER CREATED ON lS-JAN-84 21:28
" TarAL LINES ASSDIBLED 21S7
*' FREE SPACE PAGE COUNT 70

20-0CT-86 06:29 PAGE 49

?CBE2 DETTOPBITS
CCOC SUN!
CC2D CAREFUL
CCS l RCVt:OONT
CC13 SLC7!DEPRD
CDlF RDBAS
CDJA RDB4S
CD4C ENTRY
CD76 PZP
CDBF ERRORHITCH
COED MJKAY
CE2 6 ERRORHITCB2
CE3D J.OKAYHITCB
CEBC NOllBl.OCK
CEE4 GETRESULTS
CF38 STOREAllAY
CF82 FINALSKIP
CFC4 HORDEVICES
crrr CLEARIORQ!S

?FDED CWl

CBE9 GTBOB
CClF SUN3
CC36 llAITlllHOIT
CCSA TIMES7

?CC73 START2S
CD2E ICBTS
CD44 NPENDERRS
CDS! BENTRY

1CD7E ALLSET
CDC2 llOEB
CDF2 NC7!1NIT
CE28 BUNIT
CE40 SKIPCOPY
CECO SECONDSENO
cror CBKOITLN
CF39 SA2
CF8C ICKl
CFD8 MDEV2

?EOOO BASIC
1FE89 SETKBO

2 SOURCE FILE IOI =>ASM.S
INCLUDE FILE 102 =>S.D!AGl.SRC

0000:
0000:

1st on, vsym,asym
include s.diaql.src

02 S.DIAGl.SRC

0000:
0000:
0000:
0000:
0000:

0000:
0000:
0000:
0000:
0000:

0000!
0000:
0000:
0000:
0000:

0000:
0000:
0000:
0000: 0042
0000: 0000
0000: 0045
0000: 0046
0000: . 0047
0000: 0049
0000: 0025
0000: OOAE
0000: 0007
0000: 0000
0000: OOlB

0000: 03B8
0000: 0438
0000: 0488

0000:

0000: BFF8
0000: BFF9
0000: BFFA
0000: BFFB

0000: cooo
0000: COlO
0000: FC42
0000: FC58
0000: FC9C
0000: FD8E
0000: FDDA
0000: FDED

slir.ky diaqnostics 20-0CT-86 06 :36 PAGE 2

2 tuuuuuuuttuuuuuuuuuuuuuuuuuuuuut

3 *
4 * Internal Slinky Diaqnostics
5 * 6 ..

8 , u ..

9 * written by Eric Larson 19 April 1985
10 * modified by Rich Williams 09 May 1985
11 * put into II c rom by Ray Chianq 20 Feb 1986
12 u u

14 tttttUttUUUttttUUUUUttttttttUUUUUUUUUUUt

15 * on entry: y-req has the value of sl.mslot (screen hole offset)
16 *. x-reo has the value ,of sl.devno (hardware offset)
17 • card size is in numbanks, y
18 ... u

20 til:tttUttUttttttttttUUttttttUttttUUttttttUUUttttttt

21 • equates
22 **********'****'**'*****'*******'****"*********************
23 mptr equ $42 ; indirect pointer to messaqes
24 testnum equ $00
25 canpdata equ $45
26. limit equ $46
27 value equ $47
28 loopcount equ $49
29 CV equ $25
30 dot equ SAE ;ascii period
31 bell equ $07 ;ascii bell
32 er equ $00 ;ascii er
33 esc equ $1B ;ascii esc

35 numbanks equ $478-$CO ; number of 64K banks on card
36 powerup equ $4F8-$CO ; powerup byte
37 power2 equ $578-$CO

39 * hardware .equates, MUST be in $BFOO to avoid double· access

41 addrl equ $BfF8 ; address pointers
42 addrm equ $BFF9 ; auto incs every data access
43 addrh equ $BFFA ' 44 data equ $BFFB ;data pointed to

46 kbd equ $COOO
47 kstrobe equ $C010
48 clreop equ $FC42
49 bane equ $FC58
50 clreol. equ $FC9C
51 crout equ $FD8E
52 prbyte equ $FDDA
53 cout equ $FDED

02 S .DIAGl.SRC slinky diagnostics 20-0CT-86 06:36 PAGE 3 02 S.DIAGl.SRC slinky diagnostics 20-0CT-86 06:36 PAGE 4

----- NEXT OBJECT FILE NAME IS ASM.S.0 2031: 2031 84 AddressTest equ • ; read ' write to address register

2000: 2000 55 erg $2000 2031 :A9 05 85 lda 15

2000 : 56 MSB OFF 2033:85 25 86 sta CV ;cursor vertical position

2000: 2000 57 StartTest equ • ;entry point for self diagnostics 2035:20 8E FD 87 jsr Crout

2000 :A9 00 58 lda 10 2038 :A9 10 88 lda 1$10

2002 :85 49 59 sta LoopCount ; clear counter 203A:20 lD 22 89 jsr Print ; "PASSES = "
2004:85 4A 60 sta LoopCount tl 203D:A5 4A 90 Ida LoopCount tl

2006 : 99 38 04 61 sta PowerUp, Y ;marks card as having no directory 203F:20 DA FD 91 jsr PrByte

2009:99 B8 04 62 sta Power2, Y 2042 :AS 49 92 lda LoopCount

200C:B9 BB 03 63 lda numbanks, Y ;qet result 2044 :20 DA FD 93 jsr PrByte

200F:29 OF 64 and 1$0F 2047:20 OB 22 94 jsr NxtLine

2011 :85 46 65 sta Limit 204A:A9 OJ 95 lda . 11

2013 :20 58 re 66 jsr Home 204C:85 00 96 sta TestNum ; start test number at I

2016:A9 08 67 lda 18 204E:AO 05 97 ldy 15 ; index into data patterns
2050 :B9 F4 22 98 at! lda Patterns, Y

2018: 69 ' "MEMORY CARD TEST<CR>ESC TO EXIT<CR>TEST WILL TAKE " 2053:20 13 22 99 jsr setaddr ; Set address to pat tern
2056:DD F8 BF JOO cmp addrl,X ; read reqister back

2018 :20 ID 22 71 jsr print 2059:DO 11 206C 101 bne atf ;they didn't match

201B:A5 46 72 lda Limit 205B:DD F9 BF 102 cmp addra,X

201D:4A 73 lsr A 205E :DO OC 206C 103 bne atf

201E:4A 74 lsr A ;divide by 4 (0-3) 2060:09 FO 104 era 1$FO ; fill hiqh 4 bits

20JF:48 75 pha ;save size index 2062 :DD FA BF 105 cmp addrh,X

2020 :09 04 76 era 14 ;0-3 --> 4-7 2065:DO 05 206C 106 bne atf
2022:20 ID 22 77 jsr Print ;45, 90, 135, or 180 2067 :88 107 dey ; index to next pat tern

2025 :A9 09 78 lda 19 2068:10 E6 2050 108 bpl at!

2027 :20 ID 22 79 jsr Print ; " SECONDS<CR>CARD SIZE = " 206A:30 03 206F 109 bmi RollOVerTest

202A:68 80 pla ;size index 206C:4C 97 21 110 atf l•P Fail
202B:20 ID 22 81 jsr Print ;256K, 512K, 768K, 1 MEG
202E: 20 8E FD 82 jsr Crout 206F: 206F 112 RollOverTest equ • ; Test 2. Do address counters roll over

206F:E6 00 113 inc TestNum ;addrl, m, h = $FF from previous test
2071 :DE re BF 114 dee addrl,X ; start with address $FFFFE.
2074 :BD FB BF 115 lda data,X ;dee ck since $IT -> $FE doesn't carry
2077: 9D FB BF 116 sta data,X ;address should now be $00000
207A:BD FA BF 117 lda addrh,X
207D:29 OF 118 and 1$0F ;mask off upper 4 bits
207F:ID F9 BF 119 ora addrm,X
2082: lD FB BF 120 ora addrl,X
2085 :FO 03 208A 121 beq AddBusTest ; address was indeed $00000
2087:4C 97 21 122 jmp Fail

8
(,.>

8 02 S .DIAGl.SRC slinky diagnostics 20-0CT-S6 06:36 PAGE 5 02 S.DIAGl.SRC slinky diagnostics 20-0CT-S6 06:36 PAGE 6

~
20BA: 124 .. 20E3:10 E3 20CB 1S2 bpl ab4
20BA: 125 • 20E5 :30 03 20EA 1S3 bmi ClearTest
20BA: 126 • Walk a I through the address registers to test for bus shorts 20E7:4C 97 21 1S4 abFail jmp Fail
20BA: 127 • assumes addresses = 0 from previous test
20SA: 12B • 20EA: 186 u ,

20BA: 129 .. 20EA: IB7 •
20BA: 20SA 130 AddBusTest equ • ;check for address buss shorts 20EA: 188 uuuuuuttttttUUUUUUUUt

20SA:E6 00 131 inc TestNum ;Test 3
20SC:A9 01 132 lda 11 20EA: 20EA 190 ClearTest equ • ; see if all locations clear to zero
20BE:B5 45 133 sta CompData 20EA:20 11 22 191 jsr clraddr ; Set address and A to 0
2090 :BA 134 txa ;Make pointer to addrl 20ED: 20ED 192 FillTest equ • ; Loop ' see if all locations fill to ones
2091 :lB 135 clc 20ED:E6 00 193 inc TestNUll ;Test 4 = OOs. Test 5 = FFs
2092:69 FB 136 adc f>addrl 20EF:B5 45 194 sta CompData ; value to fill RAM with
2094 :B5 42 137 sta MPtr 20FI :A5 45 195 fl lda CompData
2096 :A9 CO 13B lda f$CO 20F3:9D FB BF 196 sta Data,X ;write data out
209B:B5 43 139 sta MPtr+ 1 20F6:9D FB BF 197 sta Data,X
209A:A5 46 140 lda Limit ;How many bits used in high address? 20F9:9D FB BF 19S sta Data,X
209C:FO 04 20A2 141 beq abl ; If lM then test D3210 20FC:9D FB BF 199 sta Data,X
209E:C9 OC 142 cmp f$0C ; If 76SK then test D3210 20FF :BD FS BF 200 lda addrl,X
20AO :DO 02 20A4 143 bne ab2 2102 :DO ED 20Fl 201 bne fl
20A2 :A9 10 144 ab! lda 1$10 2104 :ID F9 BF 202 ora addrm,X ;are addrl ' addrm both zero?
20A4 :4A 145 ab2 lsr A ;If 512K then test D210 if 256K then DIO 2107 :DO ES 20Fl 203 bne fl ; no, keep going
20A5 :4B 146 pha ; Save it for later 2109:20 E4 21 204 jsr PrDot ;Z=lifdone
20A6 :AO 02 147 ldy 12 ; iialk a one thru high med and low address 210C :DO E3 20Fl 205 bne fl ;no, keep going
20AB :4B 14B ab3 pha 210E :20 OB 22 206 jsr NxtLine ;Go to next line and clear address
20A9:20 11 22 149 jsr clraddr ;Clear address in case of false carries 2111 :BD FB BF 207 cpl lda Data,X ;read data back
20AC:6S 150 pla 2114 :c5 45 20S cmp CompData
20AD:91 42 151 sta (MPtr) ,y ; Store pattern in address 2116 :DO CF 20E7 209 bne ab Fail ; Failed if ne
20AF:4S 152 pha 211B :BD FB BF 210 lda Data,X ; do 2 per loop for speed
20BO :A5 45 153 lda CompData ;qet value to store 211B :C5 45 211 cmp CompData
20B2: 9D FB BF 154 sta data,x 211D:DO C8 20E7 212 bne abFail
20B5 :E6 45 155 inc CompData ;Each address gets a different value 211F:BD rs BF 213 lda addrl,X
20B7: 6B 156 pla ;Get pattern back 2122 :DO ED 2lll 214 bne cpl
20BB :4A 157 lsr A ;Move the I over. $BO -> $40 etc. 2124 :ID F9 BF 215 ora addrm,X ;are addrl ' addrm both zero?
20B9 :DO ED 20AB 15B bne ab3 ;Until all bits tested 2127 :DO ES 2lll 216 bne cpl ; no, keep going
20BB: 91 42 159 sta (MPtr) ,y ; Zero out current byte 2129:20 E4 21 217 jsr PrDot ;Z=lifdone
20BD: 6A 160 ror A ;O -> $SO 212C :DO E3 2111 21S bne cpl ; no, keep qoinq
20BE :BS 161 dey 212E:20 OB 22 219 jsr NxtLine ;Go to next line and clear address
20BF:l0 E7 20AB 162 bpl ab3 ;Loop through all 3 address registers 2131 :A5 45 220 lda CompData
20Cl :A9 01 163 lda 11 ;Now read em all back 2133:49 IT 221 eor f$FF ;0 -> FF
20C3 :B5 45 164 sta CompData 2135 :DO B6 20ED 222 bne FillTest
20C5 :6S 165 pla ;Get start value for high byte
20C6 :AO 02 166 ldy f2
20CB:4S 167 ab4 pha
20C9:20 II 22 16B jsr clraddr ;Clear address in case of false carry
20CC:6B 169 pla
20CD:91 42 170 sta (MPtr), y ; Set address
20CF:B5 47 171 sta Value ;Don't pha since we might abort
20Dl :BD FB BF 172 lda data,x
2004 :C5 45 173 cmp CompData ; Right data?
20D6:DO OF 20E7 174 bne ab fail
20DB :E6 45 175 inc CompData
20DA:A5 47 176 lda Value
20DC:4A 177 lsr A
20DD :DO E9 20CB 17B bne ab4
20DF:91 42 179 sta (MPtr) ,y
20El: 6A IBO ror A ;O -> $BO
20E2 :BB !SI dey

02 S.DIAGl.SRC slinky diagnostics 20-0CT-86 06 :36 PAGE 7 02 S .DIAGl.SRC slinky diagnostics 20-0CT- 86 06:36 PAGE 8

2137 : 2137 224 Computed eQ1J . each byte qets computed value 2180: 2180 2S8 Pass eQ1J . ;passed all the tests
2137:E6 00 225 i nc TestN11111 Test 6 2180 :A9 OB 2S9 lda l$0B
2139 :A9 SS 226 lda ms Starting data pattern 2182 :20 ID 22 260 jsr Print ;'CARD OK'
213B:8S 4S 227 sta CompData Address left at O from last test 218S :F8 261 sed
213D:20 FD 21 228 cl jsr get value Value = addrm t addrh t SSS. A = 0 2186 :AS 49 262 lda LoopCount
2140: 18 229 c2 clc 2188 :18 263 clc
2141 :6S 47 230 adc Value 2189:69 01 264 adc 11
2143 :6S 4S 231 adc Ca1pData 218B:85 49 26S sta LoopCount
214S :9D FB BF 232 sta data, x 2180 :AS 4A 266 lda LoopCount t 1
2148 :85 4S 233 sta Ca1pOata ; Save for next add 218F:69 00 267 adc 10
214A:BD F8 BF 234 lda addrl,x 2191 :85 4A 268 sta LoopCount ti
2140:00 Fl 2140 235 bne c2 2193 :08 269 cld
214F:BD F9 BF 236 lda addr11 ,x ;Tille to print a dot? 2194 :4C 31 20 270 JllJ> AddressTest ; loop until first failure
21S2 :DO E9 2130 237 bne cl 2197: 271 •
2154 :20 E4 21 238 jsr PrDot ;Z=lifdone 2197: 2197 272 Fail eQ1J . ;display failure message
2157:00 E4 2130 239 bne cl 2197:48 273 pha ;save actual data
2159:20 OB 22 240 jsr NxtLine ; Go to next line and clear address 2198:20 42 FC 274 jsr ClrEop
215C :A9 5S 241 lda 1$55 ; Starting data pattern 219B:A9 OA 27S lda 1$0A
215E:85 45 242 sta CompData 2190:20 ID 22 276 jsr Print ; 'CARD FAILED!<CR>'
2160 :20 FD 21 243 c3 jsr get value ;Now read em back 21AO :AS 00 277 lda TestHum
2163:18 244 c4 clc 21A2 :C9 03 278 CllJl 13
2164:65 47 245 adc Value 21A4 :BO 09 21AF 279 bes DataErr ;not an addressing problem
2166 :65 45 246 adc CompData 21A6:68 280 pla ;there is no failling data really
2168 :85 4S 247 sta CompData 21A7:A9 OC 281 lda 1$0C
216A:BD FB BF 248 lda data, x 21A9:20 ID 22 282 jsr Print ; "ADDRESS ERROR"
216D:CS 4S 249 Clip CompOata ;Is it right? 21AC:4C DE 21 283 jmp ErrCommon
216F: DO 26 2197 250 bne Fail 21AF:A9 OD 284 DataErr lda 1$00
2171 :BO F8 BF 2Sl lda addrl,x 21Bl :20 ID 22 28S jsr Print ; "DATA ERROR '
21 74 :DO ED 2163 2S2 bne c4 21B4 :38 286 sec

. 2176:BD F9 BF 253 lda addrm,x ;Time to print a dot? 21BS :BO F8 BF 287 lda addrl,X
2179 :DO ES 2160 2S4 bne c3 21B8 :E9 01 288 sbc 11 ; set back to actual failing value
217B:20 E4 21 255 jsr PrDot ;Z=lifdone 21BA:48 289 pha
217E :DO EO 2160 2S6 bne c3 21BB:BD F9 BF 290 lda addra,X

21BE:E9 00 291 sbc 10 ;propaqate borrows (if any)
2!CO :48 292 pha
21Cl :BO FA BF 293 lda addrh, X
21c4:29 or 294 and 1$0F ;mask off high 4 bits
21C6:E9 00 29S sbc 10
21C8 :20 DA FD 296 jsr PrByte ;print as two hex digits
21CB:68 297 pla
21CC:20 DA FD 298 jsr PrByte ;print addrm as two hex digits
21CF:68 299 pla
2100 :20 DA FD 300 jsr PrByte ;print addrl as two hex digits
2103 :A9 OE 301 lda ISOE
21D5 :20 ID 22 302 jsr Print ·" - "
2108 :68 303 pla ;actual data
2109:45 4S 304 eor CompData
2lDB :20 DA FD 305 jsr PrByte ;print failing data as two hex digits
2lDE :A9 OF 306 ErrCommon lda 1$0F
21EO :20 ID 22 307 jsr Print ; "<CR>SEE DEALER FOR SERVICE<CR>"
21E3: 60 308 rts
21E4: 309 •
21E4: 310 •
21E4: 311 •
21E4: 21E4 312 PrDot eQ1J
21E4 :A9 AE 313 lda fDot
21E6:20 ED FD 314 jsr Cout
21E9:AD 00 CO 31S lda Kbd ; Is escape pressed?

I
g;
01

(11 02 S .DJAGl.SRC slinky diaqnostics 20-0CT-86 06:36 PAGE 9 02 S.DIAGl.SRC slinky diaqnostics 20-0CT-86 06:36 PAGE 10
0
0-

21EC:C9 9B 316 IESC+$SO 223B: 60 374 dfb HOB-HO cmp
21EE :DO 05 21F5 317 bne noesc 223C :77 375 dfb HOC-HO
21FO :6S 31S pla ; Pop current return address 223D:S4 376 dfb HOD-HO
21Fl :6S 319 pla 223E:SF 377 dfb HOE-HO
21F2 :SD 10 CO 320 sta KStrobe 223F:92 37S dfb HOF-HO
21F5: 21F5 321 noesc equ . 2240:AA 379 dfb HlO-HO
21F5 :BO FA BF 322 lda addrh,x ; Test if last dot 2241 :31 20 40 45 3SO MO dci "l MEG"
21FS:29 OF 323 and 1$0F 2246:32 35 36 CB 381 Ml dci "256K"
21FA:C5 46 324 cmp Limit ; Z = 1 if last dot 224A:35 31 32 CB 3S2 M2 dci "512K"
21FC:60 325 rts 224E:37 36 3S CB 3S3 M3 dci "76SK"
21FD: 21FD 326 qetvalue equ . 2252 :31 3S BO 384 M4 dci "lSO"
21FD:l8 327 clc 2255 :34 BS 385 HS dci "4S"
21FE:BD F9 BF 32S lda addrm,x 22S7 :39 BO 3S6 M6 dci "90"
2201 :7D FA BF 329 adc addrh,x 2259 :31 33 BS 3S7 M7 dci "13S"
2204: 69 55 330 adc 1$55 225C :4D 4S 40 4F 388 MS asc "MEl«JRY CARD TEST"
2206:8S 47 331 sta Value 226C:OD 389 dfb CR
2208 :A9 00 332 lda 10 2260:45 53 43 20 390 asc "ESC TO EXIT"
220A: 60 333 rts 2278 :OD 391 dfb CR
220B: 220B 334 NxtLine equ • ;Go to next line and clear address 2279:S4 45 S3 S4 392 dci "TEST WILL TAKE "
220B :20 BE FD 335 jsr Crout 2288 :20 S3 45 43 393 H9 asc . SECCJIDS"
220E:20 9C re 336 jsr Clrtol 2290 :OD 394 dfb CR
2211 : 337 • fall into clraddr 2291 :43 41 52 44 395 dci "CARD SIZE = "
2211: 2211 338 clraddr equ • ;Clears the address reqisters 229D:OD OD 396 MOA dfb CR,CR
2211 :A9 00 339 lda 10 229F:43 41 S2 44 397 asc "CARD FAILED"
2213: 2213 340 setaddr equ • ; Sets the address reqisters to A 22M:OD 07 07 87 398 dfb CR, BELL, BELL, BE11+128
2213 : 9D FB BF 341 sta addrl,x ;Hust do in this order 22AE:OD OD 399 HOB dfb CR,CR
2216:9D F9 BF .342 sta addrm,x ; to avoid false carry 22BO :43 41 52 44 400 asc "CARD OK"
2219:9D FA BF 343 sta addrh,x 22B7 :SD 401 dfb CR+l2S
221C : 60 344 rts 22BS:41 44 44 52 402 MOC dci "ADDRESS ERROR"

22CS :44 41 54 41 403 MOD dci "DATA ERROR "
2210: 346 .. 2200 :20 20 AO 404 MOE dci . - .
2210: 347 • 22D3 :OD 40S MOF dfb CR
2210: 348 tuuuuuuuuuuuuuuuuuuuuuuuut 2204:53 45 45 20 406 asc "SEE DEALER FOR SERVICE"

22EA:SD 407 dfb CR+ 12S
221D: 221D 350 Print equ • ;print messaqe to the screen 22EB:50 41 S3 S3 40S MlO dci "PASSES = •
221D:A8 351 tay 22F4 :FF CC AA SS 409 Patterns dfb $FF,$CC,$M,$5S,$33,$00 ;data buss patterns
221E:B9 30 22 352 lda Messages, Y 22FA:52 69 63 6S 410 asc 'Rich Williams'
2221 :AS 353 tay 2307 :63 6F 70 79 411 asc 'copyriqht 19S6 Apple Computer Inc.'
2222 :B9 41 22 354 prl lda MO, Y 2329:61 6C 6C 20 412 asc 'all riqhts reserved'
222S:4S 35S pha 233C: 233C 413 zsld.end equ •
2226:09 so 356 ora 1$SO ; all characters must have hiqh bit set 233C: OOC3 414 ds $23FF-', 0 ;make sure not too biq
222S:20 ED FD 3S7 jsr Cout
222B:CS 35S iny ; index to next character
222C:68 3S9 pla
222D:l0 F3 2222 360 bpl prl ; last character had hiqh bit set
222F:60 361 rts
2230: 2230 362 Hessaqes equ • ;table of pointers to actual messaqes
2230 :00 363 dfb HO-MO
2231 :OS 364 dfb Ml-HO
2232:09 365 dfb H2-HO
2233 :OD 366 dfb M3-MO
2234: 11 367 dfb M4-MO
2235:14 36S dfb MS-MO
2236:16 369 dfb M6-MO
2237: lS 370 dfb M7-MO
223S : lB 371 dfb MS-MO
2239 :47 372 dfb H9-MO
223A:SC 373 dfb MOA-HO

02 S'!MBOL TABLE SORTED BY S'!MBOL 20-0CT-86 06:36 PAGE 11 02 SYMBOL TABLE SORTED BY ADDRESS 20-CX:T-S6 06:36 PAGE 12

20A2 AB! 20A4 AB2 20AS AB3 20CS AB4 00 TESTNUM 07 BELL OD CR 18 ESC
20E7 ABFAIL 208A ADDBUSTEST 2031 ADDRESSTEST BFFA ADDRH 2S CV 42 MPTR 4S COO'DATA 46 LIMIT
errs ADDRL BFF9 ADDRM 20SO AT! 206C ATF 47 VALUE 49 l.OOPCOUNT AE DOT 03BS NUMBANKS

07 BELL 213D Cl 2140 C2 2160 C3 043S POllERUP 0 4BS POllER2 12000 STARTlEST 2031 ADDRESSTEST
2163 C4 2 DEA CLEARTEST 2211 CLRADDR FC9C CLREOL 20SO AT! 206C ATF 206F ROLLOYERTEST 208A ADDBUSTEST
FC42 CLREOP 4S <n!PDATA 12137 COO'UTED FDED COUT 20A2 AB! 20A4 AB2 20AS AB3 20CS AB4
2111 CPl FD8E CROOT OD CR 2S CV 20E7 ABFAIL 20EA CLEARTEST 20EO FILLTEST 20Fl Fl
BFFB DATA 2 lAF OATAERR AE DOT 2 lDE ERRCC!!MON 2lll CPl 12137 COO'UTED 213D Cl 2140 C2

18 ESC 20Fl Fl 2197 FAIL 20ED FILLTEST 2160 C3 2163 C4 121SO PASS 2197 FAIL
2 lFD GETVALUE FCSS HOO COOO KBD CO!O KSTROBE 21AF DATAERR 2 lDE ERRCCH«JN 21E4 PRDOT 21FS NOESC

46 LIMIT 49 LOOPCOUNT 229D HOA 22AE MOB 2 lFD GETVALUE 2208 NXTLINE 2211 CLRADDR 2213 SETADDR
22BS MOC 22DO MOE 2241 MO 22CS MOD 221D PRINT 2222 PR! 2230 MESSAGES 2241 MO
2203 MOF 2246 Ml · 22EB MlO 224A M2 2246 Ml 224A M2 224E M3 22S2 M4
224£ M3 22S2 M4 ms Ms m7 M6 ms MS 2257 M6 22S9 M7 me MS
22S9 M7 22SC MS 22SS M9 2230 MESSAGES 2288 M9 229D MOA 22AE MOB 2288 MOC

42 MPTR 21FS NOESC 03BS NUMBANKS 2208 NXTLINE 22CS MOD 2200 MOE 22D3 HOF 22EB MlO
121SO PASS 22F4 PATlERNS 04BS POliER2 043S POllERUP 22F4 PATlERNS 1233C ZSLD.END errs ADDRL BFF9 ADDRM

2222 PR! FDDA PRBYTE 21E4 PRDOT 2210 PRINT BFFA ADDRH BFFB DATA COOO KBD CO!O KSTROBE
206F ROLLOYERTEST 2213 SETADDR 12000 STARTlEST 00 TESTNUM FC42 CLREOP FCSS !DIE FC9C CLREOL FDSE CROOT

47 VALUE 1233C ZSLD.END FDDA PRBYTE FOED COUT
*' SUCCESSFUL ASSEMBLY := NO ERRORS
*' ASSDIBLER CREATED ON !S-JAN-84 21 :2S
*' T<YrAL LINES ASSEMBLED 417
*' FREE SPJ\CE PAGE COONT S2

~
'-I

Glossary

accumulator: The register in the 65C02
microprocessor where most computations are
performed.

ACIA: Acronym for Asynchronous
Communications Interface Adapter. A single chip
that converts data from parallel to serial form and
vice versa. An ACIA handles serial transmission
and reception and RS-232-C signals under the
control of its internal registers, which can be set
and changed by firmware or software.

acronym: A word formed from the initial letters
of a name or phrase, such as ROM (from read
only memory).

ADC: See analog-to-digital converter.

address: A number that specifies the location of a
single byte of memory. Addresses can be given as
decimal integers or as hexadecimal integers. A
64K system has addresses ranging from 0 to 65535
(in decimal) or from $0000 to $FFFF (in
hexadecimal).

algorithm: A step-by-step procedure for solving
a problem or accomplishing a task.

American Simplified Keyboard: See Dvorak
keyboard.

analog: Varying smoothly and continuously over
a range, rather than changing in discrete jumps.
For example, a conventional 12-hour clock face is
an analog device that shows the time of day by the
continuously changing position of the clock's
hands. Compare digital.

analog data: Data in the form of continuously
variable quantities. Compare digital data.

analog signal: A signal that varies continuously
over time, rather than being sent and received in
discrete intervals. Compare digital signal.

analog-to-digital converter (ADC): A device
that converts quantities from analog to digital
form. For example, computer hand controls
convert the position of the control dial (an analog
quantity) into a discrete number (a digital
quantity) that changes stepwise even when the dial
is turned smoothly.

AND: A logical operator that produces a true result
if both its operands are true, and a false result if
either or both its operands are false. Compare
OR, NOT, exclusive OR.

ANSI: Acronym for American National
Standards Institute, which sets standards for many
technical fields and is the most common standard
for computer terminals.

Apple I: The first Apple computer. It was built in a
garage in California by Steve Jobs and Steve
Wozniak.

Applesoft BASIC: The Apple II dialect of the
BASIC programming language. An interpreter for
creating and executing Applesoft BASIC programs
is built into the firmware of computers in the
Apple II family. See also BASIC, Integer
BASIC.

509

Apple ill: An Apple computer; part of the
Apple II family. The Apple III offered a built-in
disk drive and built-in RS-232-C (serial) port. Its
memory was expandable to 256K.

Apple II: A family of computers, including the
original Apple II, the Apple II Plus, the Apple Ile,
the Apple Ile, and the Apple IIGS. The original
Apple II used Integer BASIC instead of Applesoft
BASIC, and it required a keyboard command
(PR#6) in order to start up from a disk.

Apple Ile: A transportable personal computer in
the Apple II family, with a disk drive and 80-
column display capability built in.

Apple Ile: A personal computer in the Apple II
family with seven expansion slots and an auxiliary
memory slot that allow the user to enhance the
computer's capabilities with peripheral and
auxiliary cards. The Apple Ile has been improved
and enhanced over the years.

Apple Ile 80-Column Text Card: A peripheral
card that plugs into the Apple He's auxiliary
memory slot and allows the computer to display
either 40 or 80 characters per line.

Apple Ile Extended 80-Column Text Card:
A peripheral card that plugs into the Apple He's
auxiliary memory slot and allows the computer to
display either 40 or 80 characters per line while
extending the computer's memory capacity by
64K.

Apple IIGS: A powerful new member of the
Apple II family. The Apple IIGS uses a 16-bit
microprocessor and has 256K of RAM. It has slots
like the Apple Ile and ports like the Apple Ile, and
contains a 15-voice custom sound chip.

Apple II Pascal: A software system for the
Apple II family that lets you create and execute
programs written in the Pascal programming
language. Apple II Pascal was adapted by Apple
Computer from the University of California, San
Diego, Pascal Operating System (UCSD Pascal).

510 Glossary

Apple II Plus: A personal computer in the
Apple II family with expansion slots that allow the
user to enhance the computer's capabilities with
peripheral and auxiliary cards.

application program: A program written for
some specific purpose, such as word processing,
data base management, graphics, or
telecommunication. Compare system
program.

argument: A value on which a function or
statement operates; it can be a number or a
variable. For example, in the BASIC statement
VT AB 10, the number 10 is the argument.
Compare operand.

arithmetic expression: A combination of
numbers and arithmetic operators (such as 3 + 5)
that indicates some operation to be carried out.

arithmetic operator: An operator, such as +,
that combines numeric values to produce a
numeric result. Compare logical operator,
relational operator.

ASCII: Acronym for American Standard Code
for Information Interchange; pronounced "ASK
ee." A code in which the numbers from 0 to 127
stand for text characters. ASCII code is used for
representing text inside a computer and for
transmitting text between computers or between a
computer and a peripheral device. Compare
EBCDIC.

assembler: A language translator that converts a
program written in assembly language into an
equivalent program in machine language. The
opposite of a disassembler.

assembly language: A low-level programming
language in which individual machine-language
instructions are written in a symbolic form that's
easier to understand than machine language itself.
Each assembly-language instruction produces one
machine-language instruction. See also machine
language.

asynchronous: Not synchronized by a mutual
timing signal or clock. Compare synchronous.

asynchronous transmission: A method of data
transmission in which the receiving and sending
devices don't share a common timer, and no
timing data is transmitted. Each information
character is individually synchronized, usually by
the use of start and stop bits. The time interval
between characters isn't necessarily fixed.
Compare synchronous transmission.

auxiliary slot: The special expansion slot inside
the Apple He used for the Apple He 80-Column
Text Card or Extended 80-Column Text Card, and
also for the RGB monitor card. The slot is
labeled AUX. CONNECTOR on the circuit board.

back panel: The rear surface of the computer,
which includes the power switch, the power
connector, and connectors for peripheral
devices.

bandwidth: The range of frequencies a device can
handle. Bandwidth and maximum data transfer
rate are directly proportional. For example, a
video monitor's greater bandwidth allows it to
display more information per scan frame than
most home television sets can. To display 80
columns of text, a monitor should have a
bandwidth of at least 12 MHz.

base address: In indexed addressing, the fixed
component of an address.

~ASIC: Acronym for Beginners All-purpose
Symbolic Instruction Code. BASIC is a high-level
programming language designed to be easy to
learn. Two versions of BASIC are available from
Apple Computer for use with all Apple II-family
systems: Applesoft BASIC (built into the firmware)
and Integer BASIC.

baud: A unit of data transmission speed: the
number of discrete signal state changes per
second. Often, but not always, equivalent to bits
per second. Compare bit rate.

binary: Characterized by having two different
components, or by having only two alternatives or
values available; sometimes used synonymously
with binary system.

binary digit: The smallest unit of information in
the binary number system; a 0 or a 1. Also called a
bit.

binary operator: An operator that combines two
operands to produce a result. For example, + is a
binary arithmetic operator; < is a binary
relational operator; OR is a binary logical
operator. Compare unary operator.

binary system: The representation of numbers
in the base-2 system, using only the two digits 0
and 1. For example, the numbers 0, 1, 2, 3, and 4
become 0, 1, 10, 11, and 100 in binary notation.
The binary system is commonly used in computers
because the values 0 and 1 can easily be
represented in a variety of ways, such as the
presence or absence of current, positive or
negative voltage, or a white or black dot on the
display screen. A single binary digit-a 0 or a 1-is
called a bit. Compare decimal, hexadecimal.

bit: A contraction of binary digit. The smallest
unit of information that a computer can hold. The
value of a bit (1 or O) represents a simple two-way
choice, such as yes or no, on or off, positive or
negative, something or nothing. See also binary
system.

bit rate: The speed at which bits are transmitted,
usually expressed as bits per second, or bps.
Compare baud.

bits per second: See bit rate.

board: See printed-circuit board.

body: In BASIC, the statements or instructions
that make up a part of a program, such as a loop or
a subroutine.

Glossary 511

boot: Another way to say start up. A computer
boots by loading a program into memory from an
external storage medium such as a disk. Starting up
is often accomplished by first loading a small
program, which then reads a larger program into
memory. The program is said to "pull itself up by
its own bootstraps"-hence the term
bootstrapping or booting.

boot disk: See startup disk.

bootstrap: See boot.

bps: See bit rate.

branch: (v) To pass program control to a line or
statement other than the next in sequence. (n) A
statement that performs a branch. See
conditional branch, unconditional branch.

BREAK: A SP ACE (O) signal, sent over a
communication line, of long enough duration to
interrupt the sender. This signal is often used to
end a session with a time-sharing service. BREAK
is also used in BASIC to stop execution of a
program; it's generated by pressing Control-C.

BRK: A "software interrupt." An instruction that
causes the 6502 or 65C02 microprocessor to halt.
Pronounced "break."

buffer: A "holding area" of the computer's
memory where information can be stored by one
program or device and then read at a different rate
by another; for example, a print buffer. In editing
functions, an area in memory where deleted (cut)
or copied data is held. In some applications, this
area is called the Clipboard.

bug: An error in a program that causes it not to
work as intended. The expression reportedly
comes from the early days of computing when an
itinerant moth shorted a connection and caused a
breakdown in a room-size computer.

512 Glossary

bus: A group of wires or circuits that transmit
related information from one part of a computer
system to another. In a network, a line of cable
with connectors linking devices together. A bus
network has a beginning and an end. (It's not in a
closed circle or T shape.)

byte: A unit of information consisting of a fixed
number of bits. On Apple II systems, one byte
consists of a series of eight bits, and a byte can
represent any value between 0 and 255. The
sequence represents an instruction, letter,
number, punctuation mark, or other character.
See also kilobyte, megabyte.

cable: An insulated bundle of wires with
connectors on the ends; the number of wires
varies with the type of connection. Examples are
serial cables, disk drive cables, and AppleTalk
cables.

call: (v) To request the execution of a subroutine,
function, or procedure. (n) A request from the
keyboard or from a procedure to execute a named
procedure. See procedure.

carriage return: An ASCII character (decimal 13)
that ordinarily causes a printer or display device to
place the next character on the left margin.

carrier: The background signal on a
communication channel that is modified to carry
information. Under RS-232-C rules, the carrier
signal is equivalent to a continuous MARK (1)
signal; a transition to 0 then represents a start bit.

carry flag: A status bit in the 6502 or 65C02
microprocessor, used as a ninth bit with the eight
accumulator bits in addition, subtraction,
rotation, and shift operations.

cathode-ray tube (CRT): An electronic device,
such as a television picture tube, that produces
images on a phosphor-coated screen. The
phosphor coating emits light when struck by a
focused beam of electrons. A common display
device used with personal computers.

central processing unit (CPU): The "brain" of
the computer; the microprocessor that performs
the actual computations in machine language. See
microprocessor.

character: Any symbol that has a widely
understood meaning and thus can convey
information. Some characters-such as letters,
numbers, and punctuation-can be displayed on
the monitor screen and printed on a printer.
Compare control character.

character code: A number used to represent a
character for processing by a computer system.

character set: The entire set of characters that
can be either shown on a monitor or used to code
computer instructions. In a printer, the entire set
of characters that the printer is capable of
printing.

chip: See integrated circuit.

Clear To Send: An RS-232-C signal from a DCE to
a DTE that is normally kept false until the DCE
makes it true, indicating that all circuits are ready
to transfer data out. See Data Communication
Equipment, Data Terminal Equipment.

code: (1) A number or symbol used to represent
some piece of information. (2) The statements or
instructions that make up a program.

cold start: The process of starting up the Apple II
when the power is first turned on (or as if the power
had just been turned on) by loading the operating
system into main memory, and then loading and
running a program. Compare warm start.

column: A vertical arrangement of graphics
points or character positions on the display.

command: An instruction that causes the
computer to perform some action. A command
can be typed from a keyboard, selected from a
menu with a hand-held device (such as a mouse),
or embedded in a program.

command character: An ASCII character,
usually Control-A or Control-I, that causes the
serial port firmware to interpret subsequent
characters as commands.

command register: An ACIA location (at $C09A
for port 1 and $COAA for port 2) that stores parity
type and RS-232-C signal characteristics.

compiler: A language translator that converts a
program written in a high-level programming
language (source code) into an equivalent
program in some lower-level language such as
machine language (object code) for later
execution. Compare interpreter.

composite video: A video signal that includes
both display information and the synchronization
(and other) signals needed to display it. See RGB
monitor.

computer: An electronic device that performs
predefined (programmed) computations at high
speed and with great accuracy. A machine that is
used to store, transfer, and transform
information.

computer language: See programming
language.

computer system: A computer and its
associated hardware, firmware, and software.

conditional branch: A branch whose execution
depends on the truth of a condition or the value of
an expression. Compare unconditional branch.

configuration: (1) The total combination of
hardware components-CPU, video display
device, keyboard, and peripheral devices-that
make up a computer system. (2) The software
settings that allow various hardware components
of a computer system to communicate with each
other.

connector: A plug, socket, jack, or port.

constant: In a program, a symbol that represents
a fixed, unchanging value. Compare variable.

Glossary 513

control character: A nonprinting character that
controls or modifies the way information is
printed or displayed. In the Apple II family,
control characters have ASCII values between 0
and 31, and are typed from a keyboard by holding
down the Control key while pressing some other
key. In the Macintosh family, the Command key
performs a similar function.

control code: One or more nonprinting
characters-included in a text file-whose
function is to change the way a printer prints the
text. For example, a program may use certain
control codes to turn boldface printing on and off.
See control character.

control key: A general term for a key that controls
the operation of other keys; for example, Apple,
Caps Lock, Control, Option, and Shift. When you
hold down or engage a control key while pressing
another key, the combination makes that other key
behave differently. Also called a modifier key.

Control key: A specific key on Apple II-family
keyboards that produces control characters
when used in combination with other keys.

controller card: A peripheral card that connects
a device such as a printer or disk drive to a
computer's main logic board and controls the
operation of the device.

control register: An ACIA location (at $C09B
for port 1 and $COAB for port 2) that stores data
format and baud rate selections.

Control-Reset: A combination keystroke on
Apple II-family computers that usually causes an
Applesoft BASIC program or command to stop
immediately. If a program disables the Control
Reset feature, you need to turn the computer off to
get the program to stop.

copy protect: To make a disk uncopyable.
Software publishers frequently try to copy protect
their disks to prevent them from being illegally
duplicated by software pirates. Compare write
protect.

514 Glossary

CPU: See central processing unit.

CRT: See cathode-ray tube.

CTS: See Clear To Send.

crash: To cease to operate unexpectedly, possibly
destroying information in the process.

current input device: The source, such as the
keyboard or a modem, from which a program is
currently receiving its input.

current output device: The destination, such as
the display screen or a printer, currently receiving
a program's output.

cursor: A symbol displayed on the screen
marking where the user's next action will take effect
or where the next character typed from the
keyboard will appear.

DAC: See digital-to-analog converter.

data: Information, especially information used or
operated on by a program. The smallest unit of
information a computer can understand is a bit.

data bits: The bits in a communication transfer
that contain information. Compare start bit,
stop bit.

Data Carrier Detect (DCD): An RS-232-C signal
from a DCE (such as a modem) to a DTE (such as
an Apple Ile) indicating that a communication
connection has been established. See Data
Communication Equipment, Data Terminal
Equipment.

Data Communication Equipment (DCE): As
defined by the RS-232-C standard, any device that
transmits or receives information. Usually this
device is a modem.

data format: The form in which data is stored
manipulated, or transferred.

data set: A device that modulates, demodulates,
and controls signals transferred between business
machines and communication facilities. A form of
modem.

Data Set Ready (DSR): An RS-232-C signal from a
DCE to a DTE indicating that the DCE has
established a connection. See Data
Communication Equipment, Data Terminal
Equipment.

Data Terminal Equipment (DTE): As defined
by the RS-232-C standard, any device that
generates or absorbs information, thus acting as
an endpoint of a communication connection. A
computer might serve as a DTE.

Data Terminal Ready (DTR): An RS-232-C signal
from a DTE to a DCE indicating a readiness to
transmit or receive data. See Data
Communication Equipment, Data Terminal
Equipment.

DCD: See Data carrier Detect.

DCE: See Data Communication Equipment.

debug: A colloquial term that means to locate and
correct an error or the cause of a problem or
malfunction in a computer program. Compare
troubleshoot. See also bug.

decimal: The common form of number
representation used in everyday life, in which
numbers are expressed in in the base-10 system,
using the ten digits 0 through 9. Compare binary,
hexadecimal.

default: A preset response to a question or
prompt. The default is automatically used by the
computer if you don't supply a different response.
Default values prevent a program from stalling or
crashing if no value is supplied by the user.

deferred execution: The execution of a BASIC
program instruction that is part of a complete
program. The program instruction is executed
only when the complete program is run. You defer
execution of the instruction by preceding it with a
program line number. The complete program
executes consecutive instructions in numerical
order. Compare immediate execution.

Delete key: A key on the upper-right corner of
the Apple Ile and Ile keyboards that erases the
character immediately preceding (to the left of)
the cursor. Similar to the Macintosh Backspace
key.

delimiter: A character that is used for
punctuation to mark the beginning or end of a
sequence of characters, and which therefore is not
considered part of the sequence itself. For
example, Applesoft BASIC uses the double
quotation mark (") as a delimiter for string
constants: the string "DOG" consists of the three
characters D, 0, and G, and does not include the
quotation marks.

demodulate: To recover the information being
transmitted by a modulated signal. For example, a
conventional radio receiver demodulates an
incoming broadcast signal to convert it into the
sound emitted by the radio's speaker. Compare
modulate.

device: Frequently used as a short form of
peripheral device.

device driver: A program that manages the
transfer of information between the computer and
a peripheral device.

device handler: See device driver.

digit: (1) One of the characters 0 through 9, used
to express numbers in decimal form. (2) One of
the characters used to express numbers in some
other form, such as 0 and 1 in binary or 0 through
9 and A through F in hexadecimal.

digital: Represented in a discrete (noncontinuous)
form, such as numerical digits or integers. For
example, contemporary digital clocks show the
time as a digital display (such as 2:57) instead of
using the positions of a pair of hands on a clock
face. Compare analog.

digital data: Data that can be represented by
digits-that is, data that are discrete rather than
continuously variable. Compare analog data.

Glossary 515

digital signal: A signal that is sent and received in
discrete intervals. A signal that does not vary
continuously over time. Compare analog signal

digital-to-analog converter: A device that
converts quantities from digital to analog form.

DIP: See dual in-line package.

DIP switches: A bank of tiny switches, each of
which can be moved manually one way or the
other to represent one of two values (usually on
and off). See dual in-line package.

disassembler: A language translator that
converts a machine-language program into an
equivalent program in assembly language, which
is easier for programmers to understand. The
opposite of an assembler.

disk: An information-storage medium consisting
of a flat, circular, magnetic surface on which
information can be recorded in the form of small
magnetized spots, in a manner similar to the way
sounds are recorded on tape. See floppy disk,
hard disk.

disk-based: See disk-resident.

disk controller card: A peripheral card that
provides the connection between one or two disk
drives and the computer. This connection, or
interface, is built into both the Apple Ile and
Macintosh-family computers.

disk drive: The device that holds a disk, retrieves
information from it, and saves information to it.

disk envelope: A removable, protective paper
sleeve used when handling or storing a 5.25-inch
disk. It must be removed before you insert the disk
in a disk drive. Compare disk jacket.

disk jacket: A permanent, protective covering for
a disk. 5.25-inch disks have flexible, paper or
plastic jackets; 3.5-inch disks have hard plastic
jackets. The disk is never removed from the jacket.
Compare disk envelope.

516 Glossary

Disk Operating System (DOS): An optional
software system for the Apple II family of
computers that enables the computer to control
and communicate with one or more disk drives.
The acronym DOS rhymes with boss.

disk-resident: An adjective describing a program
that does not remain in memory. The computer
retrieves all or part of the program from the disk,
as needed. Sometimes called disk-based.
Compare memory-resident.

Disk II drive: An older type of disk drive made
and sold by Apple Computer for use with the
Apple II, II Plus, and Ile. It uses 5.25-inch disks.

display: (1) A general term to describe what you
see on the screen of your display device when
you're using a computer; from the verb form,
which means "to place into view." (2) Short for a
display device.

display color: The color currently being used to
draw high-resolution or low-resolution graphics
on the display screen.

display device: A device that displays
information, such as a television set or video
monitor.

display screen: The screen of the monitor; the
area where you view text and pictures when using
the computer.

DOS 3.2: An early Apple II operating system. DOS
stands for Disk Operating System; 3.2 is the
version number. Disks formatted using DOS 3.2
have 13 sectors per track.

DOS 3.3: An operating system used by the Apple II
family of computers. DOS stands for Disk
Operating System; 3.3 is the version number.
Disks formatted with DOS 3.3 have 16 sectors per
track.

drive: See disk drive.

DSR: See Data Set Ready.

DTE: See Data Terminal Equipment.

DTR: See Data Terminal Ready.

dual in-line package (DIP): An integrated circuit
packaged in a narrow rectangular box with a row of
metal pins along each side. DIP switches on the
box allow you to change settings. For example,
ImageWriter printer DIP switches control
functions such as line feed, form length, and baud
setting.

Dvorak keyboard: An alternate keyboard layout,
also known as the American Simplified Keyboard
which increases typing speed because the keys '
most often used are in the positions easiest to
reach. Compare QWERTY keyboard.

EBCDIC: Acronym for Extended Binary-Coded
Decimal Interchange Code; pronounced "EB-si
dik." A code used by IBM that represents each
letter, number, special character, and control
character as an 8-bit binary number. EBCDIC has
a character set of 256 8-bit characters. Compare
ASCII.

effective address: In machine-language
programming, the address of the memory
location on which a particular instruction
operates, which may be arrived at by indexed
addressing or some other addressing method.

80-column text card: A peripheral card that
allows the Apple II, Apple II Plus, and Apple Ile to
display text in either 40 columns or 80 columns.

80/ 40-column switch: A switch that controls the
maximum number of columns or characters
across the screen. A television can legibly display
a maximum of 40 characters across the screen
whereas a video monitor can display 80 '
characters.

embedded: Contained within. For example, the
string 'HUMPTY DUMPTY' is said to contain an
embedded space.

emulate: To operate in a way identical to a
different system. For example, the Apple II
2780/3780 Protocol Emulator and the Apple II
3270 BSC Protocol Emulator, together with the
Apple Communications Protocol Card (ACPC),
allow the Apple II, Apple II Plus, or Apple Ile to
emulate the operations of IBM 3278 and 3277
terminals and 3274 and 3271 control units.

emulation mode: A mode of operation in which
the computer is emulating the operation of
another computer or interface. See emulate.

end-of-command mark: A punctuation mark
used to separate commands sent to a peripheral
device such as a printer or plotter. Also called a
command terminator.

end-of-line character: A character which
indicates that the preceding text constitutes a full
line .

error code: A number or other symbol
representing a type of error.

error message: A message displayed or printed
to tell you of an error or problem in the execution
of a program or in your communication with the
system. An error message is often accompanied
by a beep.

escape character: An ASCII character that, with
many programs and devices, allows you to
perform special functions when used in
combination keypresses.

e~cape code: A sequence of characters that begins
with an ESCAPE character and constitutes a
complete command. Usually synonymous with
escape sequence.

Escape key: A key on Apple II-family computers
that generates the ESCAPE character. The Escape
key is labeled F.sc. In many applications, pressing
Esc allows you to return to a previous menu or to
stop a procedure.

Glossary 517

escape mode: A state of the Apple Ile and Ile
entered by pressing the Esc key and certain other
keys. The other keys take on special meanings for
positioning the cursor and controlling the display
of text on the screen.

escape sequence: A sequence of keystrokes,
beginning with the Esc key. In escape mode,
escape sequences are used for positioning the
cursor and controlling the display of text on the
screen. Escape sequences are also used as codes to
control printers.

Esc key: See Escape key.

even/ odd parity check: In data transmission, a
check that tests whether the number of 1 bits in a
group of binary digits is even (even parity check)
or odd (odd parity check).

even parity: In data transmission, the use of an
extra bit set to 0 or 1 as necessary to make the total
number of 1 bits an even number; used as a means
of error checking. Compare MARK parity, odd
parity.

exclusive OR: A logical operator that produces a
true result if one of its operands is true and the
other false, and a false result if its operands are
both true or both false. Compare OR, AND, and
NOT.

execute: To perform the actions specified by a
program command or sequence of commands.

expansion slot: A connector into which you can
install a peripheral card. Sometimes called a
peripheral slot. See also auxillary slot.

expression: A formula in a program that defines
a calculation to be performed.

FIFO: Acronym for "first in, first out" order, as in
a queue.

file: Any named, ordered collection of
information stored on a disk. Application
programs and operating systems on disks are files.
You make a file when you create text or graphics,
give the material a name, and save it to disk.

518 Glossary

firmware: Programs stored permanently in read
only memory (ROM). Such programs (for
example, the Applesoft Interpreter and the
Monitor program) are built into the computer at
the factory. They can be executed at any time but
cannot be modified or erased from main
memory. Compare hardware, software.

fixed-point: A method of representing numbers
inside the computer in which the decimal point
(more correctly, the binary point) is considered
to occur at a fixed position within the number.
Typically, the point is considered to lie at the right
end of the number so that the number is
interpreted as an integer. Compare floating
point.

flag: A variable whose value (usually 1 or 0,
standing for trne or false) indicates whether some
condition holds or whether some event has
occurred. A flag is used to control the program's
actions at some later time.

floating-point: A method of representing
numbers inside the computer in which the decimal
point (more correctly, the binary point) is
permitted to "float" to different positions within
the number. Some of the bits within the number
itself are used to keep track of the point's position.
Compare fixed-point.

floppy disk: A disk made of flexible plastic, as
compared to a hard disk, which is made of metal.
The term floppy is now usually applied only to
disks with thin, flexible disk jackets, such as 5.25-
inch disks. With 3. 5-inch disks, the disk itself is
flexible, but the jacket is made of hard plastic;
thus, 3.5-inch disks aren't particularly "floppy."

format: (n) (1) The form in which information is
organized or presented. (2) The general shape and
appearance of a printed page, including page size,
character width and spacing, line spacing, and so
on. (v) To divide a disk into tracks and sectors
where information can be stored. Blank disks must
be formatted before you can save information on
them for the first time; same as initialize.

form feed: An ASCII character (decimal 12) that
causes a printer or other paper-handling device to
advance to the top of the next page.

Fortran: Short for Formula Translator. A high
level programming language especially suitable
for applications requiring extensive numerical
calculations, such as in mathematics,
engineering, and the sciences.

framing error: In serial data transfer, the
absence of the expected stop bit(s) at the end of a
received character.

frequency: In alternating current (AC) signals,
the number of complete cycles transmitted per
second. Frequency is usually expressed in hertz
(cycles per second), kilohertz (kilocycles per
second), or megahertz (megacycles per second).
In acoustics, frequency of vibration determines
musical pitch. Compare duration.

full duplex: A four-wire communication circuit or
protocol that allows two-way data transmission
between two points at the same time. Compare
half duplex.

function: A preprogrammed calculation that can
be carried out on request from any point in a
program. A function takes in one or more
arguments and returns a single value. It can
therefore be embedde~ in an expression.

game 1/0 connector: A 16-pin connector inside
the Apple II, II Plus, and Ile, originally designed
for connecting hand controls to the computer, but
also used for connecting some other peripheral
devices. Compare hand control connector.

graph: A pictorial representation of data.

graphics: (1) Information presented in the form
of pictures or images. (2) The display of pictures
or images on a computer's display screen.
Compare text.

half duplex: A two-wire communication circuit or
protocol designed for data transmission in either
direction but not both directions simultaneously.
Compare full duplex.

hand control connector: A 9-pin connector on
the back panel of the Apple Ile and Ile computers,
used for connecting hand controls to the
computer. Compare game 1/0 connector.

hand controller: Peripheral devices, with
rotating dials and push buttons. Hand controllers
are used to control game-playing programs, but
they can also be used in other applications.

hang: To cease operation because either an
expected condition is not satisfied or an infinite
loop is occurring. A computer that's hanging is
called a hung system. Compare crash.

hard disk: A disk made of metal and sealed into a
drive or cartridge. A hard disk can store very large
amounts of information compared to a floppy
disk.

hard disk drive: A device that holds a hard disk,
retrieves information from it, and saves
information to it. Hard disks made for
microprocessors are permanently sealed into the
drives.

hardware: In computer terminology, the
machinery that makes up a computer system.
Compare firmwa~e, software.

hertz: The unit of frequency of vibration or
oscillation, defined as the number of cycles per
seoond. Named for the physicist Heinrich Hertz
and abbreviated Hz. The 6502 microprocessor
used in the Apple II systems operates at a dock
frequency of about 1 million hertz, or 1 megahertz
(MHz). The 68000 microprocessor µsed in the
Macintosh operates at 7.8336 MHz.

Glossary 519

hexadecimal: The representation of numbers in
the base-16 system, using the ten digits 0 through 9
and the six letters A through F. For example, the
decimal numbers 0, 1, 2, 3, 4, .. . 8, 9, 10, 11, ...
15, 16, 17 would be shown in hexadecimal
notation as 00, 01, 02, 03, 04, .. . 08, 09, OA, OB,
.. . OF, 10, 11. Hexadecimal numbers are easier for
people to read and understand than are binary
numbers, and they can be converted easily and
directly to binary form. Each hexadecimal digit
corresponds to a sequence of four binary digits,
or bits. Hexadecimal numbers are usually
preceded by a dollar sign ($).

high ASCil characters: ASCII characters with
decimal values of 128 to 255. Called htgh ASCII
because their high bit (first binary digit) is set to 1
(for on) rather than 0 (for off>.

high-level language: A programming language
that is relatively easy for people to understand. A
single statement in a high-level language typically
corresponds to several instructions of machine
language. High-level languages available from
Apple Computer include BASIC, Pascal, Instant
Pascal, Logo, Pilot, SuperPILOT, and Fortran.
Compare low-level language.

high-order byte: The more significant half of a
memory address or other two-byte quantity. In the
6502 microprocessor used in the Apple II family of
computers, the low-order byte of an address is
usually stored first, and the high-order byte
second. In the 68000 microprocessors used in the
Macintosh family, the high-order byte is stored
first .

high-resolution graphics: The display of
graphics on a screen as a six-color array of points,
280 columns wide and 192 rows high. When a text
window is in use, the visible high-resolution
graphics display is 280 by 160 points.

hold time: In computer circuits, the amount of
time a signal must remain valid after some related
signal has been turned off. Compare setup time.

Hz: See hertz.

520 Glossary

IC: See integrated circuit.

immediate execution: The execution of a
program statement as soon as it is typed. In
BASIC, immediate execution occurs when the line
is typed without a line number; immediate
execution allows you to try out nearly every
statement immediately to see how it works.
Compare deferred execution.

implement: To put into practical effect, as to
implement a plan. For example, a language
translator implements a particular language.

IN#: This command designates the source of
subsequent input characters. It can be used to
designate a device in a slot or a machine-language
routine as the source of input.

index: (1) A number used to identify a member of
a list or table by its sequential position. (2) A list 01

table whose entries are identified by sequential
position. (3) In machine-language programming,
the variable component of an indexed address,
contained in an index register and added to the
base address to form the effective address.

indexed addressing: A method used in machine
language programming to specify memory
addresses. See also memory location.

index register: A register in a computer
processor that holds an index for use in indexed
addressing. The 6502 microprocessor used in the
Apple II family of computers has two index
registers, called the X register and the Y
register. The 68000 microprocessor used in
Macintosh-family computers has 16 registers that
can be used as index registers.

index variable: A variable whose value changes
on each pass through a loop. Often called control
variable or loop variable.

infinite loop: A section of a program that will
repeat the same sequence of actions indefinitely.

lnitialize: (1) To set to an initial state or value in
preparation for some computation. (2) To
prepare a blank disk to receive information by
organizing its surface into tracks and sectors; same
as format.

initialized disk: A disk that has been organized
into tracks and sectors by the computer and is
therefore ready to store information.

input: Information transferred into a computer
from some external source, such as the keyboard,
a disk drive, or a modem.

input/output (1/0): The process by which
information is transferred between the computer's
memory and its keyboard or peripheral devices.

input routine: A machine-language routine; the
standard input routine reads characters from the
keyboard. A different input routine might, for
example, read them from an external terminal.

instruction: A unit of a machine-language or
assembly-language program corresponding to a
single action for the computer's processor to
perform.

integer: A whole number in fixed-point form.
Compare real number.

Integer BASIC: A version of the BASIC
programming language used by the Apple II family
of computers. Integer BASIC is older than
Applesoft BASIC and is capable of processing
numbers in integer (fixed-point) form only. Many
games are written in Integer BASIC because its
instructions can be executed very quickly.
Compare Applesoft BASIC.

integrated circuit: An electronic
:ircuit-including components and
nterconnections-entirely contained in a single
)iece of semiconducting material, usually silicon.
:::>ften referred to as an IC or a chip.

interface: (1) The point at which independent
systems or diverse groups interact. The devices,
rules, or conventions by which one component of
a system communicates with another. Also, the
point of communication between a person and a
computer. (2) The part of a program that defines
constants, variables, and data structures, rather
than procedures.

interface card: A peripheral card that
implements a particular interface (such as a
parallel or serial interface) by which the computer
can communicate with a peripheral device such as
a printer or modem.

interpreter: A language translator that reads a
program instruction by instruction and
immediately translates each instruction for the
computer to carry out. Compare compiler.

interrupt: A temporary suspension in the
execution of a program that allows the computer to
perform some other task, typically in response to a
signal from a peripheral device or other source
external to the computer.

inverse video: The display of text on the
computer's display screen in the form of dark dots
on a light (or other single phosphor color)
background, instead of the usual light dots on a
dark background.

1/0: See input/output.

1/0 device: Input/output device. A device that
transfers information into or out of a computer.
See input, output, peripheral device.

1/0 link: A fixed location that contains the
address of an input/output subroutine in the
computer's Monitor program.

IWM: "Integrated Woz Machine"; the custom chip
that controls Apple's 3.5-inch disk drives.

joystick: A peripheral device with a lever,
typically used to move creatures and objects in
game programs; a joystick can also used in
applications such as computer-aided design and
graphics programs.

Glossary 521

K: See kilobyte.

keyboard: The set of keys, similar to a typewriter
keyboard, used for entering information into the
computer.

keyboard input connector: The connector
inside the Apple II family of computers by which
the keyboard is connected to the computer.

keyword: A special word or sequence of
characters that identifies a particular type of
statement or command, such as RUN, BRUN, or
PRINT.

kilobyte (K): A unit of measurement consisting of
1024 (210) bytes. In this usage, kilo (from the
Greek, meaning a thousand) stands for 1024. Thus,
64K memory equals 65,536 bytes. See also
megabyte.

KSW: The symbolic name of the location in the
computer's memory where the standard input link
(namely, to the keyboard) is stored. KSW stands
for keyboard switch.

language: See programming language.

language card: A peripheral card that, when
placed in slot 0 of a 48K Apple II or Apple II Plus,
gives the computer a total of 64K of memory. If
you have an Apple II or Apple II Plus, you need a
language card or the equivalent to use ProDOS.

language translator: A system program that
reads another program written in a particular
programming language and either executes it
directly or converts it into some other language
(such as machine language) for later execution.
See interpreter, compiler, assembler.

leading zero: A zero occurring at the beginning of
a decimal number, deleted by most computing
programs.

least significant bit: The rightmost bit of a binary
number. The least significant bit contributes the
smallest quantity to the value of the number.
Compare most significant bit.

522 Glossary

LIFO: Acronym for "last in, first out" order, as in
a stack.

line: See program line.

line feed: An ASCII character (decimal 10) that
ordinarily causes a printer or video display to
advance to the next line.

line number: A number identifying a program
line in an Applesoft BASIC program.

line width: The number of characters that fit on a
line on the screen or on a page.

list: To display on a monitor, or print on a
printer, the contents of memory or of a file.

load: To transfer information from a peripheral
storage medium (such as a disk) into main
memory for use-for example, to transfer a
program into memory for execution.

local: Connected to or close by the host system.

location: See memory location.

logic: (1) In microcomputers, a mathematical
treatment of formal logic using a set of symbols to
represent quantities and relationships that can be
translated into switching circuits, or gates. AND,
OR, and NOT are examples of logical gates. Each
gate has two states, open or closed, allowing the
application of binary numbers for solving
problems. (2) The systematic scheme that define~
the interactions of signals in the design of an
automatic data processing system.

logical operator: An operator, such as AND, tha
combines logical values to produce a logical
result, such as true or false; sometimes called a
Boolean operator. Compare arithmetic
operator, relational operator.

logic board: See main logic board.

loop: A section of a program that is executed
repeatedly until a limit or condition is met, such :
an index variable's reaching a specified ending
value. See loop.

loop variable: See index variable.

low-level language: A programming language
that is relatively close to the form the computer's
processor can execute directly. One statement in a
low-level language corresponds to a single
machine-language instruction. Examples are 6502
machine language, 6502 assembly language, and
68000 machine and assembly languages. Compare
high-level language.

low-order byte: The less significant half of a
memory address or other two-byte quantity. In the
6502 microprocessor used in the Apple II family of
computers, the low-order byte of an address is
usually stored first, and the high-order byte
second. The opposite is true for Macintosh
computers.

low-power Schottky (LS): A type of transistor
transistor logic (T11.) integrated circuit having
lower power and higher speed than a conventional
TIL integrated circuit; named for Walter Schottky
(1886-1956), a semiconductor physicist.

low-resolution graphics: The display of graphics
on a display screen as a 16-color array of blocks,
40 columns wide and 48 rows high. For example,
on a Macintosh when the text window is in use, the
visible low-resolution graphics display is 40 by 40
plotting points-that is, 40 by 40 pixels. See high
resolution graphics.

LS: See low-power Schottky.

machine language: The form in which
instructions to a computer are stored in memory
for direct execution by the computer's processor.
Each model of computer processor (such as the
6502 microprocessor used in the Apple II family of
computers) has its own form of machine language.

mainframe computer: A central processing unit
or computer that is larger and more powerful than
a minicomputer or a personal computer
(microcomputer). Frequently called simply a
mainframe for short.The Apple Access II
program and MacTerminal make it possible to
communicate with mainframe computers over
telecommunications media.

main logic board: A large circuit board that holds
RAM, ROM, the microprocessor, custom
integrated circuits, and other components that
make the computer a computer.

main memory: The part of a computer's
memory whose contents are directly accessible to
the microprocessor; usually synonymous with
random-access memory (RAM). Programs are
loaded into main memory, and that's where the
computer keeps information while you're working.
Sometimes simply called memory. See also read
only memory, read-write memory.

MARK parity: A bit of value 1 appended to a
binary number for transmission. The receiving
device checks for errors by looking for this value
on each character. Compare even parity, odd
parity.

megabyte: A unit of measurement equal to 1024
kilobytes, or 1,048,576 bytes; abbreviated Mb. See
kilobyte.

memory: A hardware component of a computer
system that can store information for later
retrieval. See main memory, random-access
memory, read-only memory, read-write
memory.

memory location: A unit of main memory that is
identified by an address and can hold a single item
of information of a fixed size. In the Apple II
family of computers, a memory location holds
one byte, or eight bits, of information.

memory-resident: (1) Stored permanently in
memory as firmware (ROM). (2) Held continually
in memory even while not in use. DOS is a
memory-resident program.

menu: A list of choices presented by a program,
from which you can select an action.

MHz: Megahertz; one million hertz. See hertz.

microcomputer: A computer, such as any of the
Apple II or Macintosh computers, whose
processor is a microprocessor.

Glossary 523

microprocessor: A computer processor
contained in a single integrated circuit, such as the
6502 or 65C02 microprocessor used in the Apple II
family of computers and the 68000
microprocessor used in the Macintosh family. The
microprocessor is the central processing unit
(CPU) of the microcomputer.

microsecond: One millionth of a second.
Abbreviated µs.

millisecond: One thousandth of a second.
Abbreviated ms .

mode: A state of a computer or system that
determines its behavior. A manner of operating.

modem: Short for MOdulator/DEModulator.
A peripheral device that links your computer to
other computers and information services using
the telephone lines.

modifier key: A key (Apple, Caps Lock, Control,
Option, Shift) that generates no keyboard events
of its own, but changes the meaning of other keys
or mouse actions. Also called a control key.

modulate: To modify or alter a signal so as to
transmit information. For example, conventional
broadcast radio transmits sound by modulating
the amplitude (amplitude modulation, or AM) or
the frequency (frequency modulation, or FM) of a
carrier signal.

monitor: See video monitor.

Monitor program: A system program built into
the firmware of some computers, used for directly
inspecting or changing the contents of main
memory and for operating the computer at the
machine-language level. The Monitor program
activates the disk drive when you turn on the
computer.

most significant bit: The leftmost bit of a binary
number. The most significant bit contributes the
largest quantity to the value of the number. For
example, in the binary number 10110 (decimal
value 22), the leftmost bit has the decimal value 16
(24). Compare least significant bit.

524 Glossary

mouse: A small device you move around on a flat
surface next to your computer. The mouse
controls a pointer on the screen whose
movements correspond to those of the mouse.
You use the pointer to select menu items, to move
data, and to draw with in graphics programs.

mouse button: The button on the top of the
mouse. In general, pressing the mouse button
initiates some action on whatever is under the
pointer, and releasing the button confirms the
action.

nanosecond: One billionth of a second.
Abbreviated ns.

nested loop: A loop contained within the body of
another loop and executed repeatedly during each
pass through the outer loop. See loop.

nested subroutine call: A call to a subroutine
from within the body of another subroutine.

nibble: A unit of data equal to half a byte, or four
bits. A nibble can hold any value from 0 to 15.

NOT: A unary logical operator that produces a true
result if its operand is false, and a false result if its
operand is true. Compare AND, OR, exclusive
OR.

NTSC: (1) Abbreviation for National Television
Standards Committee. The committee that
defined the standard format used for transmitting
broadcast video signals in the United States. (2)
The standard video format defined by the NTSC.

object code: See object program.

object program: The translated form of a
program produced by a language translator such
as a compiler or assembler. Also called object
code. Compare source program.

odd parity: In data transmission, the use of an
extra bit set to 0 or 1 as necessary to make the total
number of 1 bits an odd number; used as a me·ans
of error checking. Compare even parity, MARK

parity.

opcode: See operation code.

Open Apple: A control key on the
Apple II-family keyboards; on later keyboards,
simply called the Apple key.

operand: A value to which an operator is applied.
The value on which an operation code operates.
Compare argument.

operating system: A program that organizes the
actions of the parts of the computer and its
peripheral devices. See disk operating system.

operation code: The part of a machine-language
instruction that specifies the operation to be
performed. Often called opcode.

operator: A symbol or sequence of characters,
such as+ or AND, specifying an operation to be
performed on one or more values (the operands)
to produce a result. See arithmetic operator,
relational operator, logical operator, unary
operator, binary operator.

option: (1) Something chosen or available as a
choice; for instance, items in a menu. (2) An
argument whose provision is optional.

OR: A logical operator that produces a true result if
either or both of its operands are true, and a false
result if both of its operands are false . Compare
exclusive OR, AND, NOT.

output: Information transferred from a computer
to some external destination; such as the display
screen, a disk drive, a printer, or a modem.

output routine: A machine-language routine that
performs the sending of characters. The standard
output routine sends characters to the screen. A
different output routine might, for example, send
them to a printer.

overflow: The condition that exists when an
attempt is made to put more data into a given
memory area than it can hold; for example, a
computational result that exceeds the allowed
range.

override: To modify or cancel an instruction by
issuing another one.

overrun: A condition that occurs when the
processor does not retrieve a received character
from the receive data register of the Asynchronous
Communications Interface Adapter (ACIA) before
the subsequent character arrives. The ACIA
automatically sets bit 2 (OVR) of its status register;
subsequent characters are lost. The receive data
register contains the last valid data word received.

page: (1) A screenful of information on a video
display. In the Apple II family of computers, a
page consists of 24 lines of 40 or 80 characters
each. (2) An area of main memory containing text
or graphical information being displayed on the
screen. (3) A segment of main memory 256 bytes
long and beginning at an address that is an even
multiple of 256.

page zero: See zero page.

parallel interface: An interface in which several
bits of information (typically 8 bits, or 1 byte) are
transmitted simultaneously over different wires or
channels. Compare serial interface.

parity: Sameness of level or count, usually the
count of 1 bits in each character, used for error
checking in data transmission. See even parity,
MARK parity, odd parity, parity bit.

Pascal: A high-level programming language with
statements that resemble English phrases. Pascal
was designed to teach programming as a
systematic approach to problem solving. Named
after the philosopher and mathematician Blaise
Pascal.

pass: A single execution of a loop.

PC board: See printed-circuit board.

peek: To read information directly from a
location in the computer's memory.

peripheral: (adj) At or outside the boundaries of
the computer itself, either physically (as a
peripheral device) or in a logical sense (as a
peripheral card). (n) Short for peripheral device.

Glossary 525

peripheral bus: The bus used for transmitting
information between the computer and peripheral
devices connected to the computer's expansion
slots or ports.

peripheral card: A removable printed-circuit
board that plugs into one of the computer's
expansion slots. Peripheral cards allow the
computer to use peripheral devices or to perform
some subsidiary or peripheral function.

peripheral device: A piece of hardware-such as
a video monitor, disk drive, printer, or
modem-used in conjunction with a computer
and under the computer's control. Peripheral
devices are often (but not necessarily) physically
separate from the computer and connected to it by
wires, cables, or some other form of interface.
They often require peripheral cards.

peripheral slot: See expansion slot.

phase: (1) A stage in a periodic process. A point
in a cycle. For example, the 6502 microprocessor
uses a dock cycle consisting of two phases called
<I> 0 and <I> 1. (2) The relationship between two
periodic signals or processes.

PILOT: Acronym for Programmed Inquiry,
Learning, Or Teaching. A high-level programming
language designed for teachers and used to create
computer-aided instruction (CAI) lessons that
include color graphics, sound effects, lesson text,
and answer checking. SuperPILOT is an enhanced
version of the original Apple II PILOT
programming language.

pipelining: A feature of a processor that enables it
to begin fetching the next instruction before it has
finished executing the current instruction. All else
being equal, processors with this feature run faster
than those without it.

pixel: Short for picture element. A point on the
graphics screen; the visual representation of a
bit on the screen (white if the bit is 0, black if
it's 1). Also, a location in video memory that
maps to a point on the graphics screen when the
viewing window includes that location.

526 Glossary

plotting vector: A code representing a single step
in drawing a shape on the high-resolution graphics
screen. The plotting vector specifies whether to
plot a point at the current screen position, and in
what direction to move (up, down, left, or right)
before processing the next vector. See shape
deflnition, shape table.

pointer: An item of information consisting of the
memory address of some other item. For
example, Applesoft BASIC maintains internal
pointers to the most recently stored variable, the
most recently typed program line, and the most
recently read data item, among other things. The

. 6502 uses one of its internal registers as a pointer to
the top of the stack.

point of call: The point in a program from which a
subroutine or function is called.

poke: To store information directly into a
location in the computer's memory.

pop: To remove the top entry from a stack,
moving the stack pointer to the entry below it.
Synonymous with pull. Compare push.

port: In the Apple Ile, slots are called ports.

power supply: A circuit that draws electrical
power from a power outlet and converts it to the
kind of power the computer can use.

power supply case: The metal case inside most
Apple II and Macintosh computers that houses the
power supply. The Apple Ile uses an external
power supply case.

PR#: An Applesoft BASIC command that sends
output to a slot or a machine-language program. It
specifies an output routine in the ROM on a
peripheral card or in a machine-language routine
in RAM by changing the address of the standard
output routine used by the computer.

precedence: The order in which operators are
applied in evaluating an expression. Precedence
varies from language to language, but usually
resembles the precedence rules of algebra.

printed-circuit board: A hardware component of
a computer or other electronic device, consisting
of a flat, rectangular piece of rigid material,
commonly Fiberglas, to which integrated circuits
and other electronic components are connected.

procedure: In the Pascal and Logo programming
languages, a set of instructions that work as a unit;
approximately equivalent to the term subroutine
in BASIC.

processor: The hardware component of a
computer that performs the actual computation by
directly executing instructions represented in
machine language and stored in main memory.
See microprocessor.

ProDOS: An Apple II operating system designed
to support hard disk drives like the ProFile, as well
as floppy disk storage devices. ProDOS stands for
Professional Dtsk Operating System. Compare
Disk Operating System (DOS).

ProDOS command: Any one of the 28
commands recognized by ProDOS.

program: (n) A set of instructions describing
actions for a computer to perform in order to
accomplish some task, conforming to the rules
and conventions of a particular programming
language. (v) To write a program.

program line: The basic unit of an Applesoft
BASIC program, consisting of one or more
statements separated by colons (:) .

programming language: A set of symbols and
associated rules or conventions for writing
programs. BASIC, Logo, and Pascal are
programming languages.

prompt: A message on the screen that tells you of
some need for response or action. A prompt
usually takes the form of a symbol, a message, a
dialog box, or a menu of choices.

prompt character: A text character displayed on
the screen, usually just to the left of a cursor,
where your next action is expected. The prompt
character often identifies the program or
component of the system that's prompting you.
For example, Applesoft BASIC uses a square
bracket prompt character (]); Integer BASIC, an
angle bracket (>); and the system Monitor
program, an asterisk (*).

prompt line: A specific area on the display
reserved for prompts.

protocol: A formal set of rules for sending and
receiving data on a communication line.

Protocol Converter: A set of machine language
routines used in the Apple II family for performing
block device I/0. See Smartport.

push: To add an entry to the top of a stack,
moving the stack pointer to point to it Compare
pop.

queue: A list in which entries are added at one end
and removed at the other, causing entries to be
removed in first-in, first-out (FIFO) order.
Compare stack.

QWER'IY keyboard: The standard layout of keys
on a typewriter keyboard; its name is formed from
the first six letters on the top row of letter keys.
Compare Dvorak keyboard.

radio-frequency (RF) modulator: A device that
makes your television set work as a monitor.

RAM: See random-access memory.

Glossary 527

random-access memory (RAM): Memory in
which information can be referred to in an
arbitrary or random order. As an analogy, a book
is a random-access storage device in that it can be
opened and read at any point. RAM usually means
the part of memory available for programs from a
disk; the programs and other data are lost when
the computer is turned off. A computer with 512K
RAM has 512 kilobytes available to the user.
(Technically, the read-only memory [ROM) is also
random access, and what's called RAM should
correctly be termed read-write memory.)
Compare read-only memory, read-write
memory.

random-access text file: A text file that is
partitioned into an unlimited number of uniform
length compartments called records. When you
open a random-access text file for the first time,
you must specify its record length. No record is
placed in the file until written to. Each record can
be individually read from or written to-hence,
random-access.

raster: The pattern of parallel lines making up the
image on a video display screen. The image is
produced by controlling the brightness of
successive points on the individual lines of the
raster.

read: To transfer information into the computer's
memory from outside the computer (such as a disk
drive or modem) or into the computer's processor
from a source external to the processor (such as
the keyboard or main memory).

read-only memory (ROM): Memory whose
contents can be read, but not changed; used for
storing firmware. Information is placed into
read-only memory once, during manufacture; it
then remains there permanently, even when the
computer's power is turned off. Compare
random-access memory, read-write
memory.

528 Glossary

read-write memory: Memory whose contents
can be both read and changed (or written to). The
information contained in read-write memory is
erased when the computer's power is turned off
and is permanently lost unless it has been saved or
a disk or other storage device. Compare random
access memory, read-only memory.

real number: In computer usage, a number that
may include a fractional part; represented inside
the computer in floating-point form. Because a
real number is of infinite precision, this
representation is usually approximate. Compare
integer.

receive data register: A read-only register in the
serial port ACIA (at $C098 for port 1 and $COA8
for port 2) that stores the most recent character
successfully received.

register: A location in a processor or other chip
where an item of information is held and modified
under program control.

relational operator: An operator, such as>, that
operates on numeric values to produce a logical
result. Compare arithmetic operator, logical
operator.

Request-To-Send: An RS-232-C signal from a
DTE to a DCE that serves to prepare the DCE for
data transmission.

reserved word: A word or sequence of characterE
reserved by a programming language for some
special use and therefore unavailable as a variable
name in a program.

resident: See memory-resident, disk
resident.

return address: The point in a program to which
control returns on completion of a subroutine or
function .

RF modulator: See radio-frequency
modulator.

RGB monitor: A type of color monitor that
receives separate signals for each color (red,
green, and blue). See composite video.

ROM: See read-only memory.

routine: A part of a program that accomplishes
some task subordinate to the overall task of the
program.

row: A horizontal arrangement of character cells
or graphic.5 pixels on the screen.

RS-232 cable: Any cable that is wired in
accordance with the RS-232 standard, which is the
common serial data communication interface
standard.

RTS: See Request-To-Send.

run: (1) To execute a program. When a program
runs, the computer performs the instructions.
(2) To load a program into main memory from a
peripheral storage medium, such as a disk, and
execute it.

save: To store information by transferring the
information from main memory to a disk. Work
not saved disappears when you tum off the
computer or when the power is interrupted.

screen: See display screen.

scroll: To move all the text on the screen upward
or downward, and, in some cases, sideways. See
viewport, window.

serial interface: An interface in which
information is transmitted sequentially, a bit at a
time, over a single wire or channel. Compare
parallel interface.

setup time: The amount of time a signal must be
valid in advance of some event. Compare hold
time. See valid signal.

silicon (Si): A solid, crystalline chemical element
from which integrated circuits are made. Silicon is
a semiconductor; that is, it conducts electricity
better than insulators, but not as well as metallic
conductors. Silicon should not be confused with
silica-that is, silicon dioxide, such as quartz,
opal, or sand-or with silicone, any of a group of
organic compounds containing silicon.

simple variable: A variable that is not an element
of an array.

68000: The microprocessor used in the
Macintosh and Macintosh Plus.

6S02: The microprocessor used in the Apple II, in
the Apple II Plus, and in early models of the
Apple Ile.

6SC02: The microprocessor used in the enhanced
Apple Ile, the extended keyboard Ile, and the
Apple Ile.

slot: A narrow socket inside the computer where
you can install peripheral cards. Also called an
expansion slot. ·

Smartport: A set of machine language routines
used in the Apple II family for performing block
device I/0. See Protocol Converter.

soft switch: Also called a software switch; a
means of changing some feature of the computer
from within a program. For example, DIP switch
settings on ImageWriter printers can be
overridden with soft switches. Specifically, a soft
switch is a location in memory that produces some
special effect whenever its contents are read or
written.

software: A collective term for programs, the
instructions that tell the computer what to do.
They're usually stored on disks. Compare
hardware, firmware.

source code: See source program.

source program: The form of a program given to
a language translator, such as a compiler or
assembler, for conversion into another form;
sometimes called source code. Compare object
program.

space character: A text character whose printed
representation is a blank space, typed from the
keyboard by pressing the Space bar.

Glossary 529

SPACE parity: A bit value of 0 appended to a
binary number for transmission. The receving
device can look for this value on each character as
a means of error checking.

stack: A list in which entries are added (pushed)
or removed (popped) at one end only (the top of
the stack), causing them to be removed in last-in,
first-out (LIFO) order. Compare queue.

standard instruction: An instruction
automatically present when no superseding
instruction has been received.

start bit: A transition from a MARK signal to a
SPACE signal for one bit-time, indicating that next
string of bits represents a character.

starting value: The value assigned to the index
variable on the first pass through a loop.

start up: To get the system running. Starting up is
the process of first reading the operating system
program from the disk, and then running an
application program.

startup disk: A disk with all the necessary
program files-such as the Finder and System files
contained in the System folder in Macintosh-to
set the computer into operation. In Apple II,
sometimes called a boot disk.

statement: A unit of a program in a high-level
language that specifies an action for the computer
to perform. A statement typically corresponds to
several instructions of machine language.

status register: A location in the ACIA (at $C099
for port 1 and $COA9 for port 2) that stores the
state of two RS-232-C signals and the state of the
transmit and receive data registers, as well as the
outcome of the most recent character transfer.

step value: The amount by which the index
variable changes on each pass through a loop.

stop bit: A MARK signal following a data string (or
the optional parity bit), indicating the end of a
character.

530 Glossary

string: An item of information consisting of a
sequence of text characters.

strobe: A signal whose change is used to trigger
some action.

subroutine: A part of a program that can be
executed on request from another point in the
program and that returns control, on completion,
to the point of the request.

synchronous: A mode of data transmission in
which a constant time interval exists between
transmission of successive bits, characters, or
events. Compare asynchronous.

synchronous transmission: A transmission
process that uses a clocking signal to ensure an
integral number of unit (time) intervals between
any two characters. Compare asynchronous
transmission.

syntax: (1) The rules governing the structure of
statements or instructions in a programming
language. (2) A representation of a command that
specifies all the possible forms the command can
take.

system: A coordinated collection of interrelated
and interacting parts organized to perform some
function or achieve some purpose-for example,
a computer system comprising a processor,
keyboard, monitor, and disk drive.

system configuration: See configuration.

system program: A program that makes the
resources and capabilities of the computer
available for general purposes, such as an
operating system or a language translator.
Compare application program.

system software: The component of a computer
system that supports application programs by
managing system resources such as memory and
1/ 0 devices.

tab: An ASCII character that commands a device
such as a printer to start printing at a preset
location (called a tab stop). There are two such
characters: horizontal tab (hex 09) and vertical tab
(hex OB). TAB works like the tabs on a typewriter.

television set: A display device capable of
receiving broadcast video signals (such as
commercial television broadcasts) by means of an
antenna. Can be used in combination with a
radio-frequency modulator as a display device for
the Apple II family of computers. Compare video
monitor.

text: (1) Information presented in the form of
readable characters. (2) The display of characters
on a display screen. Compare graphics.

text window: An area on the video display screen
within which text is displayed and scrolled.

•traces: Electrical paths that connect the
! components on a circuit board.

i transistor-transistor logic (Tn.): (1) A family
of integrated circuits having bipolar circuit logic;
1TLs are used in computers and related devices.
(2) A standard for interconnecting such circuits,
which defines the voltages used to represent
logical zeros and ones.

transmit data register: A location in the ACIA
(at location $C098 for port 1 and $COA8 for port 2)
that holds the current character to be transmitted.

troubleshoot: To locate and correct the cause of
la problem or malfunction, especially in hardware.
Compare debug.

rn.: See transistor-transistor logic.

turnkey disk: See startup disk.

unary operator: An operator that applies to a
single operand. For example, the minus sign(-) in
a negative number such as -6 is a unary arithmetic
operator. Compare binary operator.

unconditional branch: A branch that does not
depend on the truth of any condition. Compare
conditional branch.

value: An item of information that can be stored
in a variable, such as a number or a string.

variable: (1) A location in the computer's
memory where a value can be stored. (2) The
symbol used in a program to represent such a
location. Compare constant.

vector: (1) The starting address of a program
segment, when used as a common point for
transferring control from other programs. (2) A
memory location used to hold a vector, or the
address of such a location.

video: (1) A medium for transmitting information
in the form of images to be displayed on the
screen of a cathode-ray tube. (2) Information
organized or transmitted in video form.

video monitor: A display device that can receive
video signals by direct connection only, and that
cannot receive broadcast signals such as
commercial television. Can be connected directly
to the computer as a display device. Compare
television set.

viewport: All or part of the display screen used by
an application program to display a portion of the
information (such as a document, picture, or
worksheet) on which a program is working.
Compare window.

volume: A general term referring to a storage
device; a source of or a destination for
information. A volume has a name and a volume
directory with the same name. Its information is
organized into files.

warm start: The process of transferring control
back to the operating system in response to a
failure in an application program. Compare cold
start.

window: The portion of a collection of
information (such as a document, picture, or
worksheet) that is visible in a viewport on the
display screen. Compare viewport.

Glossary 531

word: A group of bits that is treated as a unit; the
number of bits in a word is a characteristic of each
particular computer.

write: To transfer information from the computer
to a destination external to the computer (such as a
disk drive, printer, or modem) or from the
computer's processor to a destination external to
the processor (such as main memory).

write-enable notch: The square cutout on one
edge of a 5.25-inch disk's jacket. If there is no
write-enable notch, or if it is covered with a write
protect tab, the disk drive can read information
from the disk, but cannot write on it.

write protect: To protect the information on a
5.25-inch disk by covering the write-enable notch
with a write-protect tab, preventing the disk drive
from writing any new information onto the disk.
Compare copy protect.

532 Glossary

write-protect tab: (1) A small adhesive sticker
used to write protect a 5.25-inch disk by covering
the write-enable notch. (2) The small plastic tab i
the corner of a 3.5-inch disk jacket. You lock (wril
protect) the disk by sliding the tab toward the edg·
of the disk; you unlock the disk by sliding the tab
back so that it covers the rectangular hole.

X register: One of the two index registers in the
6502 microprocessor.

Y register: One of the two index registers in the
6502 microprocessor.

zero page: The first page (256 bytes) of memory
in the Apple II family of computers, also called
page zero. Since the high-order byte of any
address in this page is zero, only the low-order
byte is needed to specify a zero-page address; thi
makes zero-page locations more efficient to
address, in both time and space, than locations i
any other page of memory.

Bibliography

Addendum to the Design Guidelines. Cupertino, Calif.: Apple
Computer, Inc., 1984.

Applesojt BASIC Programmer's Reference Manual, Vols. 1 and 2.
For the Apple 11, Ile, and Ile. Cupertino, Calif.: Apple
Computer, Inc., 1982. The version that applies to both the
Apple Ile and the Apple Ile has Apple product number A2L0084
CV ol. 1) and A2L0085 CV ol. 2).

Applesojt Tutorial. Cupertino, Calif.: Apple Computer, Inc., 1982.

Apple Ile Design Gutdeltnes. Cupertino, Calif.: Apple Computer,
Inc., 1982.

Apple II Monitors Peeled. Cupertino, Calif.: Apple Computer,
Inc., 1978. Currently not updated for Apple Ile and Ile, but a
good introduction to Apple II-series input/output procedures;
also useful for historical background.

Leventhal, Lance. 6502 Assembly Language Programming.
Berkeley, Calif. : Osborne/McGraw-Hill, 1979.

Synertek Hardware. Santa Clara, Calif.: Synertek Incorporated,
1976. Does not contain instructions new to 65C02, but is the only
currently available manufacturer's hardware manual for 6500-
series microcomputers.

Synertek Programming. Santa Clara, Calif.: Synertek
Incorporated, 1976. The only currently available manufacturer's
programming manual for 6500-series microcomputers.

Watson, Allen, III. "A Simplified Theory of Video Graphics, Part
I." Byte, Vol. 5, No. 11 (November 1980).

---. "A Simplified Theory of Video Graphics, Part II." Byte,
Vol. 5, No. 12 (December 1980).

---. "More Colors for Your Apple." Byte, Vol. 4, No. 6 Qune
1979).

533

534 Bibliography

--. "True Sixteen-Color Hi-Res." Apple Orchard, Vol. 5, No. 1
Oanuary 1984).

Wozniak, Steve. "System Description: The Apple II. " Byte, Vol. 2,
No. 5 (May 1977).

--. "SWEET16: The 6502 Dream Machine." Byte, Vol. 2,
No. 10 (October 1977).

Cast of Characters

* (asterisk) 59, 104
@ (at sign) 113
\ (backslash) 59, 63
~ (caret) 225

(colon) 216, 224
$ (dollar) 225

(period) 206
? (question mark) 59, 169, 179

(underscore) 179

A

accumulator 18, 64, 69, 84, 90,
115

ACIA
block diagram 276
command register 280
control register 278-279
register locations for port 1 159
register locations for port 2 173
status register 130, 281
transmit/receive .register 282

acoustic coupler 177
addresses '

Applesoft BASIC interpreter 326
display 259-261
firmware 322-327
hardware 316-321, 353-356
I/0 link 56-58
memory 20
mouse port 325
port 323-325
RAM 22, 351
ROM 22- 23, 250, 351-352
serial port 323- 324
video display 101
video firmware 324

Index

addressing modes 26, 226
65C02 302, 304

AltChar switch 102, 243,, 360
alternate character set 69, 70, 88,

92, 360
AltZP switch 28, 242
analog inputs 200
any-key-down (AKO) 78, 243, 255
Apple Integer BASIC 308, 330,

348, 356, 388
Apple Language Card 351
Apple Logo II 330
Applesoft BASIC 169, 308, 329,

388
mouse and 195-196

Applesoft BASIC interpreter 14,
23, 36, 51, 52, 59, 63, 204,
214, 250, 352

addresses 326
Apple Ile

ASCII codes 58, 78, 80-81, 89,
164, 368

ASCII input mode 209
assembler 220
assembly language, mouse and,

195-196
assembly-language programs,

debugging 221
asterisk (*) 59, 204
asynchronous communications

interface adapter 130
at sign (@) 113
AUD 256, 365
audio output jack 8, 256
automatic repeat 3, 358
Autostart ROM 356
auxiliary memory 42-44, 74,

160-161, 175, 269
screen holes 315

auxiliary RAM 22, 184

lo6,

block diagram 235-236
schematic diagrams 291-296

Apple II computers, interrupts 332 B
Apple II series back panel 9-10

differences 348-365 backsla5h (\) 59, 63
disk I/0 361 backspace 63, 114
hardware 365 BadBlock $20 error 151
I/0 357 BadCmd $01 error 150
keyboard 357-359 BadCtl $21 error 150
machine identification 350
memory structure 351-356
video display 359-360

A register 18, 43, 84, 113-115,
192, 213

arithmetic, hexadecimal 2i5
arrow keys 4
ASCII character set 3, 70, 78,

80-81, 381-382, 391-395

BadQIParm $22 error 150
BadPCnt $04 error 150
BadUnit $11 error 150
Bank2 switch 241
bank selector switches 27-35
bank-switched memory 24-35
BASIC command 228
baud rate

serial port 1 163
serial port 2 177-178

535

bell 114
bell character 115
Bell routine 84
Bell 1 routine 84
bits 384-386
blanking intervals 257
block device 1/0 firmware, entry

points 23
block-type devices 120
BREAK signal 163
BRK ($00) instructions 212, 221,

334
handling 337-338

buffers
display 38, 99
input 36, 38
serial 1/0 343-345, 362

BusErr $06 error 150
button interrupt mode 188
bytes 384-386

c
CALL -151 command 223
Canadian keyboard 375
cancel line 63
Caps Lock 5, 81, 358, 360
caret c~) 225
carriage return (CR) 63, 114, 164,

179
carry bit 43
cassette 1/0 364
C c;ommand 156, 170
CH (cursor horizontal) 64
character generator 14, 263

control signals 266
character output switch (CSW) 57,

64, 71, 84, 101, 113, 115
characters

at sign (@) 113
command 155, 205
control 4, 5, 60, 65-67, 70,

114, 165, 392
flashing 69, 70, 88-89
inverse 69, 70, 88-89
lowercase 395
normal 69, 70, 88-89
prompt 59
special 393
uppercase 394

536 Index

character sets 358-360 Control-A Q 184
alternate 69, 70, 88, 92, 360 Control-A T 180-182, 184
ASCII 3, 70, 78, 80-81, Control-B 214, 228

381-382, 391-395 Control-C 67, 204, 214, 228, 341
display 89 CONTROL call 127, 136-139
MouseText 91 controi characters 4, 5, 60, 65-67,
primary 69, 70, 88, 359 70, 114, 165, 392
screen 6 Control-D 155, 169
text 88-89 Control-E 213, 228

ClampMouse routine 194 Control-G 65, 66, 84
ClearMouse routine 193 Control-H 63, 65, 66
CIEOLZ routine 112, 113 Control-I 155, 158, 165, 362
clock rate 237 Control-] 65, 66
clock signals 239-241 Control-K 57, 66, 228
CLOSE call 127, 141-142 Control-L 66
ClrEOL routine 112, 113 control list 137, 138
ClrEOP routine 112, 113 Control-M 65, 66, 118
ClrScr- routine 112, 113 Control-N 66
ClrTop routine 112, 113 Control-0 66, 90
CmdNum 125 Control-P 57, 90, 215, 228
CMOS 237 Control-Q 66
code conversions 391 Control-R 66, 172, 181, 184
cold start 51, 121-122 control register ACIA, 278-279
colon(:) 216, 224 Control-Reset 4, 49, 51, 52, 81,
colors 121, 123, 162, 171, 176, 204,

double high-resolution 218
graphics 99 Control-S 66, 67, 341

high-resolution 97, 268 Control-T 171
low-resolution 94, 266 Control-U 63, 66, 82

column-address strobe (CAS) 252 Control-V 66, 158, 172
command character 155, 205 Control-W 66, 158
command number 125, 127 Control-X 60, 63, 67, 82
command register, ACIA 280 Control-Y 67, 218, 228
connectors 9-lQ Control-Z 67

disk drive 274 COut routine 63, 64, 90, 112, 113,
external power 234 214
hand controller 199-200, 287 COutl routine 56, 60, 65, 67, 68,
keyboard 254 70, 112, 114
mouse 187, 284 CP/M 328
serial port 154, 278 CPU 13
video expansion 270 CR See carriage return
video output 270 CROut routine 112, 114

CONTINUE BASIC command 228 CROutl routine 112, 114
Control 5, 81, 255, 358 CSW 57, 64, 71, 84, 101, 113, 155
Control-\ 67 CSWH 57
Control-[67 CSWL 57
Control-) 67 C3COutl routine 56, 61, 62,
Control-_ 67 65-67, 68, 70
Control-A 169, 171, 172, 179, 362 C3Keyln routine 56, 58, 61, 62
Control-A I 181, 184

cursor
blinking question mark 169, 179
blinking underscore 179
mouse 187
movement keys 4, 62

CV (cursor vertical) 64

D

Data Carrier Detect 281
data format

serial port 1 163
serial port 2 177-178

data inputs 23
Data Set Ready (DSR) 281
Data Terminal Ready (DTR) 280
data transfer 42-43
debugging 212, 221
decimal 387-388

negative 388-389
Delete 4, 358
device control block (DCB) 130,

138
device information block (DIB) 131
DevSpec $30-$3F error 151
DHiRes switch 46, 102, 103
disassembler 220
disk controller unit 15, 247-248,

273, 365
disk drive 8-9

connector 274
connector signals 274
1/0 120-121, 273-274, 361
1/0 port 120-121

disk-use light 3, 7
display addresses

mapping 259-261
transformation 260

display bits, high-resolution 96
display character sets 89
display formats

inverse 214
normal 214

display memory
addressing 258, 260
switches 44-46

display modes 104, 261-269, 360
switching 101- 105

display pages 99-101
HRPl 38
HRPlX 38
HRP2 39, 269
HRP2X 39, 269
maps 105-111
TLPl 36
TLPlX 38
TLP2 38
TLP2X 38

display soft switches 50, 101-105
DisVBl switch 190
DisXY switch 189
DMA transfers 357
dollar sign ($) 225
DOS 51, 57, 58, 155, 169, 204,

214, 312, 328, 332
Down Arrow 4
Dvorak keyboard 6-7, 358, 370

E

editing, GetLn 63
80Col switch 101, 102, 243
80-column display 38, 64, 68, 86,

91, 92, 100, 106, 358
addressing 263
dot patterns 269
map 108
switching to 5

80/40 switch 3, 5
80Store switch 39, 45, 101, 102,

106, 241
EnbXY switch 189
English keyboard 372
enhanced video firmware 249-250
EnlCRAM switch 242
entry points

firmware 23
memory expansion card 122
Monitor 322, 326--327
ports 71
UniDisk 3.5 1/0 122

EnVBl switch 190
environmental specifications 232
Escape 5, 60-62, 358
escape codes 60-62, 82
Escape Control-Q 215, 228

EXAMINE command 213, 228
expansion ROM space 74
expansion slots 357
Extended 80-Column Text

Card 351, 354, 360
EXTINT 276, 342

F

F command 156, 170
firmware 13

addresses 322-327
disk I/O 120
display mode 104
enhanced video 249-250
entry points 23
I/0 71-73
mouse 191-196
protocols 72-73
serial port 1 160
serial port 2 174
Smartport 124

firmware routines
Monitor 112-115
mouse 193-194
video 116--118

flag inputs 23
flags

inverse 69, 70
keyboard 78

flashing characters 69, 70, 88-89
forced cold-start reset 50, 52
FORMAT call 127, 135-136
Fortran 330
40-column display 5, 50, 86, 91,

92, 94, 259, 358
addressing 263
map 107
memory 261
switching to 5

48K memory 36-39
switches 39

French keyboard 373-374
full-duplex operation 182-184
function keys 4

Index 537

G

game input 198-201
characteristics 199

game paddles 198, 287
GCR 247
general logic unit (GLU) 15,

245-246, 365
German keyboard 376-377
GetLn routine 36, 59--60, 78, 82,

205
escape codes ~2

GetLn 1 routine 82
GetLnZ routine 82
global storage 36
GO command 219
graphics display

H

buffer 38
double high-resolution 97-98,

111, 269
high-resolution 38-39, 95-97,

110, 267-268
low-resolution 94-95, 109,

266-267
mixed-mode 98-99

half-duplex operation 180--181
hand controller 198

circuits 288
connector 287
connector signals 199-200, 287
input and output 287-290,

363-364
signals 289, 364

handle 232
hardware 365

addresses 316-321, 353-356
headphone jack 8, 256
hexadecimal 387-389
hexadecimal arithmetic 215
hexadecimal notation 225
high-resolution graphics 38-39,

95-97, 267-268
double 97-98, 111, 269
map 110

HiRes switch 45, 103, 241, 243,
354

538 Index

HLine routine 112, 114
HomeMouse routine 194
HOME routine 112, 114
horizontal-count bits 259-260
HRPl 38
HRPlX 38
HRP2 39, 269
HRP2X 39, 269

I command 156, 170, 228
identification bytes 73
index registers 18
INIT call 127, 139-140
InitMouse routine 194
IN#n command 57
IN#2 command 169, 171, 172,

176, 179, 180--183
IN#4 command 196
input buffer 36
input/output unit (IOU) 15,

243-244, 256, 365
inputs

analog 200
data 23
flag 23
game 198-201
hand controller 287-290,

363-364
keyboard 78-82
mouse 186-198, 282-286, 363
switch 200

input subroutines 58-63
GetLn 59-60
Keyin 58-59
Monitor 82
RdKey 58, 78, 341

Integer BASIC 308, 330, 348,
356, 388

integrated circuits 13, 241- 248
Integrated Woz Machine (IWM) 15,

247-248, 273, 365
internal converter 234-235

specifications 234
Interrupt Request 281

interrupts 74, 331-347, 357
bypassing 345-347
external 342-343
EXTINT 276
handling 334-345
keyboard 341-342
mouse 50, 187-188, 190-191,

339-340, 345-346, 354
serial 343-345
Smartport 130, 138
sources 338-339
VBIInt 187-188, 190, 243
vectors 333-334
Xlnt 190
Yint 190

inverse characters 69, 70, 88-89
INVERSE command 90, 214, 228
inverse display 214
inverse flag 69, 70
I/ 0 357

cassette 364
disk 273-274, 361
disk drive 120--121
links 56-58
memory expansion card 123
port 71-74
serial 274-282, 361-362
Smartport 123- 124

IOError $27 error 150
IOUDis switch 45, 103, 189, 355
IRQ 334
ISO keyboard 371
Italian keyboard 378-379

J

jacks
headphone 8, 256
output 8, 256

joysticks 198, 199

K
K command 156, 170
keyboard 3-7, 254-255, 357-359

Canadian 375
characteristics 79
circuit diagram 254
Dvorak 6-7, 358, 370
encoder 78
English 372
features 3
flag 78
French 373-374
German 376-377
input buffer 36, 38
inputs 78-82
interrupts 340-342
ISO 371
Italian 378-379
layouts and codes 3, 6-7,

366-381
Sholes 6, 358, 367-368
signals 255
specifications 3
strobe 78, 339, 353
switch 3, 6-7
Western Spanish 380-381

keyboard input switch (KSW) 57,
71, 101

Keyln routine 56-57, 58-59, 78
keys

cursor movement 4, 62
modifier 5, 81
special function 4

KSW 57, 71, 101
KSWH 57
KSWL 57

L

languages 329-330
last opened location 205
L command 156, 170

Left Arrow 4, 63
LF See line feed
line feed 114, 164, 179
LIST command 220-221, 225
Logo II 330
lowercase characters 395
low-resolution graphics 94-95,

M

266-267
map 109

Machine Language Interface 125
machine-language

programs 219-221
main logic board 12-15
main memory 42-44, 161, 175,

269
screen holes 313-314

main RAM 22
maps

display address 259-261
display page 105-111
48K memory 37
memory 20, 308-321
ROM 397, 398

M command 156, 171
memory

addressing 248-253
auxiliary 42-44, 74, 106,

160-161, 175, 269, 315
bank-switched 24-35
changing contents 208-210
comparing data 211-212
dump 206-208
examining 206
48K 36-39
main 42-44, 161, 175, 269,

313-314
maps 20, 308-321
moving data 210-211
RAM 13
range 207
ROM 13

memory addresses 20
display 258, 260
hardware page 316-321
port 1/0 72-73
port screen hole 74
text window 68-69

memory bus organization 249
memory expansion 14

mouse and 191, 195
memory expansion card 120, 250,

291
entry points 122
1/0 123
startup routine 122

memory management unit
(MMU) 15, 241-242, 365

memory pages
$00 (zero page) 20, 24, 25,

308-311
$01 (stack) 20, 24, 25
$02 (input buffer) 36
$03 (global storage, vectors) 36,

312
$04-$07 (TLPl) 36-38
$08 (communication port

buffers) 38
$08-$0B (TLP2) 38
$20-$3F (HRPl) 38
$40-$5F (HRP2) 39
$DO-$FF 26

microprocessor 13, 18- 19
See also 65C02 microprocessor

Mini-Assembler
address formats 226
instruction formats 226
starting 223-224
using 224-226

mixed-mode displays 98-99
MIXED switch 102, 243, 354
MU 125
modem 177-178
modem port, commands 170- 172
modifier keys 5, 81

Index 539

Monitor 5, 23, 36, 57, 59, 63, 161,
176, 258, 312, 356

entry points 322, 326-327
firmware routines 112-115
game support 201
input routines 82
interrupts 74
memory location 204
output 270
speaker routines 84
vectors 326-327

Monitor commands
advanced 216-218
debugging 221
machine-language

program 219-221
memory 205-212
register 212-213
repeating 217-218
summary 227-229
syntax 205

mouse
as hand controller 198
assembly-language

support 195-196
BASIC support 195-196
button signals 286
circuits 285
connector 284
connector signals 284
defaults 50
firmware entry points 23
firmware routines 193-194
inputs 186-198, 282-286, 363
interrupts 50, 339-340,

345-346, 354
1/0 firmware support 191-196
operating modes 187-188
Pascal support 195
port characteristics 186
screen holes 196-197
soft switches 189-191
waveforms 283

mouse port
addresses 325
1/0 firmware protocol 195
screen holes 197

MouseText 69, 70, 88, 90, ·360
characters 91

540 Index

MouXl switch 190
MouYl switch 190
MoveAux routine 42-43
MOVE command 210-211,

216-217, 227
movement/button interrupt

mode 188
movement interrupt

mode 187-188
multiplexing 251

RAM address 252

N

N command 228
nD command 156, 170
negative decimal 388-389
next changeable location 205,

208-209
nibbles 94, 384, 386
nnB command 156, 170
nnn command 156, 170
nnnN command 157, 171, 362
NoDrive $28 error 151
NonFatal $50-$7F error 151
normal characters 69, 70, 88-89
NORMAL command 90, 214, 228
normal display 214
NoWrite $2B error 150
nP command 157, 171
NTSC 86, 96, 97, 257, 270
#6 command 155
#7 command 169
#8 command 169

0

0 Control-K 215
OffLine $2F error 151
Open Apple 4, 52, 81, 200, 221,

222, 358
Open Apple-Control-Reset 52,

121, 162, 176, 361
OPEN call 127, 140-141
operating systems 214, 328-329
output jack 256

outputs
hand controller 363-364
speaker 82-84
strobe 24
video display 116-118
video signal 270-273

output subroutines 64-70
COut 64
COutl 65
C30ut 1 65-67

overflow bit 44

p

paddles 198, 287
Page 1 20, 36-38, 50, 269

high-resolution 95
text 100, 106

Page lX 38, 269
text 100

Page 2 20, 39
high-resolution 95
text 100

Page2 switch 45, 102, 241, 243,
354

Page 2X 38, 39
pages, display See display pages
pages, memory See memory

pages
PAL 257
parity bit 163
Pascal 56, 68, 72, 124, 169, 330,

332
mouse and 195
video control functions 117-118

Pascal Operating System 329
PdlO 287
Pdll 287
PEEK 329
period (.) 206
peripheral-card memory

spaces 352-353
peripheral identification numbers

(PIN) 389-390
Plnit routine 116

pin outs
GLU 246
IOU 243
IWM 247
MMU 242
RAM 251
ROM 249, 250
6551 277
TMG 245
video expansion connector 272

PLOT routine 112, 114
POKE 329
ports

characteristics 71
disk I/0 120-121
entry points 71
1/0 71-74
mouse 186, 325
printer 155-157
ROM space 73
screen hole RAM space 74
serial 275
serial port 1 22, 154-165
serial port 2 22, 38, 167-184
video output 86

PosMouse routine 193
power converter 234-235

specifications 234
i>ower light 3, 7
power-on reset 50
power supply 11-12

specifications 233, 383
PR#n command 57
PR#O command 198
PR#l command 155, 159, 162,

181
PR#2 command 169, 171, 172,

179, 181, 183, 184
PR#3 command 90, 196
PR#4 command 196, 198
PR#7 command 328
PRBl2 routine 112, 114
PrByte routine 112, 115
PRead routine 116, 201
P register 18, 213
PrErr routine 112, 115

PrHex routirte 112, 11$
primary character set 69, 70, 88,

359
PRINTER command 155
printer port, commands 155-157
PrntAX routine 113, 115
processor status register 18, 213
ProDOS 51, 57, 124, 155, 169,

204, 214, 312, 328, 332
Machine Language Interface 125

program counter (PC) 18
prompt characters 59
Protocol Converter 124
PStatus routine 118
PTrig switch 190
PWrite routine 117

Q

Q command 171
question mark(?) 59

blinking 169, 179

R
RAM 13

addressing 251-253
auxiliary 22, 184
main 22
memory expansion card 123
pe1 ipheral-card 353
port screen hole 74
refreshing 251-252
Smartport 126
timing 252-253

RAM addresses 22, 351
multiplexing 252

RAMRd switch 39, 44, 242
RAMWrt switch 39, 44, 242
R command 157, 171
Rd63 switch 190
Rd80Col switch 102
Rd80Store switch 45, 102
RdAltChar switch 102
RdAltZP switch 28
RdBnk2 switch 28
RdBtnO switch 190

RdChar routine 82
RdDHiRes switch 46, 103
RdHiRes switch 45, 103
RdIOUDis switch 46, 103, 189
RdKey routine 58, 78, 341
RdLCRAM switch 28
RdMIXED switch 102
RdPage2 switch 45, 102
RdRAMRd switch 39
RdRAMWrt switch 39
RdTEXT switch 102
RdVBIMsk switch 190
RdXOEdge switch 189
RdXYMsk switch 189
RdYOEdge switch 190
READ BLOCK call 126, 132-133
READ call 127
ReadMouse routine 188, 192, 193
registers 18-19

changing 213
command 280
control 278-279
examining 213
shift 263, 268
Smartport 125
status 18, 130, 213, 281
transmit/receive 282

REMIN command 169
REMOUT command 169
Request to Send (RTS) 280
Reset 3, 4, 81, 358
reset routine 49-50
reset vectors 50-53
Return 4, 60, 169, 204, 206, 208,

209, 213, 215, 224, 227
return from subroutine (RTS) 57,

219
retype 63
RGB 269
Right Arrow 4, 63, 82
ROM 13

addresses 22-23, 351-352
addressing 249-250
Autostart 356
character generator 14, 266, 267
Monitor 356
peripheral-card 352

Index 541

ROMENl 250
ROMEN2 250
ROM map

auxiliary side 398
main side 397

ROM space
expansion 74
port 73

row-address strobe (RAS) 252
RstVBl switch 190
RstXInt switch 189, 242
RstXY switch 189
RstYint switch 190, 242
RTS

Request to Send 280
return from subroutine 57, 219

s
S command 157, 171
screen holes 38, 312-315

auxiliary memory 315
main memory 313-314
mouse 196- 197
serial port 1 160-161
serial port 2 174-175

SCRN routine 113, 115
serial buffering 343-344
serial cards 361-362
serial I/0 274-282, 361-362

buffe rs 362
serial port 361-362

circuits 275
connectors 278
connector signals 278

serial port 1 22, 154-165
addresses 323
at startup 159
carriage return and line feed 164
characteristics 154, 161-165
data format and baud rate 163
displaying output 165
hardware page locations 159
I/0 firmware support 160
screen holes 160-161
sending special characters 165
using 155-158

542 Index

serial port 2 22, 38, 167-184
addresses 324
at startup 173
carriage return and line feed 179
characteristics 168-169,

176-184
commands 170-172
data format and baud

rate 177-178
hardware page locations 173-174
I/0 firmware support 174
routing input and

output 179-184
screen holes 174-175
using 169-173

ServeMouse routine 187, 188,
193, 339

SetCol routine 113, 115
SetMouse routine 192, 193, 339
SetPWRC routine 53
Shift 5, 81 , 255, 358
shift register 263, 268
Sholes keyboard 6, 358, 367-368
signals

BREAK 163
character generator 266
clock 239-241
disk drive connector 274
GLU 246
hand controller 199-200, 289,

364
hand controller connector 287
IOU 243-244
IWM 247
keyboard 255
MMU 242
mouse button 286
mouse connector 187 , 284
RAM timing 253
ROM 250
serial port connector 278
65C02 305
6551 277
synchronization 257
timing 264-265
TMG 245
video expansion

connector 272- 273
video output 270-273

65C02 microprocessor 13, 75,
237-241, 297-307

addressing modes 26, 302, 304
block diagram 237-238, 299
characteristics 300-301
data sheets 298-307
enhancements 301
instruction mnemonics 302
instruction set 306
interrupt handling 333
operational codes 306-307
pin configuration 299
pin function 300
programming model 303
ratings 300
registers 18-19
signal description 305
specifications 239
timing 239-241, 302
versus 6502 297-298

SLOTC3ROM switch 354
SLOTCXROM switch 354
Smart port

calls 125-148
commands and parameters 149
error codes 150-151
I/0 interface 123-124
locating 124
soft switches 20, 24
bank selector 27
display 50, 101-105
mouse 189-191

Solid Apple 4, 52, 81, 200, 221,
222, 358

Solid Apple-Control-X 341
speaker 359

circuit diagram 256
outputs 82- 84
volume control 8, 256

special characters 393
special function keys 4
specifications

environmental 232
power supply 233, 383
65C02 239

S register 18, 213
stack pointer 18, 213
startup 121-123
STATUS call 126, 128-132

status register, ACIA 130, 281
STEP command 221-223
stop-list function 67
STORE command 216, 227
strobes

column-address 252
keyboard 78, 255, 339, 353
outputs 24
row-address 252

Super Serial Card 179, 361, 362
SwO 287
Swl 287
switch in puts 200
synchronization signals 257

T
Tab 4, 358
T command 171, 180-183
terminal mode 179, 184
text, character sets 88-89
text display 263

characteristics 93
40-column 5, 50, 86, 91, 92,

94, 107, 259, 261, 358
80-column 5, 38, 64, 68, 86,

91, 92, 100, 106, 108,
269, 358

switching 93
text Page 1 100, 106
text Page lX 100
text Page 2 100
TEXT switch 102, 243, 354
text window 68-69
timing generator (TMG) 15, 245,

365
TLPl 36
TLPlX 38
TLP2 38
TLP2X 38
toggle switches 24
TRACE command 221-223
transmit/receive register,

ACIA 282
transparent mode 187

u
underscore (_), blinking 179
UniDisk 3.5 120, 124, 130, 223

control list 138
I/0 entry points 122

UpArrow 4
uppercase characters 394
USER command 218, 228

v
validity-check byte 51, 53
VB!Int switch 243
vectors 36, 56

interrupt 333-334
Monitor 326-327
reset 50-53

VERIFY command 211-212, 217,
227

vertical blanking 338, 354, 360
active modes 188

vertical-count bits 260
VID 270, 365
video counters 257-258
video display 257-273, 359-360

addresses 101
circuits 262
I/0 firmware support 116-118
modes 261-269
specifications 87

video expansion
connector signals 272-273
output 271-273

video output firmware
addresses 324
entry points 23

video output port,
characteristics 86

video output signals 257, 270-273
VLine routine 113, 115
voltage converter 11-12
volume control 8, 256
VTabZ routine 113

w
warm start 50, 51, 123
Western Spanish

keyboard 380- 381
WNDW 257
words 385
WRITE BLOCK call 127, 134-135
WRITE call 127, 143-144

x
XO 243, 284
XOEdge switch 189
Xl 284
X command 157, 171
XFer routine 42-44, 312
Xlnt 190, 354
XON/XOFF protocol 171
X register 18, 43, 73, 84, 114,

115, 118, 128, 192, 201,
213

y

YO 243, 284
YOEdge switch 190
Yl 284
Ylnt 190, 354
Y register 18, 43, 113, 114, 115,

128, 192, 201, 213

z
Z command 157, 165, 171

Index 543

THE APPLE PUBLISHING SYSTEM

Tilis Apple manual was written,
edited, and composed on a
desktop publishing system using
the Apple Macintosh™ Plus and
Microsoft® Word. Proof and
final pages were created on the
Apple LaserWriter® Plus.
POSTSCRIPT™, the
LaserWriter's page-description
language, was developed by
Adobe Systems Incorporated.

Text type is ITC Garamond®
(a downloadable font distributed
by Adobe Systems). Display
type is ITC Avant Garde
Gothic®. Bullets are ITC Zapf
Dingbats®. Program listings are
set in Apple Courier, a
monospaced font.

The Apple Technical Library
The Official Publications from
Apple® Computer, Inc.
The Apple Technical Library offers programmers,
developers, and enthusiasts the most complete tech
nical information available on Apple computers,
peripherals, and software. The Library consists of
technical manuals for the Apple II family of com
puters, the Macintosh family of computers, key
peripherals, and programming environments.

Apple Technical Library titles on the Apple II
family include technical references to the Apple Ile,
Apple Ile, and Apple II Gs computers, with detailed
descriptions of the hardware, firmware, ProDOS
operating system, and the built-in programming
tools that programmers and developers can draw
upon. In addition to a technical introduction and
programmer's guide to the Apple IIGs, there are
tutorials and references for Applesoft BASIC and
Instant Pascal programmers.

The Inside Macintosh Library provides
complete technical references to. the Macintosh
512, Macintosh 512 enhanced, Macintosh Plus,
Macintosh SE, and Macintosh II computers. Indi
vidual volumes provide technical introductions
and programmer's guides to the Macintosh as well
as detailed information on hardware, firmware, sys
tem software, and programming tools. The Inside
Macintosh Library offers the most detailed and
complete source of information available for the
Macintosh family of computers.

In addition, titles in the Apple Technical
Library offer references to the wide range of impor
tant printers, communications standards, and
programming environments such as the Standard
Apple Numerics Environment (SANE) to help pro
grammers and experienced users get the most out
their computer systems.

Apple Ile Technical Reference Manual

The Official Publication from Apple Computer, Inc.

Apple's definitive guide to all versions of the Apple® Ile personal computer.
Written and produced by the people at Apple Computer, this manual provides a
comprehensive, single-source reference for programmers and hardware
designers.

The Apple Ile Technical Reference Manual describes all aspects of the Ilc
including its physical characteristics, the hardware/firmware locations that
control memory and 1/0, and the electrical and electronic implementation
of machine features and capabilities. Summary tables provide quick reference
to all of the 1/0 firmware entry points, including those used by the system's
Smartport.

The manual describes:

• Memory organization and control.
• Apple Ile 1/0 interface, including keyboard and speaker, video display modes

(including graphics modes), internal and external disk drives, the Apple Ile
Memory Expansion Card, serial ports, and the mouse and game port.

• Use of the system Monitor routines in the Ile firmware to disassemble and
debug machine-language programs.

• The hardware, including pinouts of custom ICs and internal/external
connectors, plus schematic diagrams.

Appendixes contain quick-reference tables, describe interrupt handling, and
include product comparisons of all members of the Apple II family of computers.

This edition of the Apple /Jc Technical Reference Manual also includes firmware
listings for the new Apple Ile Memory Expansion Card. Information on obtaining
firmware listings for earlier versions of the Ile, as well as supplementary technical
information, is provided.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, California 95014
(408) 996-1010
TIX 171-576

Addison-Wesley Publishing Company, Inc.

030-1238-B
Printed in USA

ISBN 0-201-17752-8

	Apple IIc Technical Reference Manual
	Cover Page
	Table of Contents
	Figures & Tables

	Preface
	About This Manual
	Contents of This Manual
	The Apple IIc Family
	Identifying Your Apple IIc
	The Original Apple IIc
	The Unidisk 3.5 Apple IIc
	The Memory Expansion Apple IIc

	Conventions Used in This Manual

	Chapter 1: Introduction
	Outside of the Machine
	Keyboard
	Features
	Special Function Keys
	Cursor Movememt Keys
	Modifier Keys
	The 80/40 Switch
	Keyboard Switch
	Disk Use & Power Lights

	The Speaker
	Built-in Disk Drive
	The Back Panel
	Back Panel Connectors

	Inside of the Machine
	Internal Voltage Converter
	Main Logic Board
	Other Circuit Boards

	Chapter 2: Memory Organization & Control
	The 65C02 Microprocessor
	Overview of Address Space

	Memory Map & Memory Switching
	Main RAM Addresses
	Auxillary RAM Addresses
	ROM Addresses
	Hardware Addresses

	Bank-Switched Memory
	Page Allocations
	Using Bank Selector Switches

	48K Memory
	Page Allocations
	Using 48K Memory Switches
	Transfers Between Main & Auxillary Memory
	Using Display Memory Switches

	The RESET Routine
	Cold Start Procedure
	Warm Start Procedure
	Forced Cold Start
	The RESET Vector

	Chapter 3: Introduction to Apple IIc I/O
	The Standard I/O Links
	Standard Input Features
	RdKey Subroutine
	KeyIn Subroutine
	GetLn Subroutine
	Escape Codes with GetLn
	Editing with GetLn
	Cancel Line
	Backspace
	Retype

	Standard Output Features
	COut Subroutine
	Control Characters with COut1
	Control Characters with C3COut1
	The Stop-List Feature
	The Text Window
	Normal, Inverse & Flashing Text
	Primary Character Set Display
	Alternate Character Set Display

	Port I/O
	Standard Link Entry Points
	Firmware Protocol
	Port I/O Space
	Port ROM Space
	Expansion ROM Space
	Port Screen Hole RAM Space

	Interrupts

	Chapter 4: Keyboard & Speaker
	Keyboard Input
	Reading the Keyboard
	Monitor Firmware Support for Keyboard Input

	Speaker Output
	Using the Speaker
	Monitor Firmware Support for Speaker Output

	Chapter 5: Video Display Output
	Video Display Specifications
	Text Modes
	Text Character Sets
	Mousetext
	40- vs 80-Column Text

	Graphics Modes
	Low-Resolution Graphics
	High-Resolution Graphics
	Double High-Resolution Grahpics

	Mixed-Mode Displays
	Display Pages
	Display Mode Switching
	Display Page Maps
	Monitor Support for Video Display Output
	I/O Firmware Support for Video Display Output

	Chapter 6: Block Device I/O
	Disk Drive I/O
	Startup
	Cold Start
	Warm Start

	Memory Expansion Card I/O
	Smartport I/O Interface
	Locating the Smartport
	Issuing a Call to the Smartport
	Cautions

	Descriptions of the Smartport Calls
	STATUS
	READ BLOCK
	WRITE BLOCK
	FORMAT
	CONTROL
	INIT
	OPEN
	CLOSE
	READ
	WRITE

	Example: Issuing a Smartport Call
	Summary of Commands & Parameters
	Summary of Error Codes

	Chapter 7: Serial I/O Port 1
	Using Serial Port 1
	Characteristics of Port 1 at Startup
	Hardware Page Locations for Port 1
	I/O Firmware Support for Port 1
	Screen Hole Locations for Port 1
	Changing Port 1 Characteristics
	Data Format & Baud Rate
	Carriage Return & Line Feed
	Sending Special Characters
	Displaying Output on the Screen

	Chapter 8: Serial I/O Port 2
	Using Serial Port 2
	Characteristics of Port 2 at Startup
	Hardware Page Locations for Port 2
	I/O Firmware Support for Port 2
	Screen Hold Locations for Port 2
	Changing Port 2 Characteristics
	Data Format & Baud Rate
	Carriage Return & Line Feed
	Routing Input & Output
	Half-duplex Operation
	Full-duplex Operation
	Terminal Mode

	Chapter 9: Mouse & Game Input
	Mouse Input
	Mouse Connector Signals
	Mouse Operating Modes
	Mouse Soft Switches
	I/O Firmware Support for Mouse Input
	Pascal Support
	BASIC & Assembly Language Support

	Screen Holes
	Using the Mouse as a Hand Controller

	Game Input
	Hand Controller Connector Signals
	Monitor Support for Game Input

	Chapter 10: Using the Monitor
	Invoking the Monitor
	Syntax of Monitor Commands
	Monitor Memory Commands
	Examining Memory Contents
	Memory Dump
	Changing Memory Contents
	Moving Data In Memory
	Comparing Data In Memory

	Monitor Register Commands
	Changing Registers
	Examining Registers

	Miscellaneous Monitor Commands
	Display Inverse & Normal
	Back to BASIC
	Redirecting Input & Output
	Hexadecimal Arithmetic

	Advanced Operations
	Multiple-Command Lines
	Filling Memory
	Repeating Commands
	Creating Your Own Commands

	Machine-Language Programs
	Running a Program
	Disassembled Programs

	STEP & TRACE Commands
	The Mini-Assembler
	Starting the Mini-Assembler
	Using the Mini-Assembler
	Mini-Assembler Instruction Formats

	Summary of Monitor Commands
	Examining Memory
	Changing the Contents of Memory
	Moving & Comparing
	The Register Command
	Miscellaneous Monitor Commands
	Running & Listing Programs

	Chapter 11: Hardware Implementation
	Environmental Specifications
	Power Requirements
	External Power Supply
	External Power Connector
	Internal Converter

	IIc Overall Block Diagram
	The 65C02 Microprocessor
	65C02 Block Diagram
	65C02 Timing

	Custom Integrated Circuits
	Memory Management Unit (MMU)
	Input/Output Unit (IOU)
	Timing Generator (TMG)
	General Logic Unit (GLU)
	Disk Controller Unit (IWM)

	Memory Addressing
	ROM Addressing
	RAM Addressing

	The Keyboard
	The Speaker
	Volume Control
	Output Jack

	Video Display
	Video Counters
	Display Memory Addressing
	Display Address Mapping
	Video Display Modes
	Text
	LoRes
	HiRes
	Dobule HiRes

	Video Output Signals
	Monitor
	Video Expansion

	Disk I/O
	Serial I/O
	ACIA Control Register
	ACIA Command Register
	ACIA Status Register
	ACIA Transmit/Receiver Register

	Mouse Input
	Hand Controller (Game) Input
	Memory Expansion Card
	Schematic Diagrams

	Appendix A: The 65C02 Microprocessor
	Differences Between 6502 & 65C02
	Differing Cycle Times
	Differing Instruction Results

	Data Sheet

	Appendix B: Memory Map
	Page $00
	Page $03
	Screen Holes
	Hardware Page

	Appendix C: Important Firmware Locations
	Tables
	Port Addresses
	Other Video & I/O Firmware Addresses
	Applesoft BASIC Interpreter Addresses
	Monitor Addresses

	Appendix D: Operating Systems & Languages
	Operating Systems
	ProDOS
	DOS
	Pascal

	Languages
	Applesoft BASIC
	Integer BASIC
	Pascal
	FORTRAN
	LOGO II

	Appendix E: Interrupts
	Introduction
	What is an Interrupt?
	Interrupts on Apple II Computers
	Interrupt Handling on the 65C02
	The Interrupt Vector at $FFEE

	Built-In Interrupt Handler
	Saving the Memory Configuration
	Managing Main & Auxillary Stacks

	User's Interrupt Handler at $03FE
	Handling Break Instructions
	Sources of Interrupts
	Firmware Handling of Interrupts
	Firmware for Mouse & VBL
	Firmware for Keyboard Interrupts
	Using Keyboard Buffering Firmware
	Using Keyboard Interrupts through Firmware
	Using External Interrupts through Firmware
	Firmware for Serial Interrupts
	Using Serial Buffering Transparently
	Using Serial Interrupts through Firmware
	Transmitting Serial Data
	A Loophole in the Firmware

	Bypassing the Interrupt Firmware
	Using Mouse Interrupts without the Firmware
	Using ACIA Interrupts without the Firmware

	Appendix F: Apple II Series Differences
	Overview
	Type of Processor
	Macine Identification

	Memory Structure
	Amount & Address Ranges of RAM
	Amount & Address Ranges of ROM
	Peripheral Card Memory Spaces
	Hardware Addresses
	Monitors

	I/O in General
	DMA Transfers
	Slots vs Ports
	Interrupts

	The Keyboard
	Keys, Switches & Lights
	Character Sets

	The Speaker
	Video Display
	Character Sets
	Mousetext
	Vertical Blanking
	Display Modes

	Disk I/O
	Serial I/O
	Serial Ports vs Serial Cards
	Serial I/O Buffers

	Mouse & Hand Controllers
	Mouse Input
	Hand Controller Input & Output

	Cassette I/O
	Hardware
	Power
	Custom Chips

	Appendix G: USA & International Models
	Keyboard Layouts & Codes
	USA Standard (Sholes) Keyboard
	USA Simplified (Dvorak) Keyboard
	English Keyboard
	French Keyboard
	Canadian Keyboard, eh?
	German Keyboard
	Italian Keyboard
	Western Spanish Keyboard

	ASCII Character Sets
	Certification
	Product Safety
	Important Safety Instructions

	Power Supply Specifications

	Appendix H: Conversion Tables
	Bits & Bytes
	Hexadecimal & Decimal
	Hexadecimal & Negative Decimal
	Peripheral Identification Numbers
	Eight-Bit Code Conversions

	Appendix I: Firmware Listings
	Glossary
	Bibliography
	Index
	Back Cover

